硅碳负极材料的最新研究进展

硅碳负极材料的最新研究进展
硅碳负极材料的最新研究进展

硅碳负极材料的最新研究进展硅基材料作为锂离子电池负极具有容量高、来源广泛以及环境友好等优势,有望替代目前应用广泛的石墨负极成为下一代锂离子电池的主要负极材料。本文从材料选择、结构设计以及电极优化方面简要介绍了硅/碳复合材料的最新研究进展,并对未来发展方向进行了展望。

随着时代的需求飞速发展,锂离子电池的能量密度以每年7%~10%的速率提升。2016年,我国发布了动力电池能量密度硬性指标,根据《节能与新能源汽车技术路线图》,2020年纯电动汽车动力电池的能量密度目标为350W˙h/kg。

为满足新一代能源需求,开发新型锂电负极技术迫在眉睫。

硅在常温下可与锂合金化,生成Li15Si4相,理论比容量高达3572mA˙h/g,远高于商业化石墨理论比容量(372mA˙h/g),在地壳

元素中储量丰富(26.4%,第2位),成本低、环境友好,因而硅负极材料一直备受科研人员关注,是最具潜力的下一代锂离子电池负极材料之一。

然而,硅在充放电过程中存在严重的体积膨胀(~300%),巨大的体积效应及较低的电导率限制了硅负极技术的商业化应用。为克服这些缺陷,研究者进行了大量的尝试,采用复合化技术,利用“缓冲骨架”补偿材料膨胀。

碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。

在Si/C复合体系中,Si颗粒作为活性物质,提供储锂容量;C 既能缓冲充放电过程中硅负极的体积变化,又能改善Si质材料的导电性,还能避免Si颗粒在充放电循环中发生团聚。因此Si/C复合材料综合了二者的优点,表现出高比容量和较长循环寿命,有望代替石墨成为新一代锂离子电池负极材料。

近年来,硅碳负极材料相关技术发展迅速,迄今已有少量产品实现实用化,日本日立集团Maxell公司已开发出一种以“SiO-C”材料为负极的新式锂电池,并成功地应用到诸如智能手机等商业化产品中。然而,硅碳负极锂离子电池距离真正大规模商业化应用仍有大量科学问题亟需解决。

本文从材料选择、结构设计以及电极优化等方面综述了硅/碳复合材料近年来的研究进展,并对硅碳材料的发展趋势作了初步展望,以期为进一步研究高性能锂离子电池负极用硅碳复合材料提供借鉴。硅碳复合材料结构设计

从硅碳复合材料的结构出发,可将目前研究的硅碳复合材料分为包覆结构和嵌入结构。

1.1包覆结构

包覆结构是在活性物质硅表面包覆碳层,缓解硅的体积效应,增强其导电性。根据包覆结构和硅颗粒形貌,包覆结构可分为核壳型、蛋黄-壳型以及多孔型。

1.1.1核壳型

核壳型硅/碳复合材料是以硅颗粒为核,在核外表面均匀包覆一层碳层。碳层的存在不仅有利于增加硅的电导率,缓冲硅在脱嵌锂过程中的部分体积效应,还可以最大限度降低硅表面与电解液的直接接触,进而缓解电解液分解,使整个电极的循环性能得到提高。

Zhang等采用乳液聚合法在硅纳米颗粒表面包覆聚丙烯腈(PAN),经800℃热处理得到硅碳核壳结构复合材料(SiC)。无定形碳层抑制了充放电过程中硅颗粒的团聚,SiC在循环20次后容量维持在初始容量的50%左右。相比之下,硅纳米颗粒在循环20次后容量衰减严重。

Hwa等以聚乙烯醇(PVA)为碳源,采用惰性气氛下高温热解法对硅纳米颗粒进行碳包覆,得到碳壳层厚度为5~10nm厚的硅碳复合材料。采用硅纳米颗粒可以降低硅的绝对体积效应,减弱材料内部应力,碳包覆则进一步缓冲了硅内核的膨胀,该复合材料在100mA/g电流下循环50次后比容量仍可达1800mA˙h/g,展现出优异的循环稳定性,而纯纳米Si和碳包覆微米硅(4μm)容量则衰减至不足200mA˙h/g。

Xu等通过高温热解聚偏氟乙烯(PVDF)得到核壳型硅碳复合材料,其碳层厚度为20~30nm;该硅碳复合材料电极在0.02~1.5V电压范围内,50mA/g电流条件下的首次可逆比容量为1328.8mA˙h/g,循环30次后容 C),见图1。与单壳层Si@C相比,Si@SiO2@C具有更高的容量保持率,在0.01~5V电压范围内循环100次后仍具有785mA˙h/g 的可逆容量。

研究表明,中间层SiO2作为缓冲相,可进一步减小循环过程产生的膨胀应力;同时,SiO2层还可与扩散的Li+发生不可逆反应,生成Si和Li4SiO4合金,进一步保证了材料的可逆容量。

1.1.2蛋黄-壳型

蛋黄-壳结构是在核壳结构基础上,通过一定技术手段,在内核与外壳间引入空隙部分,进而形成的一种新型纳米多相复合材料。蛋黄-壳型硅/碳复合材料呈现一种特殊的Si@void@C壳层的构型,不仅具有普通核壳结构的优势,而且它的空腔对于硅体积膨胀有容纳作

用,可实现硅核更加自由的膨胀收缩,从而保证材料在充放电过程中整体结构的稳定性,有利于产生稳定的固态电解质(SEI)膜。

Zhou等采用溶胶-凝胶法在硅纳米颗粒表面包覆一层SiO2壳层,以蔗糖为碳源进行热解碳包覆,将SiO2用HF刻蚀后得到蛋黄-壳结构复合材料(SiC),其中活性物质硅的质量分数为28.54%。相比于硅纳米颗粒和空心碳,SiC具有更好的循环稳定性,首次比容量为813.9mA˙h/g,循环40次后容量保持在500mA˙h/g。

Tao等采用相似的方法也制备出稳定的SiC复合材料,循环100次后的比容量为780mA˙h/g。碳负载量的优化发现,复合材料中碳负载量为63%时的比容量(780mA˙h/g)高于碳负载量为72%时的比容量(690mA˙h/g)。这表明要实现SiC复合材料的最大容量,还需要对蛋黄-壳结构进行深入的优化设计。

Liu等以聚多巴胺为碳源合成出蛋黄-壳复合材料(SiC)。在该结构中,硅内核和薄碳层之间预留了充足的空间,使硅在锂化膨胀时不破坏碳壳层,从而使复合材料表面能形成稳定的SEI膜。

这种Si@void@C在0.1C电流密度下,可逆容量高达2800mA˙h/g,循环1000次后有74%的容量保持 @C)。

该材料展现出优异的循环稳定性,在460mA/g电流密度下循环430次后,容量保持在956mA˙h/g,容量保持率高达83%,而Si@C

核壳材料在相同测试条件下,前10次循环容量衰减明显,循环430次后容量不足200mA˙h/g。

在此复合结构中,碳层能够提高导电性,SiO2层增加了材料稳定性,空腔为硅内核的膨胀提供了缓冲空间。同时,SiO2和碳双壳层阻隔了电解液和硅纳米颗粒,防止硅纳米颗粒与电解质发生不可逆反应,起到了了双层保障作用。

1.1.3多孔型

多孔硅常用模板法来制备,硅内部空隙可以为锂硅合金化过程中的体积膨胀预留缓冲空间,缓解材料内部机械应力。由多孔硅形成的硅碳复合材料,在循环过程中具有更加稳定的结构。

研究表明,在多孔型硅/碳复合材料中,均匀分布在硅颗粒周围的孔道结构能够提供快速的离子传输通道,且较大的比表面积增加了材料反应活性,从而展现出优良的倍率性能,在电池快充性能方面具有显著优势。

Li等通过可控还原二氧化硅气凝胶的方法,合成出3D连通的多孔硅碳复合材料,该材料在200mA/g电流密度下循环200次时容量保持在1552mA˙h/g,且在2000mA/g大电流充放电下循环50次后仍保持1057mA˙h/g的比容量。

Bang等通过电偶置换反应,将Ag颗粒沉积于硅粉(粒径10μm)表面,经刻蚀除去Ag后得到具有3D孔结构的块状硅,再通过乙炔热解进行碳包覆,制备出多孔型硅碳复合材料,在0.1C倍率下具有2390mA˙h/g的初始容量以及94.4%的首次Coulomb效率;在5C倍率时的容量仍可达到0.1C倍率时容量的92%,展现出优异的倍率性能。

此外,该电极循环50次后厚度从18μm变为25μm,体积膨胀仅为39%;同时,该材料的体积比容量接近2830mA˙h/cm3,是商业化石墨电极的5倍(600mA˙h/cm3)。

Yi等将微米级SiO2粉末在950℃高温处理5h,得Si/SiO2混合物,HF酸刻蚀除去SiO2后,得到由粒径为10nm的硅一次粒子堆积组成的多孔硅。然后,以乙炔为碳源,在620℃热解20min,对多孔硅进行碳包覆,制得多孔硅碳复合材料。该材料在1A/g电流密度下循环200次后容量保持在1459mA˙h/g,远高于纯硅;在12.8A/g高电流密度下的比容量仍可达到700mA˙h/g,表现出优异的倍率性能。此外,该材料振实密度大(0.78g/cm3),体积比容量高,在400mA/g 电流密度下充放电循环50次,容量保持在1326mA˙h/cm3。

进一步研究发现,通过调节反应温度对硅一次粒子粒径进行优化,其中一次粒子为15nm时多孔硅碳复合材料性能最优,在400mA/g 电流密度下循环100次后容量可达1800mA˙h/cm3,远高于一次粒子粒径为30nm和80nm的复合材料。这主要是由于硅一次粒子粒径越小,脱嵌锂时体积变化越小,因而能够形成更为稳定的SEI膜。

另外,对碳化温度和时间进一步优化发现,碳化温度800℃、碳负载质量分数20%时的多孔硅/碳复合材料性能最佳,在1.2A/g电流密度下循环600次后的容量保持在1200mA˙h/g,几乎无容量损失,且Coulomb效率高达99.5%。

该多孔硅碳复合材料合成工艺成本低,易于规模化生产。

近来,Lu等设计并合成了一种特殊结构的碳包覆多孔硅材料(nC–pSiMPs),其中,多孔微米硅(pSiMPs)由一次硅纳米颗粒堆积而成,其内部硅纳米颗粒表面无碳包覆层,碳层仅涂覆于微米多孔硅外表面。

该材料是以商业化SiO微粒为原料,以间苯二酚–甲醛树脂为碳源,在Ar气氛下高温碳化处理得到碳包覆层,同时内核SiO经高温歧化反应生成Si和SiO2,HF刻蚀后得到硅与空腔的体积比为3:7的多孔硅。该结构中,空腔尺寸能够很好的容纳硅在脱嵌锂时的体积变化而不使碳壳层破裂,保证了材料结构的稳定性;同时,包覆于多孔硅外表面的碳壳层能阻止电解液浸入多孔硅内部,减少硅与电解液的接触面积,仅在微米硅外表面碳包覆层上形成稳定的SEI膜。

相应地,对于内部硅纳米颗粒也包覆碳层的材料(iC-pSiMP),电解液与活性物质接触面积更大,同时硅体积膨胀易导致碳层破裂,内部硅纳米颗粒裸露并与电解液接触,导致充放电循环过程中产生更厚的SEI膜。

因而,nC-pSiMPs电极(活性物质负载量为0.5mg/cm2)较

iC-pSiMP和pSiMP具有更优异的循环稳定性,在1/4C(1C=4.2A/g活性物质)循环1000次时可逆容量高达1500mA˙h/g。

此外,该电极材料经100次循环后,厚度从16.2μm增至17.3μm,膨胀率仅为7%,其体积比容量(1003mA˙h/cm3)也远高于商业化石墨(600mA˙h/cm3)。

1.2嵌入型

嵌入型硅碳复合材料是指将硅颗粒通过物理或者化学手段分散

到碳载体中,硅颗粒与碳基体结合紧密,形成稳定均匀的两相或多相体系,依靠碳载体为电子和离子提供传输通道和支撑骨架,提供材料结构的稳定性。

嵌入型硅碳复合材料中,硅含量一般较低,可以贡献的容量较少,因此其可逆比容量也通常较低,但是在复合材料中存在大量的碳材料,所以其循环稳定性一般较好。

1.2.1石墨

石墨是目前应用最广泛的锂离子电池负极材料,分为天然石墨和人造石墨两种,原料来源广泛且价格低廉。石墨具有层片状结构,充放电过程中体积变化小,循环稳定性能良好,可缓冲充放电过程中的硅结构重建引发的体积膨胀,避免负极材料结构坍塌,适合作为缓冲基体;同时石墨良好的电子导电性很好地解决硅电子导电性差的问题。但石墨常温条件下化学性质稳定,很难与硅产生强的作用力,因而目前主要是通过高能球磨和化学气相沉积2种方法制备硅/石墨复合材料。

Pengjian等采用高能球磨法将石墨和硅粉混合制得硅/石墨复合材料。研究表明,该复合材料中没有产生合金相,其首次可逆比容量为595mA˙h/g,Coulomb效率为66%;循环40次后比容量为469mA

˙h/g,每次循环的容量损失率约为0.6%。

Holzapfel等采用化学沉积法(CVD)将硅纳米颗粒沉积在石墨中,当硅质量分数为7.1%时,电极的可逆容量为520mA˙h/g,其中硅贡献的比容量超过2500mA˙h/g,循环100次后硅贡献的比容量仍高达1900mA˙h/g。

石墨与硅之间的作用力较弱,很难形成稳定的复合结构。因此,石墨一般被用作导电骨架或介质,与其他硅/碳材料共同构建结构稳定的三元复合体系。对于锂离子电池负极材料来说,硅/无定形碳/

石墨(Si–C–G)是现今较为流行也是最早开始研究的三元复合体系,其制备方法主要有机械混合-高温热解法、溶剂热-高温热解法和化学气相沉积法等。

对于Si–C–G复合材料而言,硅比容量最大(约3579mA˙h/g),为石墨及热解碳的10倍,是决定复合材料容量的关键活性物质,可通过调控硅在复合体系中的含量来设计容量;石墨作为支撑材料,可改善硅的分散效果及导电性;无定形碳作为粘结剂和包覆碳,将硅粉与石墨有效一结合起来,并与石墨共同形成导电炭网结构,同时,无定形碳还能改善硅与电解液的界面性能。

因此,基于硅-无定形碳-石墨3种材料的有机结合,能有效提高硅负极的电化学性能。

Kim等采用机械化学球磨与造粒过程相结合的方法,将硅纳米颗粒与较大颗粒的鳞片石墨混合造粒,使得较小的硅纳米颗粒嵌入到鳞片石墨夹缝中,进而制备了硅–石墨/无定形碳复合材料。该复合材

料很好的解决了硅导电性差和体积膨胀的问题,所得复合材料具有568mA˙h/g的可逆比容量,首次Coulomb效率可达86.4%。

Lee等将硅纳米颗粒(100nm)和天然鳞片石墨(~5μm)加入到沥青溶液中,经球磨-造粒-高温热解碳化得到Si–G–C三元复合材料,其可逆比容量为700mA˙h/g,首次效率高达86%,50次循环后比容量几乎没有衰减。

Ma等将硅纳米颗粒、聚氯乙烯(PVC)和膨胀石墨溶解于四氢呋喃(THF),蒸发溶剂后碳化,得到硅–碳–膨胀石墨复合材料。该材料在200mA/g下,可逆容量为902.8mA˙h/g,循环40次后容量保持率为98.4%。

研究发现,循环过程中因膨胀而破碎的硅纳米颗粒仍能较好的分散在膨胀石墨上,这主要归功于膨胀石墨的多孔性和良好的柔韧性。

综上所述,硅/石墨或硅/石墨/碳体系容量普遍不高,在1000mA ˙h/g以下,硅含量一般较低,减少硅使用量的目的在于提升复合材料容量的同时尽可能保证材料各项性能与石墨一致,特别是首次Coulomb效率和循环寿命,以期提高现有电池体系的质量与体积能量密度。目前的设计容量为450~600mA˙h/g,但考虑到目前爆发式的新能源车市场对里程和寿命的需求,开发300~350W˙h/kg的动力锂电池是必然趋势,因此高容量硅基材料的开发也势在必行。

1.2.2碳纳米管/纳米纤维

相对于石墨颗粒,碳纳米管/纳米纤维(CNT/CNF)得益于其高长宽比的优势,与硅复合后,利用其导电性及网络结构可以构建连续的电子传递网络,缓解循环过程中硅的体积变化,抑制颗粒团聚,从而提高硅基负极材料的电化学性能。

Camer等利用化学合成法得到酚醛聚合物-硅复合材料,然后在惰性气氛下碳化得到Si/SiOx/碳纤维复合材料。碳纤维的存在增强了电极的导电性,同时能够限制硅脱嵌锂过程中的膨胀和收缩。该复合材料在500mA/g电流密度下,比容量达2500mA˙h/g,并表现出良好的循环稳定性能。

Mangolini等将量子点Si溶液、CNTs和聚乙烯吡咯烷酮(PVP)

涂覆于铜箔上,并在惰性气氛下热处理,得到Si/CNTs复合材料,其中Si粒子在CNTs中分散均匀,两者之间形成异质结层。该材料循环200次后的充电比容量仍可达1000mA˙/g,其Coulomb效率为99.8%。另外,将CNT和CNF引入到SiC复合材料中,借助三种材料间的协同效应也有助于进一步强化材料的电化学性能。

Zhang等将CNT和CNF和SiC混合,制备出容量高且循环性能优异的复合材料(Si@C/CNT&CNF)。其中,CNT和CNF与硅表面的碳包覆层在复合材料内构建出高效的电子传递网络,将大部分Si@C颗粒连接在一起,强化复合材料的导电性;同时CNT和CNF与Si@C相互交织混合,在复合材料内形成的孔穴,可承受硅在嵌锂过程中的膨胀,抑制循环过程中传递网络的破裂,进而提升材料的循环稳定性。

该材料在300mA/g电流密度下循环50次后容量仍可达1195mA˙h/g,而未掺杂CNTs&CNFs的Si@C材料循环稳定性较差,50次后容量仅有601mA˙h/g,未包覆碳的纯硅纳米颗粒经15次循环后容量衰减至几乎为0。

1.2.3石墨烯

除石墨和碳纳米管/纳米纤维外,石墨烯因其优异的导电性、高比表面积和良好的柔韧性等特点,也成为改性硅基负极的热点材料之一。研究者已开发出几种制备锂离子电池硅/石墨烯复合负极材料的方法。

Chou等通过将硅纳米颗粒与石墨烯简单机械混合,所得材料首次可逆比容量为2158mA˙h/g,30次循环后仍保持在1168mA˙h/g。

Chabot等通过将硅纳米颗粒和氧化石墨烯混合液冻干后,在含有10%(体积分数)H2的Ar气氛下热还原制备硅/石墨烯复合材料。该材料的初始放电容量为2312mA˙h/g,经100次循环后容量保持率为78.7%。

Luo等设计了一种气溶胶辅助-毛细管驱动自组装方法,将氧化石墨烯与硅超声混合,加热形成雾滴后,由气体将混合物带入碳化炉加热还原碳化,从而得到一种褶皱石墨烯包覆硅复合材料。该材料在1A/g电流下循环250次后容量仍可达到940mA˙h/g,首次循环后平均每次容量损失仅为0.05%。

研究表明,将石墨烯(G)与硅复合可改善硅负极的导电性及循环稳定性,但仅仅引入石墨烯并不能最大程度上改善硅负极材料的电化学性能,通过将硅、石墨烯和无定形热解碳碳结合到一起,利用三者间的协同作用有望得到电化学性能更优的硅基负极材料。

Zhou等设计了石墨烯/Si@C复合材料,通过在硅纳米颗粒表面包覆一层热解碳保护层,既有利于硅的结构稳定性,又能强化硅颗粒和石墨烯界面的结合能力,促进界面间的电子传输。这种具有双层保护结构的复合材料在300mA/g电流密度下循环100次后的可逆容量可达902mA˙h/g。

Li等先将聚苯胺接枝到硅纳米颗粒表面,随后利用聚苯胺与石墨烯间的π–π作用和静电引力,在颗粒表面自组装包覆石墨烯后,经高温碳化得到Si@C/G复合材料。该复合材料在50mA/g电流密度下的可逆容量为1500mA˙h/g,在2000mA/g的高电流密度下的容量也超过了900mA˙h/g,且循环300次后的容量保持率可达初始容量的70%。

Zhou等将带正电荷的聚氯化二烷基二甲基胺(PDDA)包覆带负电荷的硅纳米颗粒,然后与带有负电荷的氧化石墨烯在静电作用下进行自组装,碳化得到具有包覆结构的Si@C/G复合材料。该材料在

100mA/g电流密度下,150次循环后仍有1205mA˙h/g的可逆容量。

Yi等采用相似的方法将PDDA包覆SiO和氧化石墨烯(GO)混合物后,经高温碳化、HF酸刻蚀后得到微孔硅/石墨烯复合材料(G/Si),

随后以乙炔为碳源,经高温热解碳化进行碳包覆得到G/Si@C三元复合材料。该材料具有高达1150mA˙h/g的比容量,且循环100次后容量基本保持不变。

纳米硅碳负极材料研究报告

纳米硅碳负极材料研究报告 0引言 自1991年SONY公司以石油焦炭为负极材料将锂离子电池推向商业化以来,因其出色的循环寿命、较高工作电压、高能量密度等特性,锂离子电池一经推出就受到人们的广泛关注,迅速成为能源储存装置中的明星。近年来,随着新能源交通工具(如EV和HEV)的发展,对锂离子电池提出了更高的要求。作为锂离子电池关键部分的负极材料需要具备在Ii 的嵌入过程中自由能变化小,反应高度可逆;在负极材料的固态结构中有高的扩散率;具有良好的电导率;优良的热力学稳定性以及与电解质良好的相容胜等。研究者们通过开发具有新颖纳米结构的碳材料和非碳材料,来提高作为锂离子电池负极的嵌铿性能。然而,这些新颖的材料,如Sn, Si, Fe、石墨烯、碳纳米管,等,虽然其理论嵌铿容量较高(Sn和Si的理论嵌铿容量分别为994mAh/g和4 200 mAh/g ,但由于制备工艺相当复杂,成本较高,而且在充放电过程中存在较大的体积变化和不可逆容量。因此,若将其进行商业化应用还需要解决许多问题。 锂离子电池具有高电压、高能量、循环寿命长、无记忆效应等众多优点,已经在消费电子、电动土具、医疗电子等领域获得了少’一泛应用。在纯电动汽车、混合动力汽车、电动自行车、轨道交通、航空航天、船舶舰艇等交通领域逐步获得推少’一。同时,锉离子电池在大规模可再生能源接入、电网调峰调频、分布式储能、家庭储能、数据中心备用电 源、通讯基站、土业节能、绿色建筑等能源领域也显示了较好的应用前景 1不同负极材料的特点评述 天然石墨有六方和菱形两种层状品体结构同,具有储量大、成本低、安全无毒等优点。在锉离子电池中,天然石墨粉末的颗粒外表面反应活性不均匀,品粒粒度较大,在充放电过程中表面品体结构容易被破坏,存在表面SEI膜覆盖不均匀,导致初始库仑效率低、倍率性能不好等缺点。为了解决这些问题,可以采用颗粒球形化、表面氧化、表面氟化、表面包覆软碳、硬碳材料以及其它方式的表面修饰和微结构调整等技术对天然石墨进行改性处理。从成本和性能的综合考虑,目前土业界石墨改性主要使用碳包覆土艺处理。商业化应用的改性天然石墨比容量为340~ 370 mA·h/g,首周库仑效率90%~93%,100% DOD循环寿命可达到1000次以上,基本可以满足消费类电子产品对小型电池的性能要求。 2硅碳负极材料应用前景 近年来,我国锂离子电池产业发展迅速,全球市场份额不断攀升,在大规模的锂离子电池产业投资的带动下,锂离子电池负极材料的需求不断上升。硅负极相比石墨负极具有更高的质量能量密度和体积能量密度,采用硅负极材料的锉离子电池的质量能量密度可以提升8%以上,体积能量密度可以提升10%以上,同时每千瓦时电池的成本可以下降至少3%,因此硅负极材料将具有非常广阔的应用前景。新能源汽车产业是全球汽车产业的发展方向,也是我国重要的新兴战略产业之一,未来10年将迎来全球汽车产业向新能源汽车转型和升级的战略机遇。新能源汽车主要包括纯电动汽车、插电式混合动力汽车及燃料电池汽车。其中,纯电动汽车完全使用动力电池驱动,对电池容量需求最大,要求锉离子电池容量平均为30 kW /h。自2010年起,动力类锉离子电池受益于技术提升和成本降低,逐渐替代镍锅,镍氢电池,成为新能源汽车广泛使用的动力电池。根据中国汽车工业协会统计,我国新能源汽车产量由2011年的8000辆左右增至2015年的34万辆,而销量则由2011年的8000辆左右增至2015年的33万辆,年均复合增长率均超过150% o在各种利好政策的影响下,2014

硅碳负极研究发展现状

硅碳负极研究发展现状 (姜玉珍山东青岛青岛华世洁环保科技有限公司) 锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。 负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。 然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。 1、硅碳负极目前存在的主要问题 在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。造成首次放电效率低。随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。 2、硅碳负极制备方法 2.1、静电纺丝 吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。其过程为:将PVP溶于乙醇制备0.5KG/L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。材料首次0.1C 放电容量为1156.8mAh/g,库伦效率74.5%,第20次循环时材料的放电容量仍能够维持在783.2 mAh/g。 图1、Si/C 复合负极材料在0.1C 倍率下的充放电曲线

硅碳负极研究发展现状

(姜玉珍山东青岛青岛华世洁环保科技有限公司) 锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。 负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。 然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。 1、硅碳负极目前存在的主要问题 在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。造成首次放电效率低。随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。 2、硅碳负极制备方法 、静电纺丝 吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。其过程为:将PVP溶于乙醇制备L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。材料首次放电容量为g,库伦效率%,第20次循环时材料的放电容量仍能够维持在 mAh/g。 图1、Si/C 复合负极材料在倍率下的充放电曲线但是,该材料的倍率特性较差,将放电倍率提高到到,材料的放电容量为 mAh/g。再次变换充放电倍率至时,材料的放电容量仅为mAh/g。 、高温裂解沥青 西安建筑科技大学的栾振星等人通过高温裂解沥青的方式制备出了硅/碳/碳纳米管复合材料。该方法是将碳纳米管浸入H 2 SO 4 /HNO 3 溶液中震荡搅拌12H,空气中高温处理4H,将纳米硅、碳纳米管放入甲苯超声分散,然后将其按比例倒入溶于甲苯的沥青溶液中,搅拌均匀后真空

清华大学硅碳负极方面的研究

清华大学关于硅碳复合负极材料方面的专利汇总 清华大学化学工程系魏飞教授关于硅碳负极方面的专利在soopat或佰腾专利搜索只能检索到一篇(201510395054.7),且还未授权,其专利大致情况如下所示: 该硅碳复合材料是一种核壳结构,其中以硅或其氧化物为核,石墨烯为壳的亚/微米颗粒,所得材料的粒径尺寸在0.05-15um之间,石墨烯的重量占核壳结构颗粒总重量的1-8wt%,且核壳结构的比表面积等于或小于原始硅或其氧化物颗粒的比表面积。制备的复合材料宏观形貌为球形、棒状、片状、不规则多面体形状。其制备方法包括如下步骤: 1)在常温下,将含碳粘合剂(如直连、直链淀粉、葡萄糖、多羟基醇)溶于去离子水中,持续搅拌并缓慢加热至50-100℃,保持恒温1-6小时,得到粘性液体; 2)将粒径为0.1um-10um的硅或其氧化物颗粒加入到步骤1)所制备的粘性液体中,搅拌得到固含量为30-60wt%悬浊液浆料; 3)将步骤2)得到的浆料进行喷雾造粒,得到粒径分布在50-300um之间的多孔球形颗粒,即二级结构颗粒; 4)将步骤3)得到的二级结构颗粒填充到流化床中,在惰性气氛中加热至反应温度700-1000℃,然后通入碳源(如甲烷、乙烷、乙烯、乙炔、甲苯、苯等),惰性气体和碳源的总空速为500-900 h-1,保持碳源与惰性气体的体积比在0.5-2之间,进行化学气相沉积,反应时间为20-60min,得到粒径尺寸为0.05-15um的石墨烯包覆的硅或其氧化物核壳结构。 清华大学材料系黄正宏教授有一篇关于硅碳负极方面的专利(200910082897.6)。该专利的大致情况如下所示。 该复合负极材料由基体和均匀分布其中的颗粒组成,其中颗粒是一种具有纳米尺寸的核壳结构颗粒;所述纳米颗粒的核为纳米硅,壳为有机物热解得到的无定型碳,所述的基体是高压静电电纺制备的有机纤维热解碳化后得到的,为不规则多孔洞的无定型碳网络结构。其大致步骤如下:

锂离子电池硅_碳复合负极材料的研究进展_张瑛洁

第34卷第4期 硅酸盐通报Vol.34No.42015年4月BULLETIN OF THE CHINESE CERAMIC SOCIETY April ,2015 锂离子电池硅/碳复合负极材料的研究进展 张瑛洁,刘洪兵 (东北电力大学化学工程学院,吉林132012) 摘要:负极材料是制约锂离子电池发展的重要因素之一。硅/碳复合材料储锂容量高、循环稳定性好,是目前制备 新型锂离子电池负极材料的研究热点。介绍了硅/碳复合材料的不同制备方法和复合结构以及优良的电化学性 能,综述了硅/碳复合材料的研究进展,并对未来的发展方向进行了展望。 关键词:锂离子电池;硅/碳复合材料;制备方法;复合结构;电化学性能 中图分类号:TQ152文献标识码:A 文章编号:1001- 1625(2015)04-0989-06Research Progress on Si /C Composite Anode Materials for Lithium-ion Battery ZHANG Ying-jie ,LIU Hong-bing (School of Chemical Engineering ,Northeast Dianli University ,Jilin 132012,China ) Abstract :Anode materials is a major factor that restricts the development of lithium-ion batteries.Si /C composite materials ,which possesses high capacity and cycling stability ,becomes the hot spot to preparation of new type lithium-ion battery anode materials at present.Different preparation methods of Si /C composite materials ,composite structures ,and excellent electrochemical performance were introduced.And the research progress of Si /C composites was summarized.Subsequently ,the future development direction of Si /C composite materials was prospected as well. Key words :lithium ion battery ;Si /C composite materials ;preparation method ;complex structure ; electrochemical performance 基金项目:吉林省科技厅产业技术创新战略联盟项目(20130305017GX );吉林省教育厅吉教科合字[ 2014]第103号作者简介:张瑛洁(1969-),女,教授, 博士.主要从事水的深度处理方面的研究.1引言 负极材料储锂容量是制约锂离子电池应用范围的关键因素,硅/碳复合材料作为一类应用潜力巨大的负 极材料, 成为近年来研究的热点。碳与硅相近似的化学性质,为两者的紧密结合提供了理论依据,所以碳常用作与硅复合的首选基质。硅通常与石墨、石墨烯、无定型碳和碳纳米管等不同的碳基质制备复合材料,在硅碳复合的体系中硅主要作为活性物质,提供容量 [1-3];碳材料一般作为分散基质,限制硅颗粒的体积变化,并作为导电网络维持电极内部良好的电接触[4-6]。理论上,硅/碳复合材料储锂容量高,导电性能好,但要成为可商用的锂离子电池负极材料,面临着两个基本的挑战:循环稳定性差和可逆循环容量保持率低。不同的制备方法以及复合结构都会对复合材料的电化学性能产生影响,开发强附着性、紧密电接触、耐用的新型硅碳复合材料,对促进硅/碳复合材料实际应用的进程具有重大意义。本文着重从制备方法、复合结构及电化学性能等方面综述了硅/碳复合材料近年来的研究进展,以期对后续的研究人员的相关实验提供理论依据。DOI:10.16552/https://www.360docs.net/doc/d86585213.html,ki.issn1001-1625.2015.04.018

锂离子电池硅碳负极材料研究进展

第45卷第10期2017年10月 硅酸盐学报Vol. 45,No. 10 October,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.360docs.net/doc/d86585213.html, DOI:10.14062/j.issn.0454-5648.2017.10.21 锂离子电池硅碳负极材料研究进展 沈晓辉,范瑞娟,田占元,张大鹏,曹国林,邵乐 (陕西煤业化工技术研究院有限责任公司,西安 710100) 摘要:硅基材料作为锂离子电池负极具有容量高、来源广泛以及环境友好等优势,有望替代目前应用广泛的石墨负极成为下一代锂离子电池的主要负极材料。硅和碳复合构成的锂离子电池复合负极,不但解决了充放电过程中硅体积效应大和碳容量低的问题,而且综合了碳循环性好和硅容量高的特点。从材料选择、结构设计以及电极优化方面简要介绍了硅/碳复合材料的最新研究进展,并对硅碳复合负极未来发展方向进行了展望。 关键词:锂离子电池;硅/碳复合材料;复合结构 中图分类号:O646 文献标志码:A 文章编号:0454–5648(2017)10–1530–09 网络出版时间:2017–07–14 11:38:49 网络出版地址:https://www.360docs.net/doc/d86585213.html,/kcms/detail/11.2310.TQ.20170714.1138.009.html Development on Silicon/Carbon Composite Anode Materials for Lithium-ion Battery SHEN Xiaohui, FAN Ruijuan, TIAN Zhanyuan, ZHANG Dapeng, CAO Guolin, SHAO Le (Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi’an 710100, China) Abstract: Silicon is considered as one of the most promising materials for the next generation Li-ion batteries to replace widely-used graphite anode materials due to its high capacity, abundant source and environmental friendly. Si/C composite anode materials construct from silicon and carbon for Li-ion batteries, and can not only solve the big volume varaition of silicon and the low capacity of carbon in charge-discharge process, but also integrate the good cycle performance of carbon with the high capacity of silicon. This review summarized recent developments on novel Si/C composites based on the material selection, complex structure and electrode optimization. In addition, the future aspects of developing Si/C composite materials were also prospected. Keywords: lithium ion battery; silicon/carbon composite materials; complex structure 随着时代的需求飞速发展,锂离子电池的能量密度以每年7%~10%的速率提升。然而,现有的以石墨为负极的锂离子电池技术已经接近极限。2016年,我国发布了动力电池能量密度硬性指标,根据《节能与新能源汽车技术路线图》,2020年纯电动汽车动力电池的能量密度目标为350 W·h/kg。为满足新一代能源需求,开发新型锂电负极技术迫在眉睫。 硅在常温下可与锂合金化,生成Li15Si4相,理论比容量高达3 572 mA·h/g,远高于商业化石墨理论比容量(372 mA·h/g),在地壳元素中储量丰富(26.4%,第2位),成本低、环境友好,因而硅负极材料一直备受科研人员关注,是最具潜力的下一代锂离子电池负极材料之一。 然而,硅在充放电过程中存在严重的体积膨胀(~300%),巨大的体积效应及较低的电导率限制了硅负极技术的商业化应用。为克服这些缺陷,研究者进行了大量的尝试,采用复合化技术,利用“缓冲骨架”补偿材料膨胀。碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。在Si/C 复合体系中,Si 颗粒作为活性物质,提供储锂容量;C既能缓冲充放电过程中硅负极的体积变化,又能改善Si质材料 收稿日期:2016–11–18。修订日期:2017–04–02。第一作者:沈晓辉(1988—),女,硕士生。 通信作者:邵乐(1985—),男,博士生。Received date:2016–11–18. Revised date: 2017–04–02. First author: SHEN Xiaohui(1988–), female, Master candidate E-mail: shenhui06@https://www.360docs.net/doc/d86585213.html, Correspondent author: SHAO Le(1985–), male, Ph.D. candidate. E-mail: shaole@https://www.360docs.net/doc/d86585213.html,

锂离子电池硅碳负极材料制备及研究

目录 摘要 (1) Abstract................................................................................. 错误!未定义书签。第一章绪论. (1) 1.1 引言 (1) 1.2 锂离子电池介绍 (2) 1.2.1 锂离子电池的发展 (2) 1.2.2 锂离子电池工作原理及特点 (3) 1.3 锂离子电池各组成部分的研究现状 (3) 1.3.1 正极材料 (3) 1.3.2 电解液和隔膜材料 (4) 1.3.3 负极材料 (4) 1.4 本文的选题背景及主要研究内容 (4) 第二章实验原理 (5) 2.1 课题设计思路及主要研究内容 (5) 2.2 材料结构表征原理 (6) 2.2.1 X射线衍射分析( XRD) (6) 2.2.2 扫描电子显微镜分析(SEM) (6) 2.2.3 透射电子显微镜分析(TEM) (6) 2.2.4 拉曼衍射分析 (6) 2.3 材料电化学性能测试原理 (6) 2.3.1 室温恒电流充放电测试 (6) 2.3.2 电化学阻抗谱(EIS) (7)

2.3.3 循环伏安测试(CV) (7) 第三章硅碳材料的制备及其性能的研究 (7) 3.1 实验药品及仪器 (7) 3.2 实验部分 (8) 3.2.1 锂离子电池负极材料的制备 (8) 3.2.2 电极制备 (8) 3.2.3 电池装配 (9) 3.3 实验数据分析 (10) 3.3.1 硅碳混合材料的表征 (10) 3.3.2 硅碳混合材料电化学性能研究 (14) 第四章总结与展望 (18) 4.1 结论 (18) 4.2 展望 (19)

锂离子电池硅碳负极材料研发现状与发展趋势

Material Sciences 材料科学, 2020, 10(4), 248-252 Published Online April 2020 in Hans. https://www.360docs.net/doc/d86585213.html,/journal/ms https://https://www.360docs.net/doc/d86585213.html,/10.12677/ms.2020.104030 Research and Development Status and Trend of Silicon Carbon Anode Materials for Lithium Ion Batteries Yimin Xie1*, Jin Guo2, Xianhua Dong1 1Shandong Tianli Energy Co., Ltd., Jinan Shandong 2Dalian Research Institute of Petroleum and Petrochemicals, Sinopec, Dalian Liaoning Received: Mar. 31st, 2020; accepted: Apr. 15th, 2020; published: Apr. 22nd, 2020 Abstract This paper introduces the development process, research and development status and develop-ment trend of silicon carbon anode materials for lithium-ion batteries. The electrochemical prop-erties of the silicon carbon anode materials with different materials and different methods are quite different. The specific capacity ranges from about 500 mAh/g to about 2000 mAh/g. After 40 cycles, the capacity retention rate ranges from 47% to more than 90%. The research and devel-opment trend of silicon carbon anode materials is put forward. In the research and development process, the raw materials and material composite methods should be determined according to the use goal of the battery. In addition, attention should be paid to the uniformity of the micro structure and the stability of the macro structure, so as to solve the problems of volume expansion and poor conductivity of silicon materials. Keywords Lithium Ion Battery, Silicon Carbon Anode, Composite Material, High Specific Capacity 锂离子电池硅碳负极材料研发现状与发展趋势 谢以民1*,郭金2,董宪华1 1山东天力能源股份有限公司,山东济南 2中国石油化工股份有限公司大连石油化工研究院,辽宁大连 收稿日期:2020年3月31日;录用日期:2020年4月15日;发布日期:2020年4月22日 *通讯作者。

2017年硅碳负极材料应用前景分析报告

(此文档为word格式,可任意修改编辑!)

正文目录 硅碳负极正在走向产业化应用 (4) 1. 为什么需要硅碳负极 (4) 2. 什么是硅碳负极 (5) 3. 硅碳负极的市场空间测算 (7) 硅碳负极产业化应用的进程 (8) 1. 海外已经实现硅碳负极的产业化应用 (8) 2. 国内已经初步实现硅碳负极的商业化生产 (9) 主要公司分析 (10) 1. 杉杉股份 (10) 2. 国轩高科 (11) 3. 贝特瑞 (12) 图目录 图1:中国汽车动力电池技术路线图 (4) 图2:硅碳负极的制备工艺 (5) 图3:硅碳负极膨胀导致电池材料粉末化 (6) 图4:硅碳负极对Li+源的消耗 (6) 图5:硅碳负极纳米化和包覆 (6) 图6:2015年全球锂电池负极材料消费结构 (7) 图7:硅碳负极市场空间预测 (8) 图8:新能源行业历史PEBand (12) 图9:新能源行业历史PBBand (13) 表目录

表1:负极材料容量提升对电池能量密度提升的影响 (5) 表2:松下量产的各类型号18650电池性能比较 (9) 表3:中国锂电负极材料年度竞争力排行统计 (9) 表4:国内涉及硅碳负极研发及应用的上市公司 (10) 表5:杉杉股份负极业务经营情况 (11) 表6:国轩高科研发投入情况 (11) 表7:国轩高科本次募投项目 (11) 表8:贝特瑞收入结构 (12)

硅碳负极正在走向产业化应用 1. 为什么需要硅碳负极 众所周知,不断的提高电池能量密度,是锂电产业技术研革所孜孜不倦的方向。在当前的锂电材料体系中,负极材料多为采用石墨材料(以人造石墨和天然石墨为主),在电池理论设计过程中,基本上已经非常充分发挥了其可实现的能量密度,所当前的石墨负极材料在提升电池能量密度方面已经遇到明显的瓶颈。 与石墨负极材料相比,硅基负极材料的能量密度优势明显。石墨的理论能量密度是372mAh/g,而硅负极的理论能量密度超其10倍,高达4200mAh/g。所以硅碳负极的应用,可以提升电池中活性物质含量,所以能大大提升单体电芯的容量,这也是硅碳负极材料越来越多被锂电领域所关注的重要原因。 图1:中国汽车动力电池技术路线图

硅碳负极材料的最新研究进展

硅碳负极材料的最新研究进展硅基材料作为锂离子电池负极具有容量高、来源广泛以及环境友好等优势,有望替代目前应用广泛的石墨负极成为下一代锂离子电池的主要负极材料。本文从材料选择、结构设计以及电极优化方面简要介绍了硅/碳复合材料的最新研究进展,并对未来发展方向进行了展望。 随着时代的需求飞速发展,锂离子电池的能量密度以每年7%~10%的速率提升。2016年,我国发布了动力电池能量密度硬性指标,根据《节能与新能源汽车技术路线图》,2020年纯电动汽车动力电池的能量密度目标为350W˙h/kg。 为满足新一代能源需求,开发新型锂电负极技术迫在眉睫。 硅在常温下可与锂合金化,生成Li15Si4相,理论比容量高达3572mA˙h/g,远高于商业化石墨理论比容量(372mA˙h/g),在地壳

元素中储量丰富(26.4%,第2位),成本低、环境友好,因而硅负极材料一直备受科研人员关注,是最具潜力的下一代锂离子电池负极材料之一。 然而,硅在充放电过程中存在严重的体积膨胀(~300%),巨大的体积效应及较低的电导率限制了硅负极技术的商业化应用。为克服这些缺陷,研究者进行了大量的尝试,采用复合化技术,利用“缓冲骨架”补偿材料膨胀。 碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。 在Si/C复合体系中,Si颗粒作为活性物质,提供储锂容量;C 既能缓冲充放电过程中硅负极的体积变化,又能改善Si质材料的导电性,还能避免Si颗粒在充放电循环中发生团聚。因此Si/C复合材料综合了二者的优点,表现出高比容量和较长循环寿命,有望代替石墨成为新一代锂离子电池负极材料。 近年来,硅碳负极材料相关技术发展迅速,迄今已有少量产品实现实用化,日本日立集团Maxell公司已开发出一种以“SiO-C”材料为负极的新式锂电池,并成功地应用到诸如智能手机等商业化产品中。然而,硅碳负极锂离子电池距离真正大规模商业化应用仍有大量科学问题亟需解决。

相关文档
最新文档