形状记忆合金研究现状及应用

形状记忆合金研究现状及应用
形状记忆合金研究现状及应用

摘要:形状记忆效应自世纪年代报道以来逐步得到人们地重视并加以应用,被人们誉为“神奇地功能材料”,本文主要介绍了形状记忆合金合金地发展及其在许多领域地应用以及未来地一些发展趋势.

关键字:形状记忆合金各领域应用发展趋势

引言:形状记忆合金(,缩写为)作为一种新型功能性材料,其最显著地特性是形状记忆效应,年由在研究合金时首次发现,随后引起了人们地广泛重视,并由此开始了广泛研究和应用.随着人们逐渐发现形状记忆合金地一些重要特性,如超弹性效应、弹性模量温度变化特性和良好地阻尼性能等.正是这些显著地性能使得形状记忆合金被广泛地应用和研究,应用领域涉及电子、机械、运输、化学、医辽、能源、航天与土木工程等领域.资料个人收集整理,勿做商业用途

形状记忆效应地发现

年瑞典人奥兰德在金镉合金中首次观察到了形状记忆效应.最早关于形状记忆合金效应地报道是有及等人在年作出地.他们观察到合金中相变地可逆性.后来在合金中也发现了同样地现象.但当时并未引起人们地广泛注意.直到年及其合作者在等原子比地合金中观察到具有宏观形状变化地记忆效应,才引起了材料科学界与工业界地重视资料个人收集整理,勿做商业用途

记忆效应地分类

(一)单程记忆效应

形状记忆合金在较低温度下变形,较热后可恢复变形前地形状,这种只在加热过程中存在地形状记忆现象称为单程记忆效应.资料个人收集整理,勿做商业用途

(二)双程记忆效应

某些合金加热是恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应.

(三)全程记忆效应.

加热时恢复高温相形状,冷却时变为形状相同而取向相反地低温相形状,称为全程记忆效应.三、形状记忆合金在各领域地应用

(一)航空航天工业方面

形状记忆合金可用于制造探索宇宙奥秘地月球天线.由于天线体积庞大,运载上月球很不方便,人们在一定温度环境下用形状记忆合金制成抛物面天线,再在低温下把它压缩成一个直径厘米以下地小团,使它地体积缩小到只有原先地千分之一,放入登月小艇地舱内,在月面上经太阳光地照射加热使它恢复到原来地抛物面形状.这样就能用空间有限地火箭舱运送体积庞大地天线了. 资料个人收集整理,勿做商业用途

(二)生物医疗方面

合金地生物相容性很好,利用其形状记忆效应和超弹性地医学实例相当多.如血栓过滤器、脊柱矫形棒、牙齿矫形丝、脑动脉瘤夹、接骨板、髓内针、人工关节、心脏修补元件、人造肾脏用微型泵等.在现有地实用记忆合金中只有与生物体接触后会形成稳定性很强地钝化膜地合金才可以植入生物体内,其中仅合金满足使用条件是目前医学上主要使用地记忆合金在医学上合金应用较广地有口腔牙齿矫形丝外科中用地各种矫形棒、骨连接器、血管夹、凝血滤器等现在在血管扩张元件中也应用了形状记忆合金.资料个人收集整理,勿做商业用途

(三)其他方面

、眼镜框架

在眼镜框架地鼻梁和耳部装配合金可使人感到舒适并抗磨损,由于合金所具有地柔韧性已使它们广泛用于改变眼镜时尚界用超弹性合金丝做眼睛框架,即使镜片热膨胀,该形状记忆合金丝也能靠超弹性地恒定力夹牢镜片这些超弹性合金制造地眼镜框架地变形能力很大而普通地眼镜框则不行.资料个人收集整理,勿做商业用途

、桥梁结构振动控制

记忆合金可用于桥梁被动控制及主动控制、拉索振动控制.对于目前桥梁结构振动控制,合理、有效、安全与经济地抗震途径是采用桥梁减震、隔震新技术,通过设置隔震器和阻尼器,达到增加结构延性、降低结构振动反应和消耗地震能量,把桥梁地变形限制在弹性范围内.对于桥梁结构地隔震体系,不仅要提供附加水平柔度和能量耗散,同时必须能够支撑整个结构物.另外,被动控制方法地主要缺点是对地震地频域特性非常敏感,当地震超出减震、隔震装置地设计烈度时,减震与隔震效果就很差.而阻尼器作为一种高性能阻尼,与叠层橡胶支座共同工作,可形成桥梁结构地阻尼器一叠层橡胶支座智能隔震体系阻尼器能消耗地震能量,有效减小地震响应.由于高温下奥氏体地弹性模量是低温马氏体地~倍,因而可以利用该特性来改变粱、塔地局部或整体刚度,达到避开共振地目地,实现对桥塔或主梁地主动控制,降低结构地动荷载反应.同时应用地弹性模量温度变化特性和形状记忆效应,将常温下为马氏体状态地预变形,埋人梁或主塔中或者与其有限离散点连接.当结构振动时,由于高温下奥氏体状态地弹性模量是低温马氏体地~倍,通过加热改变结构局部或整体地刚度及其振动特性;同时,利用高温下产生地回复力改变结构内部地应力状态,改变结构地自振频率,从而避开共振,降低结构地反应.直接利用驱动器施加控制力于振动结构,消耗振动能量,达到降低结构反应地目地.由于阻尼器具有形状记忆效应和高效阻尼性能,故可用来控制拉索地振动,实现对拉索地智能控制.利用阻尼器作为减震副索也是值得探索地.资料个人收集整理,勿做商业用途

、汽车方面

汽车地把手、格栅片及气坝都可以使用记忆合金来改善功用.新开发地汽车把手使用施加电压后形状可发生变化地形状记忆合金,在不使用马达地情况下实现了旋转机构.其机制是:一般情况下,把手处于折叠状态,在上下车时,通过按下车门按钮、打开车门来施加电压,由此使把手打开,从而实现轻松地抓扶;格栅片使用形状记忆合金,可利用形状记忆合金地变形来实现旋转地:热机时打开格栅片,可缩短热机时间;在行驶时关闭格栅片,可减小进入发动机室地空气流量,从而减小空气阻力;气坝在高速行驶时可调整车辆下部及车轮周围产生地空气乱流,从而起到提高燃效地效果.不过,在低速行驶时,下侧突出地气坝挡板容易碰到路面突起及冰雪等物体,时常会受到损伤.因此此次在旋转机构中使用了形状记忆合金、嵌入了根据行驶速度等提高挡板地机构.资料个人收集整理,勿做商业用途

、管道结合和自动化控制

记忆合金已用于管道结合和自动化控制方面,用记忆合金制成套管可以代替焊接,方法是在低温时将管端内全扩大约%,装配时套接一起,一经加热,套管收缩恢复原形,形成紧密地接合.美国海军飞机地液压系统使用了万个这种接头.这种接口用于油压系统管道万余例,至今无一发生漏油或破损事故.船舰和海底油田管道损坏,用记忆合金配件修复起来,十分方便.在一些施工不便地部位,用记忆合金制成销钉,装入孔内加热,其尾端自动分开卷曲,形成单面装配件.资料个人收集整理,勿做商业用途

、自动启闭器

记忆合金还可用于路灯罩、通风窗、消防设施等地方.现在有地地方已经造出实用地智能路灯罩,能够实现白天灯罩叶片合拢,保护路灯不受外界地机械损伤,晚上需要照明时灯罩叶片打开,提供照明.记忆合金特别适合于热机械和恒温自动控制,已制成室温自动开闭臂,能在阳光照耀地白天打开通风窗,晚间室温下降时自动关闭.英国地旦特公司用记忆合金制成自动启闭器,安装在金库地窗户上,平常可以密不透风,一旦发生火灾,高温唤醒记忆,窗户便可自动开启,便于人们抢救用在自动消防龙头上,平时可以关闭水道,防止泄露,一旦失火,消防龙头可以自动开启,洒水灭火资料个人收集整理,勿做商业用途

、直升飞机地智能水平旋翼

由于直升飞机地高震动和高噪声使使用受到限制,其噪声和震动地来源主要是叶片涡流干扰,

以及叶片型线地微小偏差这就需要一种平衡叶片螺距地装置,使各叶片能精确地在同一平面旋转.目前已开发出一种叶片地轨迹控制器,它是用一个小地双管形状记忆合金驱动器控制叶片边缘轨迹上地小翼片地位置,使其震动降到最低.资料个人收集整理,勿做商业用途

发展趋势及展望

研究今后地发展方向和趋势可归纳为以下几方面:充分发掘、改进和完善现有地性能;研究开发新地具有形状记忆效应地合金材料; 薄膜地研究与应用; 智能复合材料地研究与开发;高温地开发.在形状记忆合金地实用化进程中,急需积累并分析关于材料特性、功能可靠性、生物相容性和细胞毒性等方面地基础数据资料.可以预言,随着对研究地进一步深化,传统地机电一体化系统完全有可能发展成为材料电子一体化系统.资料个人收集整理,勿做商业用途

结束语:世纪将成为材料电子学地时代.形状记忆材料地开发研究已有多年,从最初地合金已扩展到陶瓷和高分子材料,并且各种先进地生产工艺技术已被应用到形状记忆材料地研究、开发和应用中随着科学技术水平地不断提高, 形状记忆合金地机器人地动作,除了温度外,不受任何环境条件地影响,可望在反应堆、加速器、太空实验室等高技术领域大显身手.随着人们对其不断研究,形状记忆合金材料地应用将会更加广泛.资料个人收集整理,勿做商业用途

参考文献:

陈海泉,刘建涛,李忠献.应用形状记忆合金地桥梁结构振动控制研究及发展[].世界地质工程年月卷期资料个人收集整理,勿做商业用途

赵维彪.镍钛形状记忆合金地材料学特征与医学应用[].中国组织工程研究与临床康复年月第卷第期资料个人收集整理,勿做商业用途

王永善,贺志荣,王启,杨军. 形状记忆合金性能及应用研究进展[].热加工工艺年月第卷第期资料个人收集整理,勿做商业用途

赵连城,郑玉峰. 形状记忆与超弹性镍钛合金地发展和应用[].中国有色金属学报年月第卷资料个人收集整理,勿做商业用途

曾超,张乃文,任杰. 生物可降解高分子形状记忆合金地研究和进展[].科学通报年第卷第期资料个人收集整理,勿做商业用途

形状记忆合金在医学领域的应用

形状记忆合金在医学领域的应用 1.形状记忆合金的特性 1.1形状记忆合金的结构特性 形状记忆效应(Shape memory effec,t SME)是由于马氏体相变而产生的。具有热弹性(半热弹性)或应力诱发马氏体相变(Stress inducedMartensitic trans-formation, SIM)的形状记忆合金(Shape memory al-loys, SMAs),在马氏体状态下进行一定限度的塑性变形,则在随后的加热过程中,当温度超过马氏体逆相变温度时,材料就能恢复到变形前的体积和形状。 1.2形状记忆合金的分类 形状记忆合金主要分为Ti-Ni基、Cu基及Fe基形状记忆合金。前两种合金主要为热弹性形状记忆合金,Fe基形状记忆合金为半热弹性形状记忆合金,其中用于医学领域的 TiNi 形状记忆合金,除了利用其形状记忆效应或超弹性外,还应满足化学和生物学等方面的要求,即良好的生物相容性。TiNi 可与生物体形成稳定的钝化膜。 形状记忆效应主要分为:单程记忆效应,双程记忆效应和全程记忆效应。 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 2.形状记忆合金的发展 首次被发现并公开报道某些合金中具有形状记忆效应这一现象的发现,可以追溯至1938年,美国哈佛大学的A.B.Greningerh和Mooradian在Cu-Zn合金中发现了马氏体的热弹性转变,即在加热与冷却过程中,马氏体会随之收缩与长大。1918年前苏联学者Kerdjumov曾预测到有一部分具有马氏体相变的合金会出现热弹性马氏体相变。1951年张禄经和T.A.Read报道了原子比为1∶1的CsCl 型AuCd合金在热循环中会反复出现可逆相变。数年后.T.A.Read又和M.W.Burkard在InTi合金中发现了同样纳可逆相变。一直到20世纪60年代初,这种观察到的形状记忆效应只看作是个别材料的特殊现象。甚至在1958年布鲁塞尔国际博览会上展出过用AuCd合金制作的重物升降机,都未引起足够的注意。 1963年,美国海军武器实验室W.J.Buchler等人在等原子比NiTi合金中发现了形状记忆效应后,才引起人们的重视,从此形状记忆合金进入了研究和应用的新阶段。到1975年左右,全世界相继开发出具有形状记忆效应的合金达20

形状记忆合金的应用现状与发展趋势

形状记忆合金的应用现状与发展趋势 摘要:综述了形状记忆合金的发展概况,简要介绍了形状记忆合金在不同领域的应用现状,分析了当前形状记忆合金研究中存在的问题,指出了今后的发展前景与研究方向。 关键词:形状记忆合金、形状记忆合金效应、应用 一、引言 形状记忆合金(Shape Memory Alloy ,SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect ,SME) 。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 二、形状记忆合金的发展史与现状 在金属中发现现状记忆效应最早追溯到20世纪30年代。1938年。当时美国的 Greningerh和Mooradian在Cu-Zn合金小发现了马氏体的热弹件转变。随后,前苏联的Kurdiumov对这种行为进行了研究。1951年美国的Chang相Read 在Au47·5Cd(%原子)合金中用光学显微镜观察到马氏体界面随温度的变化发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart 在In-Ti 合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直至1963年,美国海军武器实验室的Buehler等人发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断[1]。

形状记忆合金的制备方法作用及发展前景

形状记忆合金的制备方法,作用及发展前景摘要:本论文主要论述形状记忆合金的相关内容,扼要地叙述了形状记忆合金的制备方法,作用,介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金制备方法应用发展前景 引言 形状记忆合金(Shape Memory Alloys,SMA)是一种在加热升温后能完全消除其在较低温度下发生的形变,恢复其形变前原始形状的合金材料。除上述形状记忆效应外,这种合金的。另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。研究表明,很多合金材料都具有SME,但只有在形状变化过程中产生较大回复应变和较大形状恢复力的才具有利用价值。到目前为止,应用最多的是Ni2Ti合金和铜基合金(CuZnAl 和CuAlNi)。 形状记忆合金作为一种特殊的新型功能材料,集感知与驱动于一体的智能材料,因其功能独特,可制作小巧玲珑,高度自动化,性能可靠的元器件而备受瞩目,并获得广泛应用。 正文 一.形状记忆合金的制备方法

形状记忆合金及其制备方法,该合金含有主要合金元素Ti、Zr、Nb及添加元素包括Mo、V、Cr、Sn,并加入元素Al;各组分重量百分比分别为:Ti:46-60,Zr:15-25,Nb:15-25;添加元素选取Mo、V、Cr、Sn其中一种或两种,其重量百分比<2.0;Al:0.5-2.5。本发明选用的主要合金元素均为对人体无毒性反应且生体适应性良好的物质;经溶解合金化后,该合金具有出色的形状记忆性能及超弹性特点,并可以进行超过50%乃至99%的冷加工变形性。经过固溶、时效处理的合金可在更广的范围内具有较高的形状记忆回复功能、较高的冷加工塑性及对人体无毒性等优良性能。? 二.形状记忆合金的应用 迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类: (1)自由回复 SMA在马氏体相对产生塑性变形,温度升高自由回复到记忆的形状。自由回复的典型例子是人造卫星的天线和血栓过滤器。美国航空航天局将Ti2Ni合金板或棒卷成竹笋状或旋涡状发条,收缩后安装在卫星内。发射卫星并进入轨道后,利用加热器或者太阳能加热天线,使之向宇宙空间撑开。血栓过滤器把Ni2Ti合金记忆成网状,低温下拉直,通过导管插入静腔,经体温加热后,形状变成网状,可以阻止凝血块流动。有人设想,利用形状记忆合金制作宇宙空间站的可展机构,即以小体积发射,于空间展开成所需的形状,这是很有吸引力的机构。

形状记忆合金论文

形状记忆合金 摘要:扼要地叙述了形状记忆合金及其机理, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 引言:有一种特殊的金属材料,经适当的热处理后即具有回复形状的能力,这种材料被称为形状记忆合金( Shape Memory Alloy ,简称为SMA) ,这种能力亦称为形状记忆效应(Shape Memory Effect , 简称为SME) 。通常,SMA 低温时因外加应力产生塑性变形,温度升高后,克服塑性变形回复到所记忆的形状。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 形状记忆合金(Shape Memory Alloys, SMA)是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。除上述形状记忆效应外,这种合金的另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文 pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。 一、形状记忆合金的发展史 最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,

关于形状记忆合金的若干论述

关于形状记忆合金的若干论述 摘要:19世纪70年代,世界材料科学中出现了一种具有“记忆”形状功能的合金。这种记忆合金具有很广阔的应用前景,如今记忆合金已然在交通、医疗、自动化控制等方面有了重要的应用。本文介绍了它的相关概念、微观机理、分类及其在材料学中的地位。 关键字:形状记忆合金;形状记忆效应;功能材料;机理;应用 引言:形状记忆合金作为一种新型功能性材料为人们所认识,并成为一个独立的学科分支,可以认为是始于1963年。当时美国的海军武器实验室的 W.J.Buchler博土研究小组,在一次偶然的情况下发现,TiNi合金工件因为温度不同,敲击时发出的声音明显不同,这说明该合金的声阻尼性能与温度相关。通过进一步研究,将这种材料制成的细丝的一端弯曲,并靠近点烟火柴火焰,发现弯曲的细丝伸直了,近等原子比TiNi合金具有良好的形状记忆效应,并且报道了通过x射线衍射等实验的研究结果.以后TiNi合金作为商品进入市场。 记忆合金是一种颇为特别的金属条,它极易被弯曲,我们把它放进盛着热水的玻璃缸内,金属条向前冲去;将它放入冷水里,金属条则恢复了原状。在盛着凉水的玻璃缸里,拉长一个弹簧,把弹簧放入热水中时,弹簧又自动的收拢了。凉水中弹簧恢复了它的原状,而在热水中,则会收缩,弹簧可以无限次数的被拉伸和收缩,收缩再拉开。 这些都由一种有记忆力的智能金属做成的,它的微观结构有两种相对稳定的状态,在高温下这种合金可以被变成任何你想要的形状,在较低的温度下合金可以被拉伸,但若对它重新加热,它会记起它原来的形状,而变回去。这种材料就叫做记忆金属。它主要是镍钛合金材料。 一、相关概念:形状记忆效应 一般金属材料收到外力作用后,首先发生弹性变形,达到屈服点,金属就产生塑性变形,应力消除后就产生了永久变形。有些金属在高温下定形后冷却到低温并施加变形,从而形成残余形变。当材料加热时,材料的残余形变消失,并回复到高温下所固有的形状。再进行加热或冷却时,形状保持不变,这就是所谓的形状记忆效应,它就像合金记住了高温状态的形状一样。具有形状记忆效应的金属通常是两种以上金属的合金,因此称为形状记忆合金 [1] 形状记忆效应是在马氏体相变中发现的。通 常把马氏体相变中的高温相叫做母相,或奥氏体 相(P),是一种体心立方晶体结构的CsCl相(又 称B2)。低温相叫做马氏体相(M),是一种低对 称性的单斜晶体结构。从母相到马氏体相的相变 叫做马氏体正相变,或马氏体相变。从马氏体相 到母相的相变叫做马氏体逆相变 [2][3]。 这类相变具有热滞效应。四个相变特征温度分别 为马氏体转变开始温度Ms、终了温度Mf、母相转 变(即逆转变)开始温度As和终了温度Af。热滞 回线间的热滞大小一般为20K~40K[3]。 二、微观机理

形状记忆合金文献综述

形状记忆合金性能及其应用 摘要:形状记忆合金具有形状记忆效应、超弹性效应、高阻尼特性、电阻突变效应以 及弹性模量随温度变化等一般金属不具备的力学特性,使其在仪器仪表、自动控制、机器人、机械制造、汽车、航天航空、生物医学等工程领域都能发挥重要的作用,对其本 构性能和在工程应用中的性能的研究十分必要。形状记忆合金作为一种特殊的新型功能 材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 关键字:形状记忆合金形状记忆合金效应分类应用 1形状记忆合金简介 1.1 形状记忆材料是指具有形状记忆效应(shape memory effect,简称SME)的材料。形 状记忆效应是指将材料在一定条件下进行一定限度以内的变形后,再对材料施加适当的 外界条件,材料的变形随之消失而回复到变形前的形状的现象。通常称有SME的金属材料为形状记忆合金(shape memory alloys,简称SMA)。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 1.2 至今为止发现的记忆合金体系: Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等。 1.3 形状记忆合金的历史只有70多年,开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料",其实用价值相当广泛,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。 2形状记忆合金效应分类 2.1 单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过

高分子形状记忆合金的发展及趋势

高分子形状记忆合金的发展及趋势 摘要:本论文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史和分类, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 1.形状记忆分子材料的特性 形状记忆合金是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 1.1单程记忆效应: 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 1.2双程记忆效应: 某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 1.3全程记忆效应: 加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 2.形状记忆效应的应用 迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类: 2.1.自由回复 SMA 在马氏体相时产生塑性形变,温度升高自由回复到记忆的形状。自由回复的典型例子是人造卫星的天线和血栓过滤器。美国航空航天局(NASA) 将Ti2Ni

磁性形状记忆合金

二、文献综述 1.磁性形状记忆合金 磁性形状记忆合金是既受温度控制的热弹性记忆效应,同时也具有受磁场控制的磁性形状记忆效应。磁性形状记忆合金具有很多优良的性能,如:高响应频率、大输出应力,磁致伸缩应变大等1,所以是一种理想的驱动和传感材料。 3. Heusler合金及其结构 Heusler合金是在研究MSMA中研究最多的一种合金,也是现在备受关注的一类功能材料,具有独特的磁性、半金属性、磁性形状记忆效应,有着广泛的应用前景。Heusler合金是1903年,德国人F.Heusler第一次报道两种金属间化合物的磁性,这两种化合物是Cu2MnAl 和Cu2MnSn。随后,英国人P. Webster 发表了一篇关于高有序度合金(Heusler 合金)的文章10 Heusler合金是一种金属间化合物,通常具有L21性结构,化学分子式为X2YZ,Z则是周期表右边B类IV族,及其两边的III 族和V族的元素。X、Y 可以是元素周期表中钪、钛、矾、铬、锰、铁、钴、镍、铜等3d 元素以及排列在它们所在列中下面的扩展的过渡族元素,共有约30个。 Heusler 合金可以看成由四个面心立方结构的亚晶格沿对角线四分之一相互交叉而成。X 和Y原子占据(A,C)以及B位,Z原子占据D位。其中ABCD的坐标分别为A (0, 0, 0), B ( 1/4,1/41/4 , ), C ( 1/2,1/2 1/2, ) 和D (3/4 3/4,3/4 , ) 图1.Heusler 合金晶体结构示意图 1.2 Heusler合金的结构和开发潜力 Heusler型合金是一种高度有序的金属间化合物,具有立方L21结构,空间

形状记忆合金材料的应用

形状记忆合金材料的性质与应用综述 【摘要】形状记忆合金是一种新型功能材料,在各个领域有着广泛的应用。本文简要介绍了形状记忆合金的特性、应用以及发展前景。 【关键词】形状记忆合金应用发展现状 【引言】形状记忆合金(Shape Memory Alloys, SMA),是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。最早关于形状记忆效应的报道是由Chang及Read等人在1952年做出的。他们观察到Au-Cd合金中相变的可逆性。[3]后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的 Ti-Ni合金中观察到具有宏观形状变化的记忆效应,才引起了科学界与工业界的重视。这种新型功能材料目前已广泛用于电子仪器、汽车工业、医疗器械、空间技术和能源开发等领域。 一、形状记忆合金的分类 1、单程记忆效应:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 2、双程记忆效应:某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 3、全程记忆效应:加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 二、形状记忆合金的特性 1、形状记忆效应:合金在某一温度下受外力而变形,当外力去除后,仍保持其变形后的形状,但当温度上升到某一温度,材料会自动回复到变形前原有的形状,似乎对以前的形状保持记忆,这种效应称为形状记忆效应。 2、超弹性:在高于A f点、低于M d点的温度下施加外应力时产生应力诱发马氏体相变,卸载就产生逆相变,应变完全消失,回到母相状态,表观上呈现非线性拟弹性应变,这种现象称为超弹性。 3、高阻尼特性:形状记忆合金在低于Ms点的温度下进行热弹性马氏体相变,生成大量马氏体变体(结构相同、取向不同),变体间界面能和马氏体内部孪晶界面能都很低,易于迁移,能有效地衰减振动、冲击等外来的机械能,因此阻尼特性特别好。 4、耐磨性:在形状记忆合金中,Ti-Ni合金在高温(CsCl型体心立方结构)状态下同时具有很好的耐腐蚀性和耐磨性。可用作在化工介质中接触滑动部位的机械密封材料,原子能反应堆中用做冷却水泵机械密封件。 5、逆形状记忆特性:将Cu-Zn-Al记忆合金在Ms点上下的很小温度范围内进行大应变量变形,然后加热到高于Af点的温度时形状不完全恢复,但再加热到高于200oC时却逆向地恢复到变形后的形状,称为逆形状记忆特性。 三、形状记忆合金在各领域的应用 1、医疗方面: Ni-Ti合金是医用生物材料的佼佼者,在临床医学和医疗器械等方面广泛应用。 [1]如介入疗法,将各类人体腔内支架、经过预压缩变形后,能够经过很小的腔隙安放到人体血管、消化道、呼吸道、以及尿道等各种狭窄部位,支架扩展后,在人体腔内支撑起狭小的腔道。具有疗效可靠、使用方便、可大大缩短治疗时间和减

形状记忆合金的应用现状与发展趋势

11 Santhanam A T,G odse R V,G rab G P et al.U.S.Patent. 1993(5):250,367 12 Nemeth B J,Santhanam A T,G rab G P.Proceed.10th Plansee Seminar,Plansee A.G.,Reutte/T yrol,1981:613~627 13 Santhanam A T,G rab G P,R olka G A et al.Proceed.con f. on High Productivity Machining-Materials and Processes. New Orleans,La,American S ociety for Metals,1985:113~121 14 Nemeth B J,G rab G P.U.S.Reissue Patent.1993,N o.34, 180 15 D oi H.Proceed.2nd Int.C on f.on the Science of Hard Mate2 rials,Adam Hilger Ltd.Ser.1986(75):489~523 16 Claussen N.Mater.Sci.Eng.1985(71):23~38 17 Wei G C,Becher P F.Am.Ceram.S oc.Bull.1985,64 (2):298~30418 Faber K T,Evans A G.Acta Metall.1983,31(4):565~576 19 N orth B,Baker R D.Int.J.of Refractory Hard Metals. 1984,3(1):46~51 20 Beeghly C W,Shuster A F.Proceed.S oc.of Carbide and T ool Engineers C on f.on Advances in T ool Materials for use in High S peed Machining,Scottsdale,AZ,AS M International, 1987,91~99 21 K ennametal Lathe T ooling Catalog4010.2004 22 Oles E J,Reiner K L,G ates et al.U.S.Patent.2003.6, 599,062 23 Inspektor A,Oles E J,Bauer C E.Int.J.of Refractory Met2 als and Hard Materials.1997(15):49~56 第一作者:M.S.G reen field,博士,美国肯纳金属公司材料总监 (胡红兵译) 收稿日期:2005年4月形状记忆合金的应用现状与发展趋势 肖恩忠 潍坊学院 摘 要:综述了形状记忆合金的发展概况,简要介绍了形状记忆合金在不同领域的应用现状,分析了当前形状记忆合金研究中存在的问题,指出了今后的发展前景与研究方向。 关键词:形状记忆合金, 形状记忆效应, 机理, 应用 Application Actuality and Development T rend of Shape Memory Alloy X iao Enzhong Abstract:The general development of the shape mem ory alloy(S M A)is summarized,and its applications in different fields are briefly introduced.Als o,problems in the study of S M A at present are analyzed.Finally,The development foreground and re2 search directions of S M A in the future are pointed out. K eyw ords:shape mem ory alloy, shape mem ory effect, mechanism, application 1 引言 形状记忆合金(Shape Mem ory Alloy,S MA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Mem ory E ffect,S ME)。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 2 形状记忆合金的发展历史与现状 在金属中发现形状记忆效应最早可追溯到20世纪30年代。1938年,美国的G reningerh和M oora2 dian在Cu2Zn合金中发现了马氏体的热弹性转变。随后,前苏联的K urdium ov对这种现象进行了研究。1951年,Chang和Read在Au24715at%Cd合金中用光学显微镜观察到马氏体界面随温度的变化而发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart在In2T i合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直到1963年,美国海军武器实验室的Buehler等人发现等原子比的T i2Ni合金具有优良的形状记忆功能,

形状记忆合金在医学上的应用

论文名: 形状忆合金在医学上的应用 学院:材料与化工学院 专业:金属材料工程 班级: 学号: 姓名:

内容摘要形状记忆合金的研究是近几年工程技术界颇为关注的一项 高新尖技术,其在航空航天、机械电子、工程建筑、医学医疗等相关领域已取得了一些应用性研究成果.本文介绍了形状记忆合金特点、功能、以及在现代医学中的研究与应用的现状与发展趋势. 关键词形状记忆合金医学领域 1.前言 在人类文明发展史上,材料是科学技术进步的重要支柱,也是社会进步的物质基础。在科技日新月异的今天,新材料更是高科技发展的先导。形状记忆合金正是新科技领域的一朵奇葩,正在灿烂的绽放。 1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。记忆合金的开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料"。 1963年,美国海军军械研究所的比勒在研究工作中发现,在高于室温较多的某温度范围内,把一种镍-钛合金丝烧成弹簧,然后在冷水中把它拉直或铸成正方形、三角形等形状,再放在40 ℃以上的热水中,该合金丝就恢复成原来的弹簧形状。后来陆续发现,某些其他合金也有类似的功能。这一类合金被称为形状记忆合金。每种以一定元素按一定重量比组成的形状记忆合金都有一个转变温度;在这一温度以上将该合金加工成一定的形状,然后将其冷却到转变温度以下,人为地改变其形状后再加热到转变温度以上,该合金便会自动地恢复到原先在转变温度以上加工成的形状。 1969年,镍--钛合金的“形状记忆效应”首次在工业上应用。人们采用了一种与众不同的管道接头装置。为了将两根需要对接的金属管连接,选用转变温度低于使用温度的某种形状记忆合金,在高于其转变温度的条件下,做成内径比待对接管子外径略微小一点的短管(作接头用),然后在低于其转变温度下将其内径稍加扩到该接头的转变温度时,接头就自动收缩而扣紧被接管道,形成牢固紧密的连接。美国在某种喷气式战斗机的油压系统中便使用了一种镍-钦合金接头,从未发生过漏油、脱落或破损事故。 1969年7月20日,美国宇航员乘坐“阿波罗”11号登月舱在月球上首次留下了人类的脚印,并通过一个直径数米的半球形天线传输月球和地球之间的信息。这个庞然大物般的天线是怎么被带到月球上的呢?就是用一种形状记忆合金材料,先在其转变温度以上按预定要求做好,然后降低温度把它压成一团,装进登月舱带上天去。放置于月球后,在阳光照射下,达到该合金的转变温度,天线“记”起了自己的本来面貌,变成一个巨大的半球。科学家在镍-钛合金中添加其他元素,进一步研究开发了钦镍铜、钛镍铁、钛镍铬等新的镍钛系形状记忆合金;除此以外还有其他种类的形状记忆合金,如:铜镍系合金、铜铝系合金、铜锌系合金、铁系合金(Fe-Mn-Si, Fe-Pd)等。 而今形状记忆合金以应用到我们生活的各个领域,正在改变着我们的生活。

形状记忆合金研究现状及应用

形状记忆合金发展及应用 摘要:形状记忆效应自20世纪30年代报道以来逐步得到人们的重视并加以应用,被人们誉为“神奇的功能材料”,本文主要介绍了形状记忆合金合金的发展及其在许多领域的应用以及未来的一些发展趋势。 关键字:形状记忆合金各领域应用发展趋势 引言:形状记忆合金(shape memory alloy,缩写为SMA)作为一种新型功能性材料,其最显著的特性是形状记忆效应,1932年由Olander在研究AuCd合金时首次发现,随后引起了人们的广泛重视,并由此开始了广泛研究和应用。随着人们逐渐发现形状记忆合金的一些重要特性,如超弹性效应、弹性模量温度变化特性和良好的阻尼性能等。正是这些显著的性能使得形状记忆合金被广泛地应用和研究,应用领域涉及电子、机械、运输、化学、医辽、能源、航天与土木工程等领域。 一、形状记忆效应的发现 1932年瑞典人奥兰德在金镉合金中首次观察到了形状记忆效应。最早关于形状记忆合金效应的报道是有Chang及Read等人在1952年作出的。他们观察到Au-Cd 合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象。但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的Ti-Ni合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视 二、记忆效应的分类 (一)单程记忆效应 形状记忆合金在较低温度下变形,较热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 (二)双程记忆效应 某些合金加热是恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。

(三)全程记忆效应。 加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 三、形状记忆合金在各领域的应用 (一)航空航天工业方面 形状记忆合金可用于制造探索宇宙奥秘的月球天线。由于天线体积庞大,运载上月球很不方便,人们在一定温度环境下用形状记忆合金制成抛物面天线,再在低温下把它压缩成一个直径5厘米以下的小团,使它的体积缩小到只有原先的千分之一,放入登月小艇的舱内,在月面上经太阳光的照射加热使它恢复到原来的抛物面形状。这样就能用空间有限的火箭舱运送体积庞大的天线了。 (二)生物医疗方面 TiNi合金的生物相容性很好,利用其形状记忆效应和超弹性的医学实例相当多。如血栓过滤器、脊柱矫形棒、牙齿矫形丝、脑动脉瘤夹、接骨板、髓内针、人工关节、心脏修补元件、人造肾脏用微型泵等。在现有的实用记忆合金中只有与生物体接触后会形成稳定性很强的钝化膜的合金才可以植入生物体内,其中仅合金满足使用条件是目前医学上主要使用的记忆合金在医学上合金应用较广的有口腔牙齿矫形丝外科中用的各种矫形棒、骨连接器、血管夹、凝血滤器等现在在血管扩张元件中也应用了形状记忆合金。 (三)其他方面 1、眼镜框架 在眼镜框架的鼻梁和耳部装配合金可使人感到舒适并抗磨损,由于合金所具有的柔韧性已使它们广泛用于改变眼镜时尚界用超弹性合金丝做眼睛框架,即使镜片热膨胀,该形状记忆合金丝也能靠超弹性的恒定力夹牢镜片这些超弹性合金制造的眼镜框架的变形能力很大而普通的眼镜框则不行。 2、桥梁结构振动控制 记忆合金可用于桥梁被动控制及主动控制、拉索振动控制。对于目前桥梁结构振动控制,合理、有效、安全与经济的抗震途径是采用桥梁减震、隔震新技术,通过设置隔震器和阻尼器,达到增加结构延性、降低结构振动反应和消耗地震能量,把桥梁的变形限制在弹性范围内。对于桥梁结构的隔震体系,不仅要提供附

形状记忆合金论述3000字论文

形状记忆合金论述 摘要:形状记忆合金,是一种在加热升温后能完全消除其在较低的温度下发生的形变,恢复其形变原始形狀的合金材料。这种合金在高温(奥氏体状态)下发生的“伪弹性”行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏相变体。 关键词:形状记忆合金、马氏相变体、记忆效应 引言:形状记忆合金材料兼有传感和驱动的双重功能,是一种智能结构中技术成熟性很高的功能材料,可以实现机械结构的微型化和智能化。形状记忆效应(SME)即某种材料在高温定形后,冷却到低温(或室温),并施加变形,使它存在残余变形[1,2]。当温加热超过材料的相变点,残余变形即可消失,恢复到高温时的固有形状,如同记住了高温下的状态。SMA及其驱动控制系统具有许多的优点,如高功率重量比,适于微型化;集传感、控制、换能、致动于一身,结构简单,易于控制;对环境适应能力强,不受温度以外的其他因素影响等,有着传统驱动器不可比拟的性能优点。形状记忆合金由于具有许多优异的性能,因而广泛应用于航空航天、机械电子、生物医疗、桥梁建筑、汽车工业及日常生活等多个领域。 一、发展史 1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。记忆合金的开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料"。 最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。在理论研究不断深入的同时,形状记忆合金的应用研究也取得了长足进步,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。 二、功能机理 形状记忆合金(Shape Memory Alloys,简称SMA)是一种能够记忆原有形状的智能材料。当合金在低于相变态温度下,受到一有限度的塑性变形后,可由加热的方式使其恢复到变形前的原始形状,这种特殊的现象称为形状记忆效应(Shape Memory Effect,简称SME)。而当合金在高于相变态温度下,施以一应力使其受到有限度的塑性变形(非线性弹性变形)后,可利用直接释放应力的方式使其恢复到变形前的原始形状,此种特殊的现象又称为拟弹性(Pseudo Elasticity,简称PE)或超弹性(Super Elasticity)。这两种形状记忆合金所拥有的独特性质在普通金属或合金材料上是无法发现的。

形状记忆合金及应用

形状记忆合金及应用 XXX (化学化工学院材料化学材料化学1001) 摘要形状记忆效应自20世纪30年代报道以来逐步得到人们的重视并加以应用,本文扼要地叙述了形状记忆合金及其机理以及在一些领域的应用。 关键词形状记忆合金原理应用 Abstract The shape memory effect since the 1930s reported gradually get people's attention and application, this paper briefly describes the application of shape memory alloy and its mechanism, and in some areas. Key words Shape memory alloys Principle Application 1.引言 形状记忆合金( Shape Memory Alloy, 简称SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后, 通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金是一类具有形状记忆性能的合金, 其主要特征是具有形状记忆效应(SME)[1]。研究表明, 很多合金材料都具有SME, 但只有在形状变化过程中产生较大回复应变和较大形状回复力的, 才具有利用价值。到目前为止, 应用得最多的是Ni-Ti合金和铜基合金( CuZnAl 和CuAlNi) 。 2.SMA 2.1 发现历史 形状记忆效应是张禄经和Read在1951年在AuCd合金中最早观察到的[2], 直到1963年Buehler的课题组在Ni-Ti合金中发现了类似的形状记忆效应之后[3],才真正引起很多科学家的重视。 2.2 晶体学特性 SME 的本质是合金中的热弹性马氏体相变[4]。马氏体相变发生的能量条件是马氏体的化学自由能必须比母相的低。也就是说,只有当母相过冷到马氏体相与母相化学自由能平衡温度T0以下适当温度Ms 时,马氏体将长大,直到热化学自由能和弹性非化学自由能两者之差最小时,马氏体的生长过程才告结束。同样,只有当马氏体过热到T0以上温度As 时, 在相变驱动力作用下, 马氏体缩小的逆转变过程才能开始。这种马氏体的长大或缩小受热效应和弹性效应两因素平衡条件的制约的相变称为“热弹性马氏体相变”。相变并不是发生在某一温度点, 而是一个温度范围, 不同的合金系具有不同的温度范围。 图1 相变温度曲线 图( 1) 显示了相变特性及相变循环中的关键点, 其中Ms, Mf为马氏体相变的开始和结束时的温度, As,Af为逆相变的起始和结束温度,人们通常用相变温度Af表征合金的特性。多数的合金, 相变发生在较窄的温度范围内, 而且伴随着滞后现象,以致加热与冷却的转变过

关于形状记忆合金在变体机翼方面的应用综述

关于形状记忆合金在变体机翼方面的应用综述 发表时间:2019-05-13T15:59:02.707Z 来源:《知识-力量》2019年8月26期作者:纪宇帆[导读] 形状记忆合金是目前很常用的一种智能材料,能够代替传统材料应用在广泛的工业领域。本文将通过综合比较分析不同文献及其理论依据,阐述形状记忆合金在航空航天领域的应用情况 (北京航空航天大学能源与动力工程学院,北京 100191) 摘要:形状记忆合金是目前很常用的一种智能材料,能够代替传统材料应用在广泛的工业领域。本文将通过综合比较分析不同文献及其理论依据,阐述形状记忆合金在航空航天领域的应用情况,并对目前存在的问题和未来发展的方向一一论述。在变体机翼方面,文章从中文文献和外文文献中分别选取了几篇有代表性的进行阐述,分析得到了国内外不同研究方向的侧重点以及未来的发展趋势。同时文章对形状记忆合金在航空航天领域的应用情况做了小结,提出了一些个人观点与评价,也指出了目前存在的问题与未来发展的方向。关键词:形状记忆合金;航空航天;国内外对比 引言 传统材料通常不能实时感知环境以及自身状态的变化,更不能做到自适应和自修复[1]。因此,在诸多工业领域,尤其是航空航天这样复杂多变的领域,需要越来越多智能材料才可以实现高精度控制。形状记忆合金就是其中一种常见的智能材料。它利用形状记忆效应可以实现不同于普通合金的优异性能,尤其是在高温环境下,抗疲劳性能和延展性能更加凸显。 1 问题提出 早在20世纪50-70年代,就有了变后掠翼技术。这使得飞机兼具低速、跨声速、超声速飞行性能,但也存在结构复杂、操纵困难等问题,变形形式也很单一[2]。随着科学技术的进步,智能变体机翼技术逐渐兴起。在美国的主导下,一系列智能变形技术验证试验得以展开:1979年,NASA与波音公司签订了任务自适应机翼技术合同;1985年,NASA与罗克韦尔公司合作开展主动柔性机翼计划;1996年,上述计划又扩展为主动气动弹性机翼计划。U.Icardi等人也提出了一种基于SMA的变弯度机翼方案[3]:依靠两个同轴的SMA驱动管,通过离合器与定位压电电机连接到翼肋的桁架上,内外管分别控制向上与向下的运动;工作时可以给其中一个加热,另一个隔离使其不参与工作,从而实现特定方向的变形[4]。总之,SMA在变体机翼上的应用很广泛,是值得深入研究的问题之一。 2 中文文献综述 就近几年的中文文献来说,有关SMA在变体机翼上的应用的文章有53篇,其中期刊论文16篇,博士论文5篇,其余为硕士论文。下面将选择一些进行深入分析。刘逸峰、徐志伟两人利用驱动器的两个驱动杆上下位移实现蒙皮的变形,通过控制流经SMA的电流大小和通电时间对驱动器进行测控,还进行了驱动器加载控制实验和机翼风洞吹风测试实验[5];雷鹏轩等人提出一种悬臂梁式柔性偏转结构,选择超临界翼型进行实验,并通过数学计算和折线图比较的办法给出了来流条件对SMA结构变形的影响[6];周本昊通过差动驱动方式设计驱动机构,对机翼的各个部位进行了应力分析,又设计了测控系统,利用离散化PID控制算法对被控量进行控制[7];刘俊兵等人根据实验分析出SMA卷簧的变形角与扭矩的关系,并对该驱动器承载能力进行了计算[8];董二宝将智能变形机翼结构按动力学特性分为非主动变形过程和主动变形过程,并据此求出了各参数的最优解,最后利用SMA的热-力耦合特性给出了仿真结果[9];聂瑞等人为了减小自适应机翼的波阻,对激波控制鼓包的特性进行了优化研究,在温度改变时,SMA能自动改变自身构型[10]。 3 外文文献综述 就近几年的外文文献来说,有关SMA在变体机翼上的应用的文章有81篇。不同作者对SMA的研究有不同的侧重点。Cees Bil等人主要研究的是三种不同的控制方法对机翼变形的影响,还在其中考虑了气动载荷下驱动器所需的功率与环境温度的影响[11];S.Barbarino等人将民用运输机机翼后缘处的翼型弯度通过无铰链的光滑变形襟翼控制,利用数值方法和实验研究对驱动性能进行了估计[12];J Colorado等人从仿生学的角度分析SMA在变体机翼中的驱动作用,并且利用SMA的传感功能实现了令人满意的跟踪误差,但在疲劳问题上还存在一定局限,SMA承受较大应力时寿命较短[13];Thomas Georges等人以设计具有柔性外拱的变形机翼为重点,通过应力应变关系计算SMA元件的横截面和长度,进而确定其他部件的尺寸,完成设计[14];Woo-Ram Kang等人为防止气动损失,利用SMA控制机翼形状,并用多种数值模拟软件将其与未变形机翼作比较,对尾翼偏转角与电流、压差之间的关系作了进一步分析[15];Salvatore Ameduri等人基于SMA技术对变形结构进行优化,由四个弹性元件构成可变形肋系统,利用有限元模型呈现其主要特征[16]。 结论 综合上述文献,可以看出SMA在变体机翼中应用广泛。不同学者从不同侧面研究SMA可以得到不同结果。国内研究更多是通过解析的办法分析驱动结构的可行性,计算和优化更准确,但有时会受到其他无法量化的因素影响,导致其结果偏离实际;国外研究则更加侧重数值模拟软件的应用,对驱动性能的分析综合考虑多种环境因素,在实验过程中也更加注重比较,并且对SMA的疲劳寿命有所估计。后续的SMA应用技术应该朝向更高的疲劳强度、更先进的数值模拟技术发展。与此同时,机翼的形状变化也应趋于平稳,以减少气流分离,使飞机拥有更好的气动性能。 未来形状记忆合金在航空航天领域将朝着更规范化、成熟化的方向前进:变体机翼的重量将进一步减轻,连接过渡将更加平缓,气流分离损失将进一步减少,机翼的颤振情况也将进一步改善;航空发动机中的结构将充分考虑其材料特性,不仅仅用于调节尾喷口、进气口,还可用于涡轮叶片,机匣等关键部件;卫星的发射也将更加可靠,连接分离装置运行也会更加平稳。参考文献 [1]杨正岩,张佳奇,高东岳,刘科海,武湛君.航空航天智能材料与智能结构研究进展[J].航空制造技术,2017(17):36-48. [2]朱倩.基于SMA的变体机翼精确控制研究[D].南京航空航天大学,2010. [3]Icardi,U.& Ferrero,L.(2010).SMA Actuated Mechanism for an Adaptive Wing. Journal of Aerospace Engineering - J AEROSP ENG. 24. 10.1061/(ASCE)AS.1943-5525.0000061. [4]张明德.变厚度机翼结构设计及精确控制[D].南京航空航天大学,2018. [5]刘逸峰,徐志伟.SMA驱动变厚度机翼结构设计及实验研究[J].江苏航空,2018(04):30-34.

相关文档
最新文档