+2.5D傅氏变换法声波方程数值模拟及精度分析

+2.5D傅氏变换法声波方程数值模拟及精度分析
+2.5D傅氏变换法声波方程数值模拟及精度分析

傅里叶变换拉普拉斯变换的物理解释及区别

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义频域的相位与时域的相位有关系吗信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。 傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。也就是说,用无数的正弦波,可以合成任何你所需要的信号。

变换法解微分方程

题目: 变换法在求解常微分方程中的应用姓名: 学院: 数学与统计学院 专业: 数学与应用数学 年级班级: 2011级1班 指导教师: 刘伟 2015年 5 月 31 日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。 本毕业论文内容不涉及国家机密。 论文题目:变换法在求解常微分方程中的应用 作者单位:数学与统计学院 作者签名: 2015 年5 月31 日

目录 摘要 (1) 引言 (2) 1.在一阶方程中的应用 (3) 1.1变量分离方程 (3) 1.2齐次与可以经过变量代换化为齐次的常微分方程: (3) 1.3一阶线性方程 (7) 1.4几种特殊类型的一阶常微分方程 (8) 1.5伯努利方程 (9) 1.6黎卡提方程 (10) 2.在n阶微分方程中的应用 (10) 2.1 在n阶非齐次线性微分方程 (10) 2.2 非齐次线性微分方程 (12) 3.变系数齐次方程 (13) 3.1尤拉方程 (13) 3.2二阶变系数线性方程 (13) 3.3三阶变系数微分方程 (14) 结束语 (14) 参考文献 (16) 致谢 (17)

变换法在求解常微分方程中的应用 摘要:变换法是常微分方程中的一种计算方法. 它可以起到简化问题的作用,变量变换思想也是一种常微分方程中的重要思想. 应用原始变量的变换与新的变量代换, 使原始方程的类型相对简单的解决方案,从而达到解决的目的. 在常微分方程中, 变换法在许多类型的常微分方程的求解中起到及其重要的作用. 本文就应用变换法在求解几类微分方程进行探究, 通过陈述理论与联系实例结合阐述变量变换法以及变量变换思想在求解常微分方程的应用. 关键词:常微分方程;变量分离;变换法; Application of transform method in solving the differential equation Abstract: Transform method is a calculation method of ordinary differential equation. It can play a role to simplify the problem, the idea of variable transformation is an important thought in ordinary differential equation. The application of the original variable transform and the new type of variable substitution, the original equation solution is relatively simple, so as to achieve the purpose of solving. In the differential equation, variable substitution plays its important role in the ordinary solution differential equations in many types of. This paper explores the solutions for several classes of differential equations on the application of variable substitution, through the statement of theory and examples combined with variable transformation method and the application of variable transformation thought in the solution of ordinary differential equations. Key Words: Ordinary differential equation;Separable variable;Transform method

叠加地震记录的相移波动方程正演模拟数值模拟实验共22页

《地震数值模拟》实验报告 一、实验题目 叠加地震记录的相移波动方程正演模拟

二、实验目的 1.掌握各向同性介质任意构造、水平层状速度结构地质模型的相移波动方程正演模拟基本理论 2.实现方法与程序编制 3.由正演记录初步分析地震信号的分辨率。 三、实验原理 1、地震波传播的波动方程 设(x,z)为空间坐标,t为时间,地震波传播速度为v(x,z),则二位介质中任意位置、任意时刻的地震波场为p(z,x,t):压缩波——纵波。则二维各向同性均匀介质中地震波传播的遵循声波方程为 2、傅里叶变换的微分性质 p(t)与其傅里叶变换的P(w)的关系: 3、地震波传播的相移外推公式 令速度v不随x变化,只随z变化,则利用傅里叶变换微分性质把波动方程(变换到频率-波数域,得: 4、初始条件和边界条件 按照爆炸界面理论,反射界面震源在t=0时刻同时起爆,此时刻的波场就是震源。根据不同情况,可直接使用反射系数脉冲或子波作震源。如果直接使用反射系数作震源脉冲,则初始条件可表示为: 5、边界处理

(1)边界反射问题 把实际无穷空间区域中求解波场的问题化为有穷区域求解时,左右两边使用零边界条件。物理上假设探区距Xmin与Xmax两个端点很远,在两个端点上收到的反射波很弱。但是,上述条件在实际中不能成立,造成零边界条件反而成为绝对阻止波通过的强反射面。在正演模拟的剖面上出现了边界假反射干涉正常界面的反射。 (2)边界强反射的处理 镶边法、削波法、吸收边界都能有效消除边界强反射。 削波法就是在波场延拓过程中,没延拓一次,在其两侧均匀衰减到零,从而消除边界强反射的影响。假设横向总长度为NX,以两边Lx道吸波为例,有以下吸波公式: 四、实验内容

用拉普拉斯变换方法解微分方程

2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的 dt d ,2 s 代替 2 2dt d ,…就可得到。 应用拉氏变换法解微分方程的步骤如下: (1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量s 的代数方程(称为变换方程) (2)求解变换方程,得出系统输出变量的象函数表达式。 (3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。 (4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。 举例说明 【例2-7】 设RC 网络如图2-24所示,在开关K 闭合之前,电容C 上有初始电压 )0(c u 。试求将开关瞬时闭合后,电容的端电压c u (网络输出)。 解 开关K 瞬时闭合,相当于网络有阶跃电压0)(u t u c =·)(1t 输入。故网络微分方程为 ?? ? ??=+=?idt C u u Ri u c c r 1 消去中间变量i ,得网络微分方程为 )(t u u dt du RC r c c =+ (2-44) 对上式进行拉氏变换,得变换方程 )()()0()(s U s U RCu s RCsU r c c c =+- 将输入阶跃电压的拉氏变换式s u s U r 0)(= 代入上式,并整理得电容端电压的拉氏变换式

波动方程的变步长有限差分数值模拟

收稿日期:2007-03-23;修订日期:2007-04-27 作者简介:李胜军,男,在读硕士研究生,研究方向为地震波传播理论。联系电话:(0546)8392055,E-mail:hdpulis@126.com,通讯地址:(257061)中国石油大学(华东)地球资信与信息学院。 *中国石油大学(华东)研究生创新基金资助,编号:S2006—06。 油气地球物理 2007年7月 PETROLEUMGEOPHYSICS 第5卷第3期 在地震资料采集、处理和解释中通常需要进行地震波场数值模拟:假设已知地下的地质情况,应用地震波运动学和动力学的基本原理,计算给定地质模型的地震响应。这种做法对正确认识地震波的运动学和动力学特征,以及准确分析油气藏的反射波场特征有着重要的指导意义。声波在介质中的正演模拟研究为我们精确模拟地震波在复杂介质中的传播提供了理论基础[1]。 傅立叶变换法和高阶有限差分法(FD)已成为计算声波方程空间导数的标准技术[2,3]。虽然常网格步长差分算法比较容易实现,但是它们对大部分模型都增大了不必要的计算量。例如,对存在浅层低速带的沉积盆地模型地面地震记录进行模拟时,由于低速地层阻抗小,地震波传入其中会引起较大的振幅和较长的延续时间(这与深层的高速层完全不同)。由于这些浅层低速层中地震波的波长较短、地层厚度较小,模拟时需要用小网格进行。这样,常网格步长算法就必须用小网格离散整个模型,从而增加了不必要的代价,如内存、计算量的增大。 因而,采用变网格算法将能改进有上覆低速层情况模拟结果的有效性(对地层中间有超薄夹层的情形,必须用精细网格覆盖才能精确的对地层进行模拟)。应用这种变网格算法既能实现对夹层的模拟,又能保障计算量不增加。因此这种通过函数实现在任意深度上网格步长变化的有限差分方法被 推广[4]。为了计算空间导数,在X方向用傅立叶变换法或有限差分算法,在Z方向使用高阶有限差分方法。通过时间积分快速展开法(REM)来保障差分方法的计算精度[6]。这种差分技巧比二阶时间差分有较高的精确度且计算用时短。 1时间积分 均匀介质中的二维声波方程可用下式表示[2] 式中:P=P(x,z,t),代表压力项;c=c(x,z),代表速度;s=s(s,z),代表震源函数;L2为差分算子。在密度!=!(x,z)变化的情况下,常用的是Vidale给出的公式[5] 波动方程的变步长有限差分数值模拟* 李胜军1,2) 孙成禹1) 张玉华1) 倪长宽1) 1)中国石油大学地球资源与信息学院;2)中石油勘探开发研究院西北分院 摘要:有限差分算法是常用的正演模拟方法之一,其包含的地震信息丰富,且实现简单。传统的有限差分方法通常都采用均匀网格步长,在对含低速/高速介质、 薄层/厚层介质的模型进行波场模拟时往往缺乏稳定性。文章介绍了一种可以有效解决上述问题的变网格算法,对常规有限差分法与变网格差分算法在内存需求、计算速率等方面的差别进行了比较,对变网格差分算法中的边界条件、 时间积分的快速展开算法作了阐述,进而总结了变网格算法的优点。关键词:变步长;边界条件;计算时间;快速展开法;数值模拟 !2 P!t2=-L2P+s (1) (2) -L2 =c 2 !2!x2+!2 !z 2" # (3) (4) !2 P!t 2=-L2P!"$ -1!L2P+PL21!+s -L2 =!c 2 2 !2!x2+!2 !z 2% $

声波方程数值模拟实验报告

声波方程数值模拟实验报告 一.基础理论知识 需要的已知条件包括: 1.1)震源函数 2)地层速度(波速) 3)边界条件 2.弹性波方程:?????????+??=??+??+??=??) ()()(222222 22222 222z w x w v t w t S z u x u v t u s p 声波方程的有限差分法数值模拟 对于二维速度-深度模型,地下介质中地震波的传播规律可以近似地用声波方程描述: )()(2222 222t S z u x u v t u +??+??=?? (4-1) (,)v x z 是介质在点(x , z )处的纵波速度,u 为描述速度位或者压力的波场,)(t s 为震 源函数。 为求式(4-1)的数值解,必须将此式离散化,即用有限差分来逼近导数,用差商代替微商。为此,先把空间模型网格化(如图4-1所示)。 设x 、z 方向的网格间隔长度为h ?,t ?为时间采样步长,则有: h i x ?= (i 为正整数) h j z ?= (j 为正整数)t n t =? (n 为正整数) k j i u , 表示在(i,j)点,k 时刻的波场值。 将1 ,+k j i u 在(i,j)点k 时刻用Taylor 展式展开: z ?,i j 1,i j +2,i j +1,i j -2,i j -,2 i j -,2 i j +,1i j +,1 i j -1,1i j -+1,2 i j -+2,1i j -+2,2 i j -+1,2 i j ++2,2 i j ++1,1 i j +-2,1i j +-1,1i j ++2,1i j ++1,1i j --1,2i j +-2,2i j +-2, 2i j --2,1 i j --1,2i j --x ?

波动方程正演模型的研究与应用

波动方程正演模型的研究与应用 郑鸿明* 娄 兵 蒋 立 (新疆油田公司勘探开发研究院地物所) 摘要野外采集的地震数据是经过大地滤波后的畸变信号,处理的地震剖面只是间接地反映了地下构造和地质体的特征,虽然目前有很多方法和手段可以分析并提取相关的地质信息,但由于处理对波场的改造和噪声的存在以及方法本身的多解性问题降低了识别地质信息的可靠性。处理中每一步对有效信息的影响有多大,对地震属性解释的影响有多大,没有一个定量的标准,只能凭经验和认识来定性地判断。正演模型在弹性波理论指导下,遵循严格的数学公式,可以最佳模拟地下各种情况。各种处理方法和不同的处理流程所得到的结果能否符合或最佳逼近波动方程建立的数学模型,正演模型是判断处理工作合理性的良好准则。 主题词地质模型波动方程正演模型地震响应模块测试 1 引 言 随着地震勘探的不断深入,地震勘探也由构造型油气藏勘探进入精细的岩性勘探阶段,要求地震勘探能够反映地下地质体岩性变化,以及识别含油、气、水的地震响应特征,分辨薄互层、低幅度构造的能力。地球物理学家们在长期的实践中已经研究开发了很多相关的技术,虽然理论上这些方法都能够成立,这些技术应用成功的实例也很多,但也不乏有失败的教训,往往产生多解性,或与钻探的结论不符。这里除了复杂地表和复杂地下构造形成的复杂地震波场而不满足建立在简单地质模型处理理论的因素外,与处理过程对地震波场的改造也有很大关系。从地震数据的采集到最终处理的地震剖面,整个过程是一个系统工程,地下地质结构、地质体的岩性变化以及含流体的性质,对处理人员来说是看不见、摸不着的“黑匣子”,我们所看到的只是经过大地滤波后产生畸变的地震波场,如何从这个畸变的地震波场中去伪存真、恢复真实的构造形态、提取储层的相关地震属性信息,这是岩性处理的最终目标。处理中的每一步环环相扣、相互影响、相互制约,而我们对处理中的每一步产生的中间结果所应达到的标准只是凭经验、感觉进行定性判定,加入了很多人为因素,这些因素或多或少影响着我们对解释成果的正确认识。另外,处理技术发展很快,相应的地震处理软件越来越多,应用这些模块之前对各模块所起的作用以及它们所产生的结果都需要有一个定量的认识,以及验证处理流程的合理性是当前迫切需要解决的问题。究竟什么样的结果满足岩性解释的要求、什么样的结果反映的是真正地下地质体的响应、什么样的处理方法满足保振幅处理和地震属性分析的应用等等一系列问题,这都是当前岩性处理中迫切需要解决的主要问题。它直接关联着处理成果的真伪及后续解释的可靠性,关联着勘探的投资风险。 随着计算机运算能力发展迅猛,特别是微机群的出现,为波动方程算法提供了硬件环境,开展此项技术的研究与应用已成为可能。此次模型的设计全面考虑了地表和地下的典型地质特征并将这些特征容入到模型中,真实模拟了实际地质结构。应用该地质模型正演叠前炮集的地震响应。 2 模型的建立 模型分物理模型和数学模型两种,目前的物理模型只能做非常简单的模拟,只有用数学模型才能模拟各种复杂的地质现象。20世纪70年代,美国哥伦比亚大学在郭宗汾

用拉普拉斯变换方法解微分方程

拉普拉斯变换是解常系数线性微分方程中经常采用的一种较简便的方法.其基本思想是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解. 一拉普拉斯变换的概念 定义设函数f(t)的定义域为[0,+∞),若广义积分∫0+∞f(t)e-pt dt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=∫0+∞f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=L[f(t)]. 若F(p)是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1[F(p)]. 例1 求指数函数f(t)=e at(t≥0,a是常数)的拉氏变换. 解根据定义,有L[e at]=∫0+∞e at e-pt dt=∫0+∞e-(p-a)t dt 这个积分在p>a时收敛,所以有 L[e at]=∫0+∞e-(p-a)t dt=1/(p-a) (p>a) (1) 例2 求一次函数f(t)=at(t≥0,a是常数)的拉氏变换. 解L[at]=∫0+∞ate-pt dt=-a/p∫0+∞td(e-pt) =-[at/p e-pt]0+∞+a/p∫0+∞e-pt dt 根据罗必达法则,有 lim t0+∞(-at/p e-pt)=-lim t0+∞at/pe pt=-lim t0+∞a/p2 e pt 上述极限当p>0时收敛于0,所以有lim t0+∞(-at/pe-pt)=0 因此L[at]=a/p∫0+∞e-pt dt

=-[a/p2e-pt]0+∞=a/p2(p>0) (2) 例3 求正弦函数f(t)=sinωt(t≥0)的拉氏变换. 解L[sinωt]=∫0+∞sinωte-pt dt =[-1/(p2+ω2) e-pt(psinωt+ωcosωt]0+∞ =ω/(p2+ω2) (p>0) (3) 用同样的方法可求得 L[cosωt]=p/(p2+ω2) (p>0) (4) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四拉普拉斯变换的应用 2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求

地震波数值模拟方法研究综述.

地震波数值模拟方法研究综述 在地学领域,对于许多地球物理问题,人们已经得到了它应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件,但能用解析方法求得精确解的只是少数方程性质比较简单,且几何形状相当规则的问题。对于大多数问题,由于方程的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析解。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但这种方法只是在有限的情况下是可行的,过多的简化可能导致很大的误差甚至错误的解答。因此人们多年来寻找和发展了另一种求解方法——数值模拟方法。 地震数值模拟(SeismicNumericalModeling)是地震勘探和地震学的基础,同时也是地震反演的基础。所谓地震数值模拟,就是在假定地下介质结构模型和相应的物理参数已知的情况下,模拟研究地震波在地下各种介质中的传播规律,并计算在地面或地下各观测点所观测到的数值地震记录的一种地震模拟方法。地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,这种地震数值模拟方法已经在地震勘探和天然地震领域中得到广泛应用。 地震数值模拟的发展非常迅速,现在已经有各种各样的地震数值模拟方法在地震勘探和地震学中得到广泛而有效

的应用。这些地震波场数值模拟方法可以归纳为三大类,即几何射线法、积分方程法和波动方程法。波动方程数值模拟方法实质上是求解地震波动方程,因此模拟的地震波场包含了地震波传播的所有信息,但其计算速度相对于几何射线法要慢。几何射线法也就是射线追踪法,属于几何地震学方法,由于它将地震波波动理论简化为射线理论,主要考虑的是地震波传播的运动学特征,缺少地震波的动力学信息,因此该方法计算速度快。因为波动方程模拟包含了丰富的波动信息,为研究地震波的传播机理和复杂地层的解释提供了更多的佐证,所以波动方程数值模拟方法一直在地震模拟中占有重要地位。 1地震波数值模拟的理论基础 地震波数值模拟是在已知地下介质结构的情况下,研究地震波在地下各种介质中传播规律的一种地震模拟方法,其理论基础就是表征地震波在地下各种介质中传播的地震波传播理论。上述三类地震波数值模拟方法相应的地震波传播理论的数学物理表达方式不尽相同。射线追踪法是建立在以射线理论为基础的波动方程高频近似理论基础上的,其数学表形式为程函方程和传输方程。积分方程法是建立在以惠更斯原理为基础的波叠加原理基础上的,其数学表达形式为波动方程的格林函数域积分方程表达式和边界积分方程表达式。波

4-3拉普拉斯变换解微分方程

變換解微分方程 題過程: 分方程 題 02///=--y y y …..(*) 0)0(,1)0(/==y y 式等號兩邊做拉普拉斯變換 L {=--}2///y y y L }0{ 性性質,得 L {}//y - L {}/y -2 L {0}=y 2L {)}(t y -s y sy --)0()0(/L 2)0()}({-+f t y L 0)}({=t y 始條件,得L )}({t y 之代數方程 2s L )}({t y s -L 2)}({-t y L 1)}({-=s t y --------- (a) 數方程(a),得 簡 單 L 1-L ODE L {})()(s t y 之代數方程或低階ODE )(t y L {})()(s t y

L )}({t y 21 2---=s s s 上式兩邊做反拉普拉斯變換,得 =) L -1 {L {)(t y }}= L -1 ??????---212s s s ??? ??++??? ??-11322131s s 及L {} at e = a s -1 , 解為 =)t 31 L -1 ??????-21s + 32 L -1 ??????+11s 31= +t e 2 32 t e - 題t y y 2sin //=+ , …..(**) 1)0(,2)0(/==y y *)式等號兩邊做拉普拉斯變換 L {} =+y y // L {}t 2sin 換的微分性質以及L 22}{sin a s a at += ,得 L {}y +--)0()0(/y sy L 42 }{2+=s y 入初始條件,得L )}({t y 之代數方程 )1+L {}y 42122+=--s s --------- (b) 代數方程(b),得 {}y ??? ??+-??? ??+++=+++++=4132113512)4)(1(6822222223s s s s s s s s s 在上式兩邊做反拉普拉斯變換,得初始值問題的解為 t t t 2sin 31sin 35cos 2-+ (由 L 22}{sin a s a at += ,L 22}{cos a s s at += )

(完整版)傅里叶变换分析

第一章 信号与系统的基本概念 1.信号、信息与消息的差别? 信号:随时间变化的物理量; 消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等 信息:所接收到的未知内容的消息,即传输的信号是带有信息的。 2.什么是奇异信号? 函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。例如: 单边指数信号 (在t =0点时,不连续), 单边正弦信号 (在t =0时的一阶导函数不连续)。 较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。 3.单位冲激信号的物理意义及其取样性质? 冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。 它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即: ()()()(0)(0)t x t dt t x dt x δδ∞ ∞ -∞ -∞ ==? ? 4.什么是单位阶跃信号? 单位阶跃信号也是一类奇异信号,定义为: 10()00t u t t >?=?

12()()()x t ax t bx t =+,其中a 和b 是任意常数时, 输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+; 且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。 其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性; 如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。 线性时不变系统是最基本的一类系统,是研究复杂系统,如非线性、时变系统的基础。 6.线性时不变系统的意义与应用? 线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为()x t 和()y t ,则 当输入信号为 ()dx t dt 时,输出信号则为() dy t dt ; 或者当输入信号为()t x d ττ-∞ ?时,输出信号则为()t y d ττ-∞ ?。 另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。 假设两个线性时不变系统的冲激响应分别为:1()h t 和2()h t , 当两个系统级联后,整个系统的冲激响应为:12()()*()h t h t h t =; 当两个系统并联后,整个系统的冲激响应为:12()()()h t h t h t =+; 当0t <时,若()0h t =, 则此系统为因果系统; 若|()|h t dt ∞ -∞<∞?, 则此系统为稳定系统。 第二章 连续时间系统的时域分析 1.如何获得系统的数学模型? 数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。 不同的系统,其数学模型可能具有不同的形式和特点。对于线性时不变系统,其数学模型

傅里叶变换

1.课题综述 第一章中我们主要学习了信号、测试、测控、信号分析处理的概念、测试技术的应用情况、测试技术的发展动态及主要信号测试仪器生产厂商。信号是指那些代表一定意义的现象,比如声音、动作、旗语、标志、光线等,它们可以用来传递人们想表达的事情。从广泛意义上来说,信号是指事物运动变化的表现形式,它代表事物运动变化的特征。信号采集测量系统由传感器、中间变换装置和显示记录装置三部分组成,如今传感器技术越来越趋向于新型化和智能化。在工程领域,科学实验、产品开发、生产监督、质量控制等,都离不开测试技术。测试技术应用涉及到航天、机械、电力、石化和海洋运输等每一个工程领域。 第二章我们主要学习了信号分类方法、信号时域波形分析方法、信号时差域相关分析方法、信号频域频谱分析方法及其它信号分析方法。首先学习了信号的分类,其主要是依据信号波形特征来划分的,从信号描述上分可分为确定性信号与非确定性信号;从信号的幅值和能量上分可分为能量信号与功率信号;从分析域上分可分为时域与频域;从连续性上分可分为连续时间信号与离散时间信号;从可实现性上分可分为物理可实现信号与物理不可实现信号。 信号的时域波形分析,信号的时域波形分析是最常用的信号分析手段,用示波器、万用表等普通仪器直接显示信号波形,读取特征参数。可以求得信号的均值、均方值、方差以及概率密度函数等参数。信号的时差域相关分析,用相关函数来描述与时间有关的变量τ、x(t)和y(t),三者之间的函数关系,相关函数表征了x、y之间的关联程度。信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),频域分析能明确揭示信号的频率组成和各频率分量大小。 第三章我们主要学习了传感器的分类、常用传感器测量原理及传感器测量电路。传感器是借助检测元件将一种形式的信息转换成另一种信息的装置。传感器由敏感器件与辅助器件组成。敏感器件的作用是感受被测物理量,并对信号进行转换输出。辅助器件则是对敏感器件输出的电信号进行放大、阻抗匹配,以便于后续仪表接入。主要有电阻式、电容式、电感式、磁电式、压电式传感器,磁敏、热敏和气敏元件传感器,以及超声波、光电及半导体敏感元件传感器,光纤传感器等。 第四章我们主要学习了自动化工程机械分类、工程机械控制器及发展趋势、

毕设论文--粘声波正演模拟研究

本科毕业设计(论文)题目:粘声波正演模拟方法研究 学生姓名:xxx 学号:xxx 专业班级:xxx 指导教师:xxx 2015年 6月20日

粘声波正演模拟方法研究 摘要 地球上介质的黏滞性会引起大地的吸收效应,它会影响波场所有的频率成分,尤其对于高频的影响最大,导致地震分辨率降低。黏滞吸收作用会影响地震波波形、频带、振幅等因素。一个高效的粘声波正演模拟方法,可以考虑到由于实际介质造成的地震波的吸收衰减作用。可以更加准确模拟地震波在非完全弹性实际地层中的传播,在这里,本文通过编程建立不同的粘声波方程数值模拟模型跟正常的声波方程数值模拟模型进行对比分析,从而了解粘声波正演模拟方法的优越性。 关键词:粘声波;正演模拟;有限差分;

Study on the forward modeling of viscoelastic acoustic waves Abstract The absorption effect is mainly caused by the viscosity of the earth media itself.The viscous stagnation can affect all the frequency components of the wave field.And the effect of the high frequency components is bigger,which leads to the decrease of seismic resolution.The absorption of the absorption has a great influence on the wave, frequency and amplitude of the seismic wave.. A highly effective viscoelastic forward modeling method can take into account the absorption and attenuation of seismic waves by real media.. Accurate simulation of the propagation of seismic waves in the actual strata of the imperfect elasticity. Here. In this paper, the program, establish different visco acoustic wave equation numerical simulation model with normal acoustic wave equation numerical simulation model for comparative analysis, to understand the visco acoustic forward modeling method of superiority. Keywords:Viscoelastic acoustic wave;Viscoelastic acoustic wave;Finite difference;

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

声波波动方程正演模拟程序总结

声波波动方程正演模拟程序 程序介绍: 第一部分:加载震源,此处选用雷克子波当作震源。 编写震源程序后,我将输出的数据复制,然后我用excel做成了图片,以检验程序编写是否正确。以下为雷克子波公式部分的程序: for(it=0;it

模型构建与试算: 1、我首先建立了一个均匀介质模型,首先利用不同时间,进行了数值模拟,得到波场快照如图所示: 100ms 200ms 300ms 此处,纵波速度为v=3000m/s。模型大小为200×200,空间采样间隔为dx=dz=10m。采用30Hz的雷克子波作为震源子波,时间采样间隔为1ms,图中可以看出,波场快照中的同相轴是圆形的,说明在均匀各向同性介质中,点源激发的波前面是一个圆,这与理论也是吻合的。并且随着时间的增大,波前面的面积逐渐增大,说明地震波从震源中心向外传播。 2、我在建立的均匀模型的基础上,改变差分算子的精度,分别采用2阶、6阶、12阶精度进行试算。时间统一采用300ms的时候。得到的波长快照如下: 2阶精度6阶精度12阶精度

声波方程有限差分正演

题目:使用Ricker 子波,刚性边界条件,并且初值为零,在均匀各向同性介质条件下,利用交错网格法求解一阶二维声波方程数值解。 解: 一阶二维声波方程: 22222221z P x P t P c ??+??=?? (1) 将其分解为: 21P c t P x P z x z x z V V x z V t V t ????=+????????=???????=???? (2) 对分解后的声波方程进行离散,可得到: 1 12211,-1,,,122[]N n n n n m i m j i m j xi j xi j m t V V c P P h + -+---=?=+-∑ 1 1 221 1,1,,,122 []N n n n n m i j m i j m zi j zi j m t V V c P P h +-++---=?=+-∑ 111121 2222,,m 1,,,,11 []N n n n n n n i j i j m xi j xi m j zi j m zi j m m tc P P c V V V V h +++++++-+--=?=+-+-∑ h z x =?=? 针对公式(1),使用二阶中心差商公式: 2P(,,1)2(,,)(,,1)i j n P i j n P i j n t +-+-?222(1,,)2(,,)(1,,)(,1,)2(,,)(,1,)P i j n P i j n P i j n x c P i j n P i j n P i j n z +-+-??+?????=??+-+-??????? (3) 变形: P(,,1)=2(,,)(,,1)i j n P i j n P i j n +--

用拉普拉斯变换方法解微分方程

例1求指数函数f(t)=e at(t > 0,a是常数)的拉氏变换. 解根据定义,有L[e at]= j o+ e at e-pt dt= e-(p-a)t dt 这个积分在p> a时收敛,所以有 L[e at]= / T e(p-a)t dt=1/(p-a) (p > a) (1) 例2求一次函数f(t)=at(t > 0,a是常数)的拉氏变换. 解L[at]= / o+ra ate-pt dt=- a/p / o+"td(e -pt) =-[at/p e -pt ] o+ra+a/p / T e-pt dt 根据罗必达法则, 有 lim to+ °°(-at/p e )=-lim to+ °° at/pe =-lim to+ a/p e 上述极限当p> 0时收敛于0,所以有lim to+ - (-at/pe -pt )=0 因此L[at]=a/p / o+ra e-pt dt 2 -pt +m 2 =-[a/p e p ]o =a/p (p > (2) 0) 例3求正弦函数f(t)=sin 3 t(t > 0)的拉氏变换解L[sin 31]= / 0+ra sin 3 te -pt dt 2 2 -pt +m =[-1/(p +3 ) e (psin 3 t+ 3 cos3 t] 0

2 2 2 =3 /(P +3 ) (p > 0) ⑶ 用同样的方法可求得 2 2 L[cos 3t]=p/(p +3 ) (p > 0) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四 拉普拉斯变换的应用 2-5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方 程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查 得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两 部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利 用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初 始条件已自动地包含在微分方程的拉氏变换式之中了。 而且,如果所有初始条件都为零,那么求 取微分方程的拉氏变换式就更为方便, 只要简单地用复变量s 来代替微分方程中的 —,s 2 代替 dt dt 应用拉氏变换法解微分方程的步骤如下: d 2 …就可得到。

相关文档
最新文档