计算方法复习题与答案

计算方法复习题与答案
计算方法复习题与答案

复习题与答案

复习题一

复习题一答案

复习题二

复习题二答案

复习题三

复习题三答案

复习题四

复习题四答案

自测题

复习题(一)

一、填空题:

1、求方程011015.02

=--x x 的根,要求结果至少具有6位有效数字。已知

0099.10110203≈,则两个根为=1x ,

=2x .(要有计算过程和结果)

2、?????

?????----=410141014A ,则A 的LU 分解为 A ???

?????????=?

???????????。

3、

???

???=5321A ,则=)(A ρ ,=∞A . 4、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用抛物线(辛卜生)公式计算求

得?≈3

1

_________

)(dx x f ,用三点式求得≈')1(f .

5、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2

x 的系数

为 ,拉格朗日插值多项式为 . 二、单项选择题:

1、 Jacobi 迭代法解方程组b x =A 的必要条件是( ). A .A 的各阶顺序主子式不为零 B. 1)(

2、设753)(99-+-=x x x f ,均差

]2,,2,2,1[99

2 f =( ) . A.

3 B. -3 C. 5 D.0

3、设

??

???

?????--=700150322A ,则)(A ρ为( ). A. 2 B. 5 C. 7 D. 3 4、三点的高斯求积公式的代数精度为( ). A. 2 B.5 C. 3 D. 4

5、幂法的收敛速度与特征值的分布( )。 A. 有关 B. 不一定 C. 无关

三、计算题:

1、用高斯-塞德尔方法解方程组 ???

??=++=++=++225218241124321321321x x x x x x x x x ,取T

)0,0,0()0(=x ,迭代四次(要求按五位有效数字计算).

2、求A 、B 使求积公式

?-+-++-≈1

1)]21

()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求?

=2

1

1

dx

x I (保留四位小数)。

3、已知

分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数).

4、取步长2.0=h ,用预估-校正法解常微分方程初值问题

??

?=+='1)0(32y y x y )10(≤≤x

5、已知

求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。

6、证明方程24)(3

+-=x x x f =0在区间(0,1)内只有一个根,并用迭代法

(要求收敛)求根的近似值,五位小数稳定。

复习题(一)参考答案

一、一、1、010.204104061021≈+=x ,00980345.0)10406102(22≈+=x

2、

??

????????--??????????--=1556141501

4115401411A 3、103+,8 4、2.367 0.25 5、-1,

)2)(1(21

)3)(1(2)3)(2(21)(2--------=

x x x x x x x L

二、A B C B C 5,4,3,2,1 三、1、迭代格式

???

???

???--=--=--=++++++)222(51)218(41)211(41)1(2)1(1)1(3)

(3)1(1)1(2

)

(3)(2)1(1k k k k k k k k k x x x x x x x x x

2、2

,,1)(x x x f =是精确成立,即

???

??=+=+32212222B A B A 得98,91==B A

求积公式为

)]21()21([98)]1()1([91)(1

1f f f f dx x f +-++-=?- 当3)(x x f =时,公式显然精确成立;当4

)(x x f =时,左=52,右=31。

所以代数精度为3。

69286.014097

]

3

21132/11[98]311311[9131111322

1

≈=

+++-++++-≈+=??--=dt t dx x x t

3、

)53)(43)(13()

5)(4)(1(6

)51)(41)(31()5)(4)(3(2)(3------+------=x x x x x x x L

)45)(35)(15()

4)(3)(1(4

)54)(34)(14()5)(3)(1(5

------+------+x x x x x x

差商表为

)4)(3)(1(41

)3)(1()1(22)()(33---+

----+==x x x x x x x N x P

5.5)2()2(3=≈P f

4、解:

?????+++?+=+?+=++++)]32()32[(1.0)32(2.0)0(111)0(1n n n n n n n n n n y x y x y y y x y y

即 04.078.152.01++=+n n n y x y 5、解:

正规方程组为 ???

?

?=+==+41

34103101510520120a a a a a

1411,103,710210===

a a a

221411103710)(x x x p ++=

x

x p 711

103)(2+=' 103

)0()0(2

='≈'p f

复习题(二)

一、填空题:

1、近似值*0.231x =关于真值229.0=x 有( )位有效数字;

2、*x 的相对误差的( )倍;

3、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );

4、对1)(3

++=x x x f ,差商=]3,2,1,0[f ( ),=]4,3,2,1,0[f ( );

5、计算方法主要研究( )误差和( )误差;

6、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( );

7、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( );

8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( );

9、两点式高斯型求积公式?1

d )(x

x f ≈( ),代数精度为( );

10、解线性方程组A x =b 的高斯顺序消元法满足的充要条件为( )。 二、单项选择题:

1、求解线性方程组A x =b 的LL T 分解法中,A 须满足的条件是( )。

A. 对称阵

B. 正定矩阵

C. 任意阵

D. 各阶顺序主子式均不为零 2、舍入误差是( )产生的误差。

A. A. 只取有限位数

B.模型准确值与用数值方法求得的准确值

C. 观察与测量

D.数学模型准确值与实际值 3、3.141580是π的有( )位有效数字的近似值。 A. 6 B. 5 C. 4 D. 7

4、幂法是用来求矩阵( )特征值及特征向量的迭代法。

A. 按模最大

B. 按模最小

C. 所有的

D. 任意一个 5、用 1+x 近似表示e x 所产生的误差是( )误差。

A. 模型

B. 观测

C. 截断

D. 舍入

6、解线性方程组的主元素消去法中选择主元的目的是( )。

A.控制舍入误差

B. 减小方法误差

C.防止计算时溢出

D. 简化计算

7、解线性方程组A x =b 的迭代格式x (k +1)=M x (k )+f 收敛的充要条件是( )。

A. 1

B. 1)(

C. 1)(

D. 1)(

1、为了使20的近似值的相对误差限小于0.1%,要取几位有效数字?

2、已知x sin 区间[0.4,0.8]的函数表

如用二次插值求63891.0sin 的近似值,如何选择节点才能使误差最小?并求该近似值。

3、构造求解方程0210=-+x e x

的根的迭代格式 ,2,1,0),(1==+n x x n n ?,讨论

其收敛性,并将根求出来,4

110||-+<-n n x x 。

4﹑利用矩阵的LU 分解法解方程组 ???

??=++=++=++20

53182521432321321321x x x x x x x x x 。 5﹑对方程组 ???

??=-+=--=++8

4102541015

1023321321321x x x x x x x x x

(1) 试建立一种收敛的Seidel 迭代公式,说明理由; (2) 取初值T )0,0,0()

0(=x

,利用(1)中建立的迭代公式求解,要求

3)()1(10||||-∞+<-k k x x 。 6﹑用复合梯形求积公式计算x

x

d e 10

?,则至少应将[0,1]分为多少等份才能保证所

得积分的近似值有5位有效数字?

复习题(二)参考答案

一、1、2; 2、31倍; 3、

)(1)(1n n n

n n x f x f x x x '---=+; 4、0]4,3,2,1,0[,1]3,2,1,0[==f f ; 5、截断,舍入;

6、1

2+-n a b ; 7、)],(),([2111+++++=n n n n n n y x f y x f h

y y ; 8、 0.15; 9、

?++-≈1

)]

321

3()3213([21d )(f f x x f ;

10、A 的各阶顺序主子式均不为零。

二、1、B 2、A 3、B 4、A 、 5、C 6、A 7、D

三、1、解:设20有n 位有效数字,由

4.420=,知41=a

%1.01081

1021)20()1()1(1*

----n n r a ε,

取 4=n , %1.010125.0)20(3

*

故 472.420≈ 1、1、解: 应选三个节点,使误差

|)(|!3|)(|33

2x M x R ω≤

尽量小,即应使|)(|3x ω尽量小,最靠近插值点的三个节点满足上述要求。即取节点}7.0,6.0,5.0{最好,实际计算结果

596274.063891.0sin ≈,

4

1055032.0)7.063891.0)(6.0963891.0)(5.063891.0(!

31

596274

.063891.0sin -?≤----≤

-

3、解:令 010)1(,

02)0(,

210e )(>+=<-=-+=e f f x x f x

.

且010e )(>+='x

x f )(∞+-∞∈?,

对x ,故0)(=x f 在(0,1)内有唯一实根.将方程0)(=x f 变形为

)e 2(101

x x -=

则当)1,0(∈x 时

)e 2(101

)(x x -=

?,

1

10

e

10e |)(|<≤-='x x ?

故迭代格式

)e 2(101

1n x n x -=

+

收敛。取5.00=x ,计算结果列表如下:

且满足 6671095000000.0||-<≤-x x .所以008525090.0*≈x .

4、解:

??

????????--??????????-==244132

11531

21LU A 令b y =L 得T )72,10,14(--=y ,y x =U 得T

)3,2,1(=x .

5、解:调整方程组的位置,使系数矩阵严格对角占优

???

??=++=-+=--15

1023841025410321321321x x x x x x x x x

故对应的高斯—塞德尔迭代法收敛.迭代格式为

???

???

???+--=++-=++=++++++)1523(101)842(101)54(101)1(2)1(1)1(3)

(3)1(1)1(2

)

(3)(2)1(1k k k k k k k k k x x x x x x x x x

取T )0,0,0()

0(=x

,经7步迭代可得:

T )010000.1,326950999.0,459991999.0()7(*=≈x x .

6、解:当0

,则 e )(≤''x f ,且x x

d e 1

0?有一位整数.

要求近似值有5位有效数字,只须误差

4)

(11021

)(-?≤

f R n .

)(12)()(

2

3

)

(1ξf n a b f R n ''-≤,只要

4

22)(1102112e 12e )

e (-?≤≤≤n n R x n ξ

即可,解得

???=?≥

30877.67106e

2n

所以 68=n ,因此至少需将 [0,1] 68等份。

复习题(三)

一、填空题:

1、为了使计算

32)1(6)1(41310--

-+-+

=x x x y 的乘除法次数尽量地少,应将

该表达式改写为 ,为了减少舍入误差,应将表达式

19992001-改写为 。

2、用二分法求方程01)(3

=-+=x x x f 在区间[0,1]内的根,进行一步后根的所

在区间为 ,进行两步后根的所在区间为 .

3、设??????-=1223A ,??????-=32x ,则_________||||=∞A ,_________||||2=A ,

________||||1=x ,___________||||1=x A . 4、计算积分?1

5

.0d x

x ,取4位有效数字。用梯形公式计算求得的近似值为 ,

用辛卜生公式计算求得的近似值为 ,梯形公式的代数精度为 ,辛卜生公式的代数精度为 。

5、求解方程组??

?=+=+042.01

532121x x x x 的高斯—塞德尔迭代格式为 ,该迭代格

式的迭代矩阵的谱半径)(M ρ= 。 二、计算题:

1、已知下列实验数据

试按最小二乘原理求一次多项式拟合以上数据.

2、用列主元素消元法求解方程组 ??????????--=????????????????

????--11124112345111321x x x . 3、取节点1,5.0,0210===x x x ,求函数x

x f -=e )(在区间[0,1]上的二次插值多项

式)(2x P ,并估计误差。

4、用幂法求矩阵

?

?????=9.033399A 按模最大的特征值及相应的特征向量,取T )1,1(0=x ,精确至7位有效数字。 5、用欧拉方法求

?-=x t t

x y 0

d e )(2

在点0.2,5.1,0.1,5.0=x 处的近似值。

6、给定方程

01e )1()(=--=x

x x f 1) 分析该方程存在几个根;

2) 用迭代法求出这些根,精确到5位有效数字; 3) 说明所用的迭代格式是收敛的。

复习题(三)参考答案

一、 一、 1﹑

11

,))64(3(10-=

-++=x t t t t y ,199920012+;

2﹑[0.5,1], [0.5,0.75];

3﹑5||||=∞A ,1329||||2+=A ,5||||1=x ,7||||1=x A ; 4﹑0.4268,0.4309,1,3;

5﹑?

????-=-=+++20/3/)51()

1(1)1(2)(2)1(1

k k k k x x x x ,121,收敛的; 二、 1、解:列表如下

设所求一次拟合多项式为x a a y 10+=,则

??????=????????????61454.96657.523177.1047.547.53

10a a

解得 7534.1,355.1410==a a , 因而所求的一次拟合多项式为

x y 7534.1355.14+=.

2、解: ??

?

??

?????----???→????????

????----111124111123451111212345411121r r ??

???

?

??

????????-----???→??????????

???

?????-

-----???→?-5852510579515130123

4

5

57951513058525101234

5

5

2

51

321312r r r r r r

??????

??

???????

?----???→?+135

1350579515

13

123

45131

23r r 回代得 3,6,1123==-=x x x 。

3、解:

)15.0)(05.0()

1)(0()10)(5.00()1)(5.0()(5.002----?

+----?

=--x x e x x e x P )5.0(2)1(4)1)(5.0(2)

5.01)(01()

5.0)(0(15.01-+----=----?

+---x x e x x e x x x x e

1

|)(|max ,)(,)(]

1,0[3='''=-='''=∈--x f M e x f e x f x x x

故截断误差

|)1)(5.0(|!31

|)(||)(|22--≤

-=-x x x x P e x R x 。

4、解:幂法公式为 ???

??===-k k k k k k k m m A /)max(1

y x y x y ,?

??

???=9.033399A 取x 0=(1,1)T ,列表如下:

因为

5341021

||-?≤

-m m ,所以

T v )33300033.0,1(,99900098.9911≈≈λ

5、解:

?-=x t t

x y 0

d e

)(2

等价于

?????=='-0)0(e 2

y y x (0>x )

记2

e

),(x y x f -=,取5.0=h ,0.2,5.1,0.1,5.0,043210=====x x x x x .

则由欧拉公式

??

?=+=+0)

,(01y y x hf y y n n n n , 3,2,1,0=n

可得 88940.0)0.1(,

5.0)5.0(21≈==≈y y y y ,

12604.1)0.2(,07334.1)5.1(43≈==≈y y y y

6、解:1)将方程

01e )1(=--x x (1) 改写为

x

x -=-e 1 (2)

作函数1)(1-=x x f ,x

x f -=e )(2的图形(略)知(2)有唯一根)2,1(*∈x 。

2) 将方程(2)改写为 x

x -+=e 1

构造迭代格式 ??

?=+=-+5.1e 101x x k x k ),2,1,0( =k

计算结果列表如下:

3) x

x -+=e 1)(?,x

x --='e )(?

当]2,1[∈x 时,]2,1[)]1(),2([)(?∈???x ,且

1e |)(|1<≤'-x ?

所以迭代格式 ),2,1,0()(1 ==+k x x k k ?对任意]2,1[0∈x 均收敛。

复习题(四)

一、填空题:

1、设46)2(,16)1(,0)0(===f f f ,则=)(1x l ,)(x f 的二次牛顿插

值多项式为 。

2、

722

,

141.3,142.3分别作为π的近似值有 , , 位有效数字。

3、求积公式?∑=≈b

a

k n

k k x f A x x f )(d )(0的代数精度以( )求积公式为最高,具有

( )次代数精度。;

4、解线性方程组的主元素消元法中,选择主元的目的是( );

5、已知f (1)=1,f (3)=5,f (5)=-3,用抛物线求积公式求?5

1d )(x

x f ≈( )。 6、设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( )。 二、单项选择题:

1、用1+3x

近似表示3

1x +所产生的误差是( )误差。

A. 舍入

B. 观测

C. 模型

D. 截断

2、-324.7500是舍入得到的近似值,它有( )位有效数字。 A. 5 B. 6 C. 7 D. 8

3、反幂法是用来求矩阵( )特征值及相应特征向量的一种向量迭代法。 A. 按模最大 B. 按模最小 C. 全部 D. 任意一个

4、( )是解方程组A x =b 的迭代格式x (k +1)=M x (k )+f 收敛的一个充分条件;

A. M <1

B. )(A ρ<1

C. A <1

D. )(M ρ<1

5、用s *=21

g t 2表示自由落体运动距离与时间的关系式 ( g 为重力加速度 ),

s t 是在时间t 内的实际距离,则s t - s *是( )误差。

A. 舍入

B. 观测

C. 模型

D. 截断

6、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x 2的系数为( );

A. –0.5

B. 0.5

C. 2

D. -2

7、三点的高斯型求积公式的代数精度为( )。 A. 3 B. 4 C. 5 D. 2

8、求解线性方程组A x =b 的LL T 分解法中,A 须满足的条件是( )。

A. A. 对称阵

B. 各阶顺序主子式均大于零

C. 任意阵

D. 各阶顺序主子式均不为零 三、是非题(认为正确的在后面的括弧中打√,否则打?)

1、1、已知观察值)210()(m i y x i i ,,,,

, =,用最小二乘法求n 次拟合多项式)(x P n 时,)(x P n 的次数n 可以任意取。 ( ) 2、2、用1-22

x 近似表示cos x 产生舍入误差。 ( )

3、3、))(()

)((210120x x x x x x x x ----表示在节点x 1的二次(拉格朗日)插值基函数。 ( )

4、任给实数a 及向量x ,则||||||||x x a a =。 ( )

5、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插

值的结果。 ( )

6、-23.1250有六位有效数字,误差限 ≤4

1021

-?。 ( )

7、矩阵A =?

????

?

?-521352113具有严格对角占优。 ( ) 8、数据拟合的步骤是:

1)作散点图;2)解正规方程组;3)确定函数类型 ( ) 9、 LL T 分解可用于求系数矩阵为实对称的线性方程组。 ( ) 10、幂法的收敛速度与特征值的分布无关。 ( )

四、计算题:(每小题7分,共42分)

2、1、用牛顿(切线)法求3的近似值。取x 0=1.7, 计算三次,保留五位小数。

2、已知 A =?

???? ?

?-010110004,求1A ,∞A ,2||||A 。 4、4、已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1.5)的近似值,取五位小数。 4、n =3,用复合梯形公式求x

x

d e 10

?的近似值(取四位小数),并求误差估计。

5、用幂法求矩阵A =?

???? ?

?---210121004按模最大特征值及相应特征向量,列表 计算三次,取x 0=(1,1,1)T ,保留两位小数。

6、用Gauss-Seidel 迭代法求解线性方程组 ????? ?

?--411131103????? ??321x x x =?

????

??--815, 取x (0)=(0,0,0)T ,列表计算三次,保留三位小数。

7、用预估—校正法求解??

?=+='1)0(y y

x y (0≤x ≤1),h =0.2,取两位小数。

复习题(四)参考答案

一、1、)2()(1--=x x x l ,)1(716)(2-+=x x x x N ; 2、 4 ,3 ,3; 3、高斯型,12+n ; 4、减少舍入误差; 5、12; 6、5.2 二、1D , 2C , 3B , 4A , 5C , 6A , 7C , 8B

三、1、?,2、?,3、√ 4、?,5、√,6、?,7、?,8、?,9、?,10、?

四、1、解:3是03)(2

=-=x x f 的正根,x x f 2)(=',牛顿迭代公式为

n n n n x x x x 232

1--

=+, 即

)

,2,1,0(2321 =+=+n x x x n n n

取x 0=1.7, 列表如下:

2、解:4||||,4||||1==∞A A ,

???

???????=??????????-??????????-=1101200016010110004010110004A A T ,

0)13)(16(110

120

16||2=+--=---=

-λλλλλλ

λE A A T

16,25

3±=

λ,所以 4||||2=A 。

3、解:

)12)(12()

1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+?

--+-+?+------?

=x x x x x x x L

)1)(1(34

)2)(1(23)2)(1(32-+--+---=

x x x x x x

04167

.0241

)5.1()5.1(2≈=≈L f

4、解:7342.1]e )e e (2e [3201d e 132310310≈+++?-=≈?T x x

x x x f x f e )(,e )(=''=,10≤≤x 时,e |)(|≤''x f

05.0025.0108e

312e |e |||2

3≤==?≤

-= T R x

至少有两位有效数字。

5、幂法公式为 ???

??===-k k k k k k k m

m A /)max(1

y x y x y , 取x 0=(1,1,1)T ,列表如下:

00.41≈λ,T )14.0,44.0,1(1-≈v

6、解:Gauss-Seidel 迭代格式为:

???

???

???-+-=----=+-=++++++)8(41)1(31)5(31)1(2)1(1)1(3)

(3)1(1)1(2

)(3)1(1k k k k k k k k x x x x x x x x

系数矩阵?????

?

????--411131103严格对角占优,故Gauss-Seidel 迭代收敛. 取x (0)=(0,0,0)T ,列表计算如下:

7、解:预估—校正公式为

???

??

????

++==++=+),(),()(2

1121211

k y h x hf k y x hf k k k y y n n n n n n ,2,1,0=n

其中y x y x f +=),(,10=y ,h =0.2,4,3,2,1,0=n

,代入上式得:

自测题

一、填空题(15分):

1、-43.578是舍入得到的近似值,它有 ( ) 位有效数字,相对误差限为( )。

2、二分法求非线性方程0)(=x f 在区间(1,3)内的根时,二分9次后的误差限为( )。

3、f (1)=1,f (3)=3.6,f (4)=5.2,则过这三点的二次插值多项式中x 2的系数为

计算方法复习题

复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ???????????。 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 4、近似值*0.231x =关于真值229.0=x 有( )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( ),=]4,3,2,1,0[f ( ); 7、计算方法主要研究( )误差和( )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ),代数精度为( ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为()。 13、 为了使计算 32)1(6)1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

《计算方法》练习题

《计算方法》练习题一 一、填空题 1. 14159.3=π的近似值,准确数位是( )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。 4.乘幂法是求实方阵( )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( )。 6. 71828.2=e 具有3位有效数字的近似值是( )。 % 7.用辛卜生公式计算积分?≈+1 01x dx ( ) 。 8.设)()1() 1(--=k ij k a A 第k 列主元为)1(-k pk a ,则=-) 1(k pk a ( )。 9.已知?? ? ? ??=2415A ,则=1A ( )。 10.已知迭代法:),1,0(),(1 ==+n x x n n ? 收敛,则)(x ?'满足条件( )。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( )。 。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( ) . A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有( )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( ). A .)(h o B.)(2h o C.)(3h o D.)(4 h o 6.近似数2 1047820.0?=a 的误差限是( )。 (

计算方法试题

计算方法考试题(一) 满分70分 一、选择题:(共3道小题,第1小题4分,第2、3小题3分,共10分) 1、将A 分解为U L D A --=,其中),,(2211nn a a a diag D =,若对角阵D 非奇异(即),1,0n i a ii =≠,则b Ax =化为b D x U L D x 1 1)(--++=(1) 若记b D f U L D B 111 1),(--=+= (2) 则方程组(1)的迭代形式可写作 ) 2,1,0(1 )(1)1( =+=+k f x B x k k (3) 则(2)、(3)称 【 】 (A)、雅可比迭代。(B)、高斯—塞德尔迭代 (C)、LU 分解 (D)、Cholesky 分解。 2、记*x x e k k -=,若0lim 1≠=+∞→c e e p k k k (其中p 为一正数)称序列}{k x 是 【 】 (A)、p 阶收敛; (B)、1阶收敛; (C)、矩阵的算子范数; (D)、p 阶条件数。 3、牛顿切线法的迭代公式为 【 】 (A)、 ) () (1k x f x f x x k k k '- =+ (B)、 )()())((111--+--- =k k k k k k k x f x f x x x f x x 1 )() ()1()()()(x x f x f x f k i k i k i ??+=+ (D)、 )() ()()1(k k k x f x x -=+ 二、填空题:(共2道小题,每个空格2分,共10分) 1、设0)0(f =,16)1(f =,46)2(f =,则一阶差商 ,二阶差商=]1,2,0[f ,)x (f 的二次牛顿 插值多项式为 2、 用二分法求方程 01x x )x (f 3 =-+=在区间]1,0[内的根,进行第一步后根所在的区间为 ,进行第二步后根所在的区间 为 。 三、计算题:(共7道小题,第1小题8分,其余每小题7分,共50分) 1、表中各*x 都是对准确值x 进行四舍五入得到的近似值。试分别指出试用抛物插值计算115的近似值,并估计截断误差。 3、确定系数101,,A A A -,使求积公式 ) ()0()()(101h f A f A h f A dx x f h h ++-≈? -- (1) 具有尽可能高的代数精度,并指出所得求积公式的代数精度。

《计算方法》期末考试试题

《计算方法》期末考试试题 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(

计算方法习题

《计算方法》练习题一 练习题第1套参考答案 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( 2 10- )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( ))((!2) (b x a x f --''ξ ) 。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P (5 2 )。 4.乘幂法是求实方阵(按模最大 )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( ]0,2[-)。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε(C )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( A )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( C ) . A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有(B )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( C ). A .)(h o B.)(2 h o C.)(3 h o D.)(4 h o 三、计算题 1.求矛盾方程组:??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2 212 212 2121)2()42()3(),(--+-++-+=x x x x x x x x ?, 由 0,021=??=??x x ? ?得:???=+=+9 629232121x x x x , 解得14 9 ,71821== x x 。

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式就是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差与( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5、9,则二次Newton 插值多项式中x 2系数为( 0、15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

地方时计算方法及试题精选

关于地方时的计算 一.地方时计算的一般步骤: 1.找两地的经度差: (1)如果已知地和要求地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)如果已知地和要求地不同是东经或西经,则: 经度差=两经度和(和小于180°时) 或经度差=(180°—两经度和)。(在两经度和大于180°时) 2.把经度差转化为地方时差,即: 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系,加减地方时差,即:要求点在已知点的东方,加地方时差;如要求点在已知点西方,则减地方时差。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。即:度数大的在东。 (2)是西经,度数越大越靠西。即:度数大的在西。 (3)一个东经一个西经,如果和小180°,东经在东西经在西;如果和大于180°,则经度差=(360°—和),东经在西,西经在东;如果和等于180,则亦东亦西。 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方, 所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方 8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。所以B点的地方时为8:00+12小时=20:00或8:00—12小时,不够减,在日期中借一天24小时来,即24小时 +8:00—12小时=20:00。 2、变化点计算 【例1】一架飞机于10月1日17时从我国上海(东八区)飞往美国旧金山(西八区),需飞行14小时。到达目的地时,当地时间是() A. 10月2日15时 B. 10月2日3时 C. 10月1日15时 D. 10月1日3时

计算方法复习题

计算方法复习题 一、判断正误 1.若73()1,f x x x =++则017 2,2,,2f ???????=0。 2.牛顿-柯特斯(Newton-Cotes )数值求积公式∑?=-≈n i i n i b a x C f a b dx x f 0 )()()()(,当n 为奇数时,至 少具有n 次代数精确度。 3.形如?∑=≈b a n i i i x f dx x f 1)()(ω的高斯(Gauss )求积公式具有最高代数精度12+n 次。 4.若A 是n 阶非奇异阵,则必存在单位下三角阵L 和上三角阵U ,使A =LU 成立。 5.对任意初始向量X )0(及右端向量g ,一般迭代过程g B X X +=+)()1(m m 收敛于方程组的精确解x *的充要条件是1)(

计算方法试题

计算方法试题 1.有效数字位数越多,相对误差越小。() 2.若A是n×n阶非奇异阵,则必存在单位下三角阵L和上三角阵U,使A=LU唯一成立。() 3.当时,型求积公式会产生数值不稳定性。() 4.不适合用牛顿-莱布尼兹公式求定积分的情况有的原函数不能用有限形式表示。() 5.中矩形公式和左矩形公式具有1次代数精度。() 1.数的六位有效数字的近似数的绝对误差限是() 2.用二分法求方程在区间[0,1]内的根,进行一步后根的所在区间为()。 3.求解线性代数方程组的高斯-赛德尔迭代格式为( ) 4.已知函数在点=2和=5处的函数值分别是12和18,已知,则()。 5.5个节点的牛顿-柯特斯求积公式的代数精度为()。 1.不是判断算法优劣的标准是()。 A、算法结构简单,易于实现 B、运算量小,占用内存少 C、稳定性好 D、计算误差大 2.计算(),取,采用下列算式计算,哪一个得到的结果最好? ()。 A、 ()B、99-70C、D、 () 3.计算的Newton迭代格式为()。 A、B、C、D、4.雅可比迭代法解方程组的必要条件是()。 A、A的各阶顺序主子式不为零 B、 C、,,,, D、

5.设求方程的根的切线法收敛,则它具有()敛速度。 A、线性 B、超越性 C、平方 D、三次 6.解线性方程组的主元素消元法中选择主元的目的是()。 A、控制舍入误差 B、减小方法误差 C、防止计算时溢出 D、简化计算 7.设和分别是满足同一插值条件的n次拉格朗日和牛顿插值多项式,它们的插值余项分别为和,则()。 A、, B、, C、, D、, 8.求积公式至少具有0次代数精度的充要条件是:() A、B、 C、D、 9.数值求积公式中Simpson公式的代数精度为()。 A、0B、1 C、2D、3 10.在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 A、B、C、D、 1.简述误差的四个来源。(10分) 2.简述分析法对的根进行隔离的一般步骤。 1.已知方程有一个正根及一个负根。 a)估计出有根区间; b)分别讨论用迭代公式求这两个根时的收敛性; c)如果上述格式不迭代,请写出一个收敛的迭代格式。(不需要证明)

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

计算方法试题库讲解

计算方法 一、填空题 1.假定x ≤1,用泰勒多项式?+??+++=! !212n x x x e n x ,计算e x 的值,若要求截断误差不超过0.005,则n=_5___ 2. 解 方 程 03432 3=-+x -  x x 的牛顿迭代公式 )463/()343(121121311+--+--=------k k k k k k k x x x x x x x 3.一阶常微分方程初值问题 ?????= ='y x y y x f y 0 0)() ,(,其改进的欧拉方法格式为)],(),([21 1 1 y x y x y y i i i i i i f f h +++++= 4.解三对角线方程组的计算方法称为追赶法或回代法 5. 数值求解初值问题的四阶龙格——库塔公式的局部截断误差为o(h 5 ) 6.在ALGOL 中,简单算术表达式y x 3 + 的写法为x+y ↑3 7.循环语句分为离散型循环,步长型循环,当型循环. 8.函数)(x f 在[a,b]上的一次(线性)插值函数= )(x l )()(b f a b a x a f b a b x --+-- 9.在实际进行插值时插值时,将插值范围分为若干段,然后在每个分段上使用低阶插值————如线性插值和抛物插值,这就是所谓分段插值法 10、数值计算中,误差主要来源于模型误差、观测误差、截断误差和舍入误差。 11、电子计算机的结构大体上可分为输入设备 、 存储器、运算器、控制器、 输出设备 五个主要部分。 12、算式2 cos sin 2x x x +在ALGOL 中写为))2cos()(sin(2↑+↑x x x 。 13、ALGOL 算法语言的基本符号分为 字母 、 数字 、 逻辑值、 定义符四大

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。() 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。( )

5. 3.14和 3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算 ()()2334912111y x x x =+ -+ ---的乘除法次数尽量少,应将该 表达式改写为 ; 2. * x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则是 。 三、选择题 1.* x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在 时间t 内的实际距离,则s t - s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题

《计算方法》模拟试题3

模拟试卷三 一、 单项选择题(每小题3分,共15分) 1. 以下误差公式不正确的是( ) A .()1212x x x x ?-≈?-? B .()1212x x x x ?+≈?+? 2. 已知等距节点的插值型求积公式 ()()3 5 2 k k k f x dx A f x =≈∑?,那么3 k k A ==∑( ) A .1 B. 2 C. 3 D. 4 3. 辛卜生公式的余项为( ) A .()()3 2880 b a f η-''- B .()()3 12 b a f η-''- C .()()()5 4 2880 b a f η-- D .()( ) ()4 52880 b a f η-- 4.对矩阵4222222312A -?? ??=-????--?? 进行的三角分解,则u 22 =( ) 5. 用一般迭代法求方程()0f x =的根,将方程表示为同解方程()x x ?=的,则()0f x = 的根是( ) A . y x =与()y x ?=的交点 B . y x =与与x 轴的交点的横坐标的交点的横坐标 C . y x =与()y x ?=的交点的横坐标 D . ()y x ?=与x 轴的交点的横坐标 二、 填空题(每小题3分,共15分) 1. 2. 3. 龙贝格积分法是将区间[],a b 并进行适当组合而得出的积分近似值的求法。

4.乘幂法可求出实方阵A 的 特征值及其相应的特征向量. 5. 欧拉法的绝对稳定实区间为 。 三、 计算题(每小题12分,共60分) 1. 已知函数2 1 1y x = +的一组数据: 求分段线性插值函数,并计算()1.5f 的近似值. 2. 求矩阵101010202A -????=????-?? 的谱半径. 3. 已知方程组 123210113110121x x x ????????????=-?????????????????? (1) 证明高斯-塞德尔法收敛; (2) 写出高斯-塞德尔法迭代公式; (3) 取初始值() ()00,0,0T X =,求出()1X 。 4. 4n =时,用复化梯形与复化辛卜生公式分别计算积分 1 20 4 x dx x +? . 5. 用改进平方根法求解方程组1233351035916591730x x x ????????????=?????????????????? 四.证明题(每小题5分,共10分) 证明向量X 的范数满足不等式 (1)2 X X ∞ ∞≤≤ (2)111 X X X n ∞ ≤≤

数值计算方法复习题9

习题九 1. 取步长h = 0.1,分别用欧拉法与改进的欧拉法解下列初值问题 (1);(2) 准确解:(1);(2);欧拉法:,,, 改进的欧拉法:,,, 2. 用四阶标准龙格—库塔法解第1题中的初值问题,比较各法解的精度。,,, 3. 用欧拉法计算下列积分在点处的近似值。 0.5000,1.1420,2.5011,7.2450 4. 求下列差分格式局部截断误差的首项,并指出其阶数。 (1),2 (2),3; (3),4 (4),4 5.用Euler法解初值问题取步长h=0.1,计算到x=0.3(保留到小数点后4位).

解: 直接将Eulerr法应用于本题,得到

由于,直接代入计算,得到 6.用改进Euler法和梯形法解初值问题取步长 h=0.1,计算到x=0.5,并与准确解相比较. 解:用改进Euler法求解公式,得 计算结果见下表 用梯形法求解公式,得 解得 精确解为 7.证明中点公式(7.3.9)是二阶的,并求其局部截断误差主项. 证明根据局部截断误差定义,得 将右端Taylor展开,得

故方法是二阶的,且局部截断误差主项是上式右端含h3的项。 8.用四阶R-K方法求解初值问题取步长 h=0.2. 解直接用四阶R-K方法 其中 计算结果如表所示: 9.对于初值问题 解因f'(y)=-100,故由绝对稳定区间要求(1)用Euler法解时, (2)用梯形法解时,绝对稳定区间为,由因f 对y是线性的,故不用迭代,对h仍无限制。(3)用四阶R-K方法时, 10. (1) 用Euler法求解,步长h应取在什么范围内计算才稳定?(2) 若用梯形法求解,对步长h有无限制? (3) 若用四阶R-K方法求解,步长h如何选取?

计算方法复习题

软工13计算方法复习题 1、对下面的计算式做适当的等价变换,以避免两个相近的数相减时的精度损失。 (1))ln()1ln(x x -+,其中x 较大 (2)x x -+12,其中x 较大 222、已知函数方程0)ln(3)(=--=x x x f 有一正根,请完成以下几方面的工作: (1)分析并选定一个含有这一正根的区间[a 0 , b 0],以便于用二分法求解; (2)验证在[a 0 , b 0]上用二分法求根的可行性,并计算逐步缩小的区间[a 1 , b 1] 和[a 2 , b 2]; (3)若考虑用简单迭代法求此根,试构造一个在[a 0 , b 0]上能保证收敛的迭代式)(1k k x x ?=+。 解: (1)把方程的根看成y=3-x 和y=ln(x)的交点,经分析可取含根区间[1.0 , 3.0] (2)经验算可得f(1.0)*f(3.0)<0,另f ’(x)在[1.0 , 3.0]上不变号,f(x)单调,二分法可行 (3)迭代式)ln(31k k x x -=+从迭代收敛定理两方面作完整讨论,知迭代式能保证收敛 3、用Doolittle 分解法求解线性方程组????? ?????=?????????????????????564221231112321x x x (要求写明求解过程)。 解:(1)先对系数矩阵A 作LU 分解得A=LU=?? ?? ????????????????5/32/32/511 215/32/112/11 (2)由L Y=B 解出Y=(4,4,3/5)T ,由UX=Y 解出X=(1,1,1)T 4、关于某函数y =f (x ),已知如下表所示的一批数据 (1)由上表中的数据构建差商表,并求出各阶差商; (2)分别用二点、三点牛顿插值法计算f (0.75)的近似值; (3)若用bx ae y =来拟合这一批数据,试求出系数a 和b (提示:两边取自然对数得ln y =ln a +bx , 令u =ln y ,问题转化为求拟合直线u =ln a +bx ); (4)分别用复化梯形积分和复化辛普森积分计算 ? 20 )(dx x f 的近似值。

数值计算方法试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知/⑵=12 /⑶= 1.3 ,则用辛普生(辛卜生)公式计算求得 J 1 /(x )d“ ,用三点式求得广⑴? ___________ 。 答案:2.367, 0.25 2、/(1) = -1, /⑵=2, /(3) = 1,则过这三点的二次插值多项式中F 的系数为 ___________ ,拉格 朗日插值多项式为 ________________________ L 、(x) — — (x — 2)(x — 3) — 2(x — l)(x — 3) — — (x — l)(x — 2) 3、近似值疋=0.231关于真值% = 0.229有(2 )位有效数字; 4、设/(J 可微,求方程Y = /U )的牛顿迭代格式是( 答案畑 1 一厂 (x“) 5、 对/V ) = P + x + l 差商/'[0,1,2,3]=( 1 ),/[0丄2,3,4] =( 0 ); 6、 计算方法主要研究(裁断)误差和(舍入)误差; 7、 用二分法求非线性方程f (x )=0在区间@力)内的根时,二分〃次后的误差限为 b-a (耐 ); 8、已知人1)=2,人2)=3,人4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15 ); 11、 两点式高斯型求积公式匸心皿利"曲4[磴#)+磴为]),代数精度为 (5); … 3 4 6 y = 10 ---------- 1 -------- ------------ T 12、 为了使计算 兀一 1匕一1广 仗一1)的乘除法次数尽量地少,应将该表达 式改写为〉'=1°+(3+(4-6/””,『=口,为了减少舍入谋差,应将表达式^/555^-^/i^ 答案:-1, );

算法考试试题及答案

一、填空题(本题10分,每空1分) 1、算法的复杂性是的度量,是评价算法优劣的重要依据。 2、设n为正整数,利用大“O(·)”记号,将下列程序段的执行时间表示为n的函数,则下面 程序段的时间复杂度为。 i=1; k=0; while(i