硅碳负极研究发展现状

硅碳负极研究发展现状
硅碳负极研究发展现状

(姜玉珍山东青岛青岛华世洁环保科技有限公司)

锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。

负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。

然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。

1、硅碳负极目前存在的主要问题

在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。造成首次放电效率低。随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。

2、硅碳负极制备方法

、静电纺丝

吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。其过程为:将PVP溶于乙醇制备L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。材料首次放电容量为g,库伦效率%,第20次循环时材料的放电容量仍能够维持在 mAh/g。

图1、Si/C 复合负极材料在倍率下的充放电曲线但是,该材料的倍率特性较差,将放电倍率提高到到,材料的放电容量为 mAh/g。再次变换充放电倍率至时,材料的放电容量仅为mAh/g。

、高温裂解沥青

西安建筑科技大学的栾振星等人通过高温裂解沥青的方式制备出了硅/碳/碳纳米管复合材料。该方法是将碳纳米管浸入H

2

SO

4

/HNO

3

溶液中震荡搅拌12H,空气中高温处理4H,将纳米硅、碳纳米管放入甲苯超声分散,然后将其按比例倒入溶于甲苯的沥青溶液中,搅拌均匀后真空

干燥12H,氩气下900℃保温2H,将烧结产物进行球磨制备出负极粉末。相比于硅碳复合材料,硅/碳/碳纳米管复合材料首次充放电容量更高,首次放电容量达1077mAh/g,首次库伦效率74%,20周循环后可逆比容量达到703mAh/g。

图2、复合材料的首次充放电曲线

图3、硅/碳/碳纳米管复合材料循环曲线

、高温热解法

东南大学的徐庆艳等人以分析纯葡萄糖、炭黑、无定形硅为原料,采用水热法和高温热解法制备出了硅碳复合材料。其制备方法为:将无定形硅与葡萄糖溶于去离子水中机械搅拌制备混合液,电热恒湿干燥箱内将其进行180℃、15H水热反应,氮气下650℃保温6H得到硅碳复合材料。该材料的首次放电容量达1400mAh/g,循环20周后,可逆比容量为600mAh/g。

图4、硅碳复合材料的循环性能

可以看到,该复合材料的循环容量衰减还是比较大。

、其他制备方法

中科院上海硅酸盐研究所以一氧化硅、蔗糖为原料,将其进行球磨、高温烧结,采用碳热原位还原法制备纳米硅/碳复合材料。20%Si/80%C首次放电比容量为g,首次库伦效率低于70%。

西华师范大学以纳米硅,天然石墨和蔗糖为前驱体,通过高能球磨和高温裂解制备了一种壳核结构的碳硅复合材料。该材料的首次放电容量为885mAh/g,库伦效率%。

3、展望

通过纳米成膜、包覆改性、喷雾干燥等方法来改变硅碳负极材料的导电性,获得高能量密度、循环性能好,倍率性能优、安全性能高的电极材料依然是今后研究的重点。

纳米硅碳负极材料研究报告

纳米硅碳负极材料研究报告 0引言 自1991年SONY公司以石油焦炭为负极材料将锂离子电池推向商业化以来,因其出色的循环寿命、较高工作电压、高能量密度等特性,锂离子电池一经推出就受到人们的广泛关注,迅速成为能源储存装置中的明星。近年来,随着新能源交通工具(如EV和HEV)的发展,对锂离子电池提出了更高的要求。作为锂离子电池关键部分的负极材料需要具备在Ii 的嵌入过程中自由能变化小,反应高度可逆;在负极材料的固态结构中有高的扩散率;具有良好的电导率;优良的热力学稳定性以及与电解质良好的相容胜等。研究者们通过开发具有新颖纳米结构的碳材料和非碳材料,来提高作为锂离子电池负极的嵌铿性能。然而,这些新颖的材料,如Sn, Si, Fe、石墨烯、碳纳米管,等,虽然其理论嵌铿容量较高(Sn和Si的理论嵌铿容量分别为994mAh/g和4 200 mAh/g ,但由于制备工艺相当复杂,成本较高,而且在充放电过程中存在较大的体积变化和不可逆容量。因此,若将其进行商业化应用还需要解决许多问题。 锂离子电池具有高电压、高能量、循环寿命长、无记忆效应等众多优点,已经在消费电子、电动土具、医疗电子等领域获得了少’一泛应用。在纯电动汽车、混合动力汽车、电动自行车、轨道交通、航空航天、船舶舰艇等交通领域逐步获得推少’一。同时,锉离子电池在大规模可再生能源接入、电网调峰调频、分布式储能、家庭储能、数据中心备用电 源、通讯基站、土业节能、绿色建筑等能源领域也显示了较好的应用前景 1不同负极材料的特点评述 天然石墨有六方和菱形两种层状品体结构同,具有储量大、成本低、安全无毒等优点。在锉离子电池中,天然石墨粉末的颗粒外表面反应活性不均匀,品粒粒度较大,在充放电过程中表面品体结构容易被破坏,存在表面SEI膜覆盖不均匀,导致初始库仑效率低、倍率性能不好等缺点。为了解决这些问题,可以采用颗粒球形化、表面氧化、表面氟化、表面包覆软碳、硬碳材料以及其它方式的表面修饰和微结构调整等技术对天然石墨进行改性处理。从成本和性能的综合考虑,目前土业界石墨改性主要使用碳包覆土艺处理。商业化应用的改性天然石墨比容量为340~ 370 mA·h/g,首周库仑效率90%~93%,100% DOD循环寿命可达到1000次以上,基本可以满足消费类电子产品对小型电池的性能要求。 2硅碳负极材料应用前景 近年来,我国锂离子电池产业发展迅速,全球市场份额不断攀升,在大规模的锂离子电池产业投资的带动下,锂离子电池负极材料的需求不断上升。硅负极相比石墨负极具有更高的质量能量密度和体积能量密度,采用硅负极材料的锉离子电池的质量能量密度可以提升8%以上,体积能量密度可以提升10%以上,同时每千瓦时电池的成本可以下降至少3%,因此硅负极材料将具有非常广阔的应用前景。新能源汽车产业是全球汽车产业的发展方向,也是我国重要的新兴战略产业之一,未来10年将迎来全球汽车产业向新能源汽车转型和升级的战略机遇。新能源汽车主要包括纯电动汽车、插电式混合动力汽车及燃料电池汽车。其中,纯电动汽车完全使用动力电池驱动,对电池容量需求最大,要求锉离子电池容量平均为30 kW /h。自2010年起,动力类锉离子电池受益于技术提升和成本降低,逐渐替代镍锅,镍氢电池,成为新能源汽车广泛使用的动力电池。根据中国汽车工业协会统计,我国新能源汽车产量由2011年的8000辆左右增至2015年的34万辆,而销量则由2011年的8000辆左右增至2015年的33万辆,年均复合增长率均超过150% o在各种利好政策的影响下,2014

硅碳负极研究发展现状

硅碳负极研究发展现状 (姜玉珍山东青岛青岛华世洁环保科技有限公司) 锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。 负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。 然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。 1、硅碳负极目前存在的主要问题 在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。造成首次放电效率低。随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。 2、硅碳负极制备方法 2.1、静电纺丝 吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。其过程为:将PVP溶于乙醇制备0.5KG/L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。材料首次0.1C 放电容量为1156.8mAh/g,库伦效率74.5%,第20次循环时材料的放电容量仍能够维持在783.2 mAh/g。 图1、Si/C 复合负极材料在0.1C 倍率下的充放电曲线

硅碳负极研究发展现状

(姜玉珍山东青岛青岛华世洁环保科技有限公司) 锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。 负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。 然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。 1、硅碳负极目前存在的主要问题 在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。造成首次放电效率低。随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。 2、硅碳负极制备方法 、静电纺丝 吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。其过程为:将PVP溶于乙醇制备L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。材料首次放电容量为g,库伦效率%,第20次循环时材料的放电容量仍能够维持在 mAh/g。 图1、Si/C 复合负极材料在倍率下的充放电曲线但是,该材料的倍率特性较差,将放电倍率提高到到,材料的放电容量为 mAh/g。再次变换充放电倍率至时,材料的放电容量仅为mAh/g。 、高温裂解沥青 西安建筑科技大学的栾振星等人通过高温裂解沥青的方式制备出了硅/碳/碳纳米管复合材料。该方法是将碳纳米管浸入H 2 SO 4 /HNO 3 溶液中震荡搅拌12H,空气中高温处理4H,将纳米硅、碳纳米管放入甲苯超声分散,然后将其按比例倒入溶于甲苯的沥青溶液中,搅拌均匀后真空

清华大学硅碳负极方面的研究

清华大学关于硅碳复合负极材料方面的专利汇总 清华大学化学工程系魏飞教授关于硅碳负极方面的专利在soopat或佰腾专利搜索只能检索到一篇(201510395054.7),且还未授权,其专利大致情况如下所示: 该硅碳复合材料是一种核壳结构,其中以硅或其氧化物为核,石墨烯为壳的亚/微米颗粒,所得材料的粒径尺寸在0.05-15um之间,石墨烯的重量占核壳结构颗粒总重量的1-8wt%,且核壳结构的比表面积等于或小于原始硅或其氧化物颗粒的比表面积。制备的复合材料宏观形貌为球形、棒状、片状、不规则多面体形状。其制备方法包括如下步骤: 1)在常温下,将含碳粘合剂(如直连、直链淀粉、葡萄糖、多羟基醇)溶于去离子水中,持续搅拌并缓慢加热至50-100℃,保持恒温1-6小时,得到粘性液体; 2)将粒径为0.1um-10um的硅或其氧化物颗粒加入到步骤1)所制备的粘性液体中,搅拌得到固含量为30-60wt%悬浊液浆料; 3)将步骤2)得到的浆料进行喷雾造粒,得到粒径分布在50-300um之间的多孔球形颗粒,即二级结构颗粒; 4)将步骤3)得到的二级结构颗粒填充到流化床中,在惰性气氛中加热至反应温度700-1000℃,然后通入碳源(如甲烷、乙烷、乙烯、乙炔、甲苯、苯等),惰性气体和碳源的总空速为500-900 h-1,保持碳源与惰性气体的体积比在0.5-2之间,进行化学气相沉积,反应时间为20-60min,得到粒径尺寸为0.05-15um的石墨烯包覆的硅或其氧化物核壳结构。 清华大学材料系黄正宏教授有一篇关于硅碳负极方面的专利(200910082897.6)。该专利的大致情况如下所示。 该复合负极材料由基体和均匀分布其中的颗粒组成,其中颗粒是一种具有纳米尺寸的核壳结构颗粒;所述纳米颗粒的核为纳米硅,壳为有机物热解得到的无定型碳,所述的基体是高压静电电纺制备的有机纤维热解碳化后得到的,为不规则多孔洞的无定型碳网络结构。其大致步骤如下:

锂离子电池硅_碳复合负极材料的研究进展_张瑛洁

第34卷第4期 硅酸盐通报Vol.34No.42015年4月BULLETIN OF THE CHINESE CERAMIC SOCIETY April ,2015 锂离子电池硅/碳复合负极材料的研究进展 张瑛洁,刘洪兵 (东北电力大学化学工程学院,吉林132012) 摘要:负极材料是制约锂离子电池发展的重要因素之一。硅/碳复合材料储锂容量高、循环稳定性好,是目前制备 新型锂离子电池负极材料的研究热点。介绍了硅/碳复合材料的不同制备方法和复合结构以及优良的电化学性 能,综述了硅/碳复合材料的研究进展,并对未来的发展方向进行了展望。 关键词:锂离子电池;硅/碳复合材料;制备方法;复合结构;电化学性能 中图分类号:TQ152文献标识码:A 文章编号:1001- 1625(2015)04-0989-06Research Progress on Si /C Composite Anode Materials for Lithium-ion Battery ZHANG Ying-jie ,LIU Hong-bing (School of Chemical Engineering ,Northeast Dianli University ,Jilin 132012,China ) Abstract :Anode materials is a major factor that restricts the development of lithium-ion batteries.Si /C composite materials ,which possesses high capacity and cycling stability ,becomes the hot spot to preparation of new type lithium-ion battery anode materials at present.Different preparation methods of Si /C composite materials ,composite structures ,and excellent electrochemical performance were introduced.And the research progress of Si /C composites was summarized.Subsequently ,the future development direction of Si /C composite materials was prospected as well. Key words :lithium ion battery ;Si /C composite materials ;preparation method ;complex structure ; electrochemical performance 基金项目:吉林省科技厅产业技术创新战略联盟项目(20130305017GX );吉林省教育厅吉教科合字[ 2014]第103号作者简介:张瑛洁(1969-),女,教授, 博士.主要从事水的深度处理方面的研究.1引言 负极材料储锂容量是制约锂离子电池应用范围的关键因素,硅/碳复合材料作为一类应用潜力巨大的负 极材料, 成为近年来研究的热点。碳与硅相近似的化学性质,为两者的紧密结合提供了理论依据,所以碳常用作与硅复合的首选基质。硅通常与石墨、石墨烯、无定型碳和碳纳米管等不同的碳基质制备复合材料,在硅碳复合的体系中硅主要作为活性物质,提供容量 [1-3];碳材料一般作为分散基质,限制硅颗粒的体积变化,并作为导电网络维持电极内部良好的电接触[4-6]。理论上,硅/碳复合材料储锂容量高,导电性能好,但要成为可商用的锂离子电池负极材料,面临着两个基本的挑战:循环稳定性差和可逆循环容量保持率低。不同的制备方法以及复合结构都会对复合材料的电化学性能产生影响,开发强附着性、紧密电接触、耐用的新型硅碳复合材料,对促进硅/碳复合材料实际应用的进程具有重大意义。本文着重从制备方法、复合结构及电化学性能等方面综述了硅/碳复合材料近年来的研究进展,以期对后续的研究人员的相关实验提供理论依据。DOI:10.16552/https://www.360docs.net/doc/6a194884.html,ki.issn1001-1625.2015.04.018

锂离子电池硅碳负极材料研究进展

第45卷第10期2017年10月 硅酸盐学报Vol. 45,No. 10 October,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.360docs.net/doc/6a194884.html, DOI:10.14062/j.issn.0454-5648.2017.10.21 锂离子电池硅碳负极材料研究进展 沈晓辉,范瑞娟,田占元,张大鹏,曹国林,邵乐 (陕西煤业化工技术研究院有限责任公司,西安 710100) 摘要:硅基材料作为锂离子电池负极具有容量高、来源广泛以及环境友好等优势,有望替代目前应用广泛的石墨负极成为下一代锂离子电池的主要负极材料。硅和碳复合构成的锂离子电池复合负极,不但解决了充放电过程中硅体积效应大和碳容量低的问题,而且综合了碳循环性好和硅容量高的特点。从材料选择、结构设计以及电极优化方面简要介绍了硅/碳复合材料的最新研究进展,并对硅碳复合负极未来发展方向进行了展望。 关键词:锂离子电池;硅/碳复合材料;复合结构 中图分类号:O646 文献标志码:A 文章编号:0454–5648(2017)10–1530–09 网络出版时间:2017–07–14 11:38:49 网络出版地址:https://www.360docs.net/doc/6a194884.html,/kcms/detail/11.2310.TQ.20170714.1138.009.html Development on Silicon/Carbon Composite Anode Materials for Lithium-ion Battery SHEN Xiaohui, FAN Ruijuan, TIAN Zhanyuan, ZHANG Dapeng, CAO Guolin, SHAO Le (Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi’an 710100, China) Abstract: Silicon is considered as one of the most promising materials for the next generation Li-ion batteries to replace widely-used graphite anode materials due to its high capacity, abundant source and environmental friendly. Si/C composite anode materials construct from silicon and carbon for Li-ion batteries, and can not only solve the big volume varaition of silicon and the low capacity of carbon in charge-discharge process, but also integrate the good cycle performance of carbon with the high capacity of silicon. This review summarized recent developments on novel Si/C composites based on the material selection, complex structure and electrode optimization. In addition, the future aspects of developing Si/C composite materials were also prospected. Keywords: lithium ion battery; silicon/carbon composite materials; complex structure 随着时代的需求飞速发展,锂离子电池的能量密度以每年7%~10%的速率提升。然而,现有的以石墨为负极的锂离子电池技术已经接近极限。2016年,我国发布了动力电池能量密度硬性指标,根据《节能与新能源汽车技术路线图》,2020年纯电动汽车动力电池的能量密度目标为350 W·h/kg。为满足新一代能源需求,开发新型锂电负极技术迫在眉睫。 硅在常温下可与锂合金化,生成Li15Si4相,理论比容量高达3 572 mA·h/g,远高于商业化石墨理论比容量(372 mA·h/g),在地壳元素中储量丰富(26.4%,第2位),成本低、环境友好,因而硅负极材料一直备受科研人员关注,是最具潜力的下一代锂离子电池负极材料之一。 然而,硅在充放电过程中存在严重的体积膨胀(~300%),巨大的体积效应及较低的电导率限制了硅负极技术的商业化应用。为克服这些缺陷,研究者进行了大量的尝试,采用复合化技术,利用“缓冲骨架”补偿材料膨胀。碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。在Si/C 复合体系中,Si 颗粒作为活性物质,提供储锂容量;C既能缓冲充放电过程中硅负极的体积变化,又能改善Si质材料 收稿日期:2016–11–18。修订日期:2017–04–02。第一作者:沈晓辉(1988—),女,硕士生。 通信作者:邵乐(1985—),男,博士生。Received date:2016–11–18. Revised date: 2017–04–02. First author: SHEN Xiaohui(1988–), female, Master candidate E-mail: shenhui06@https://www.360docs.net/doc/6a194884.html, Correspondent author: SHAO Le(1985–), male, Ph.D. candidate. E-mail: shaole@https://www.360docs.net/doc/6a194884.html,

锂离子电池硅碳负极材料制备及研究

目录 摘要 (1) Abstract................................................................................. 错误!未定义书签。第一章绪论. (1) 1.1 引言 (1) 1.2 锂离子电池介绍 (2) 1.2.1 锂离子电池的发展 (2) 1.2.2 锂离子电池工作原理及特点 (3) 1.3 锂离子电池各组成部分的研究现状 (3) 1.3.1 正极材料 (3) 1.3.2 电解液和隔膜材料 (4) 1.3.3 负极材料 (4) 1.4 本文的选题背景及主要研究内容 (4) 第二章实验原理 (5) 2.1 课题设计思路及主要研究内容 (5) 2.2 材料结构表征原理 (6) 2.2.1 X射线衍射分析( XRD) (6) 2.2.2 扫描电子显微镜分析(SEM) (6) 2.2.3 透射电子显微镜分析(TEM) (6) 2.2.4 拉曼衍射分析 (6) 2.3 材料电化学性能测试原理 (6) 2.3.1 室温恒电流充放电测试 (6) 2.3.2 电化学阻抗谱(EIS) (7)

2.3.3 循环伏安测试(CV) (7) 第三章硅碳材料的制备及其性能的研究 (7) 3.1 实验药品及仪器 (7) 3.2 实验部分 (8) 3.2.1 锂离子电池负极材料的制备 (8) 3.2.2 电极制备 (8) 3.2.3 电池装配 (9) 3.3 实验数据分析 (10) 3.3.1 硅碳混合材料的表征 (10) 3.3.2 硅碳混合材料电化学性能研究 (14) 第四章总结与展望 (18) 4.1 结论 (18) 4.2 展望 (19)

锂离子电池硅碳负极材料研发现状与发展趋势

Material Sciences 材料科学, 2020, 10(4), 248-252 Published Online April 2020 in Hans. https://www.360docs.net/doc/6a194884.html,/journal/ms https://https://www.360docs.net/doc/6a194884.html,/10.12677/ms.2020.104030 Research and Development Status and Trend of Silicon Carbon Anode Materials for Lithium Ion Batteries Yimin Xie1*, Jin Guo2, Xianhua Dong1 1Shandong Tianli Energy Co., Ltd., Jinan Shandong 2Dalian Research Institute of Petroleum and Petrochemicals, Sinopec, Dalian Liaoning Received: Mar. 31st, 2020; accepted: Apr. 15th, 2020; published: Apr. 22nd, 2020 Abstract This paper introduces the development process, research and development status and develop-ment trend of silicon carbon anode materials for lithium-ion batteries. The electrochemical prop-erties of the silicon carbon anode materials with different materials and different methods are quite different. The specific capacity ranges from about 500 mAh/g to about 2000 mAh/g. After 40 cycles, the capacity retention rate ranges from 47% to more than 90%. The research and devel-opment trend of silicon carbon anode materials is put forward. In the research and development process, the raw materials and material composite methods should be determined according to the use goal of the battery. In addition, attention should be paid to the uniformity of the micro structure and the stability of the macro structure, so as to solve the problems of volume expansion and poor conductivity of silicon materials. Keywords Lithium Ion Battery, Silicon Carbon Anode, Composite Material, High Specific Capacity 锂离子电池硅碳负极材料研发现状与发展趋势 谢以民1*,郭金2,董宪华1 1山东天力能源股份有限公司,山东济南 2中国石油化工股份有限公司大连石油化工研究院,辽宁大连 收稿日期:2020年3月31日;录用日期:2020年4月15日;发布日期:2020年4月22日 *通讯作者。

2017年硅碳负极材料应用前景分析报告

(此文档为word格式,可任意修改编辑!)

正文目录 硅碳负极正在走向产业化应用 (4) 1. 为什么需要硅碳负极 (4) 2. 什么是硅碳负极 (5) 3. 硅碳负极的市场空间测算 (7) 硅碳负极产业化应用的进程 (8) 1. 海外已经实现硅碳负极的产业化应用 (8) 2. 国内已经初步实现硅碳负极的商业化生产 (9) 主要公司分析 (10) 1. 杉杉股份 (10) 2. 国轩高科 (11) 3. 贝特瑞 (12) 图目录 图1:中国汽车动力电池技术路线图 (4) 图2:硅碳负极的制备工艺 (5) 图3:硅碳负极膨胀导致电池材料粉末化 (6) 图4:硅碳负极对Li+源的消耗 (6) 图5:硅碳负极纳米化和包覆 (6) 图6:2015年全球锂电池负极材料消费结构 (7) 图7:硅碳负极市场空间预测 (8) 图8:新能源行业历史PEBand (12) 图9:新能源行业历史PBBand (13) 表目录

表1:负极材料容量提升对电池能量密度提升的影响 (5) 表2:松下量产的各类型号18650电池性能比较 (9) 表3:中国锂电负极材料年度竞争力排行统计 (9) 表4:国内涉及硅碳负极研发及应用的上市公司 (10) 表5:杉杉股份负极业务经营情况 (11) 表6:国轩高科研发投入情况 (11) 表7:国轩高科本次募投项目 (11) 表8:贝特瑞收入结构 (12)

硅碳负极正在走向产业化应用 1. 为什么需要硅碳负极 众所周知,不断的提高电池能量密度,是锂电产业技术研革所孜孜不倦的方向。在当前的锂电材料体系中,负极材料多为采用石墨材料(以人造石墨和天然石墨为主),在电池理论设计过程中,基本上已经非常充分发挥了其可实现的能量密度,所当前的石墨负极材料在提升电池能量密度方面已经遇到明显的瓶颈。 与石墨负极材料相比,硅基负极材料的能量密度优势明显。石墨的理论能量密度是372mAh/g,而硅负极的理论能量密度超其10倍,高达4200mAh/g。所以硅碳负极的应用,可以提升电池中活性物质含量,所以能大大提升单体电芯的容量,这也是硅碳负极材料越来越多被锂电领域所关注的重要原因。 图1:中国汽车动力电池技术路线图

硅碳负极材料的最新研究进展

硅碳负极材料的最新研究进展硅基材料作为锂离子电池负极具有容量高、来源广泛以及环境友好等优势,有望替代目前应用广泛的石墨负极成为下一代锂离子电池的主要负极材料。本文从材料选择、结构设计以及电极优化方面简要介绍了硅/碳复合材料的最新研究进展,并对未来发展方向进行了展望。 随着时代的需求飞速发展,锂离子电池的能量密度以每年7%~10%的速率提升。2016年,我国发布了动力电池能量密度硬性指标,根据《节能与新能源汽车技术路线图》,2020年纯电动汽车动力电池的能量密度目标为350W˙h/kg。 为满足新一代能源需求,开发新型锂电负极技术迫在眉睫。 硅在常温下可与锂合金化,生成Li15Si4相,理论比容量高达3572mA˙h/g,远高于商业化石墨理论比容量(372mA˙h/g),在地壳

元素中储量丰富(26.4%,第2位),成本低、环境友好,因而硅负极材料一直备受科研人员关注,是最具潜力的下一代锂离子电池负极材料之一。 然而,硅在充放电过程中存在严重的体积膨胀(~300%),巨大的体积效应及较低的电导率限制了硅负极技术的商业化应用。为克服这些缺陷,研究者进行了大量的尝试,采用复合化技术,利用“缓冲骨架”补偿材料膨胀。 碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。 在Si/C复合体系中,Si颗粒作为活性物质,提供储锂容量;C 既能缓冲充放电过程中硅负极的体积变化,又能改善Si质材料的导电性,还能避免Si颗粒在充放电循环中发生团聚。因此Si/C复合材料综合了二者的优点,表现出高比容量和较长循环寿命,有望代替石墨成为新一代锂离子电池负极材料。 近年来,硅碳负极材料相关技术发展迅速,迄今已有少量产品实现实用化,日本日立集团Maxell公司已开发出一种以“SiO-C”材料为负极的新式锂电池,并成功地应用到诸如智能手机等商业化产品中。然而,硅碳负极锂离子电池距离真正大规模商业化应用仍有大量科学问题亟需解决。

相关文档
最新文档