三角函数化简求值常用技巧

三角函数化简求值常用技巧
三角函数化简求值常用技巧

三角函数化简求值常用技巧

三角函数式的化简和求值是高考考查的重点内容之一。掌握化简和求值问题的解题规律和一些常用技巧,以优化我们的解题效果,做到事半功倍。这也是解决三解函数问题的前提和出发点。

一、切割化弦

例1、已知 )2(cot tan

22≥=+m m x x ,求x

x 4cos 14cos 3-+的值。 解: 2

4cos 14cos 34cos 1)4cos 3(24cos 12cos 444cos 1)2cos 1(484cos 12sin 48)4cos 1(812sin 2112sin 412sin 2112sin 41cos sin 2)cos (sin cos sin cos sin sin cos cos sin 2

cot tan 2222222222222244222222m x x m x x x x x x x x x x x x x x x x x x x x x x x x x x x =-+∴=-+=-+=---=--=--=-=-+=+=+∴=+Θ 点评:由已知式与待求式的差异知,若选择“从已知到未知”,必定要“切切割化弦”;利用降幂公式实现已知与未知的统一。

二、统一配凑

例2、已知

2π<β<α<43π,cos(α-β)=13

12,sin(α+β)=-53,求sin2α的值. 解:注意到2α= (α-β)+(α+β),于是可用配凑法求解。 ∵2π<β<α<43π,∴0<α-β<4π.π<α+β<4

3π, ∴sin(α-β)=.5

4)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]

=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)

.6556)53(1312)54(135-=-?+-?=

点评:本题以凑角的形式来实现未知与已知的统一,这是三角函数化简求值的常用技巧之一。

三、异角化同

例3、已知cos(4π+x )=53,(12

17π<x <47π),求x x x tan 1sin 22sin 2-+的值. 75285

3)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:22=-?=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x x x x x x x x x x x x x x x x x x x x x ππππππππππ

又解Θ 点评:本题求解关键是将如何将已知条件中的角与目标关系式中的角统一起来。从变角

方式上来寻求解题思路这也是三角函数化简求值的常用技巧之一。

四、公式活用.

例4、求sin 220°+cos 2

80°+3cos20°cos80°的值.

解:sin 220°+cos 280°+3sin 220°cos80° =

21 (1-cos40°)+2

1 (1+cos160°)+ 3sin20°cos80° =1-21cos40°+2

1cos160°+3sin20°cos(60°+20°) =1-21cos40°+2

1 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)

=1-21cos40°-41cos40°-43sin40°+43sin40°-2

3sin 220° =1-43cos40°-43(1-cos40°)= 4

1 点评:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高. 求解关键是:熟练灵活应用三角公式,进行等价变形,以达化简求值的目的。

五、整体构式。

例5 、求sin 2200+cos 2500+sin200cos500的值。

解:令x= sin 2200+cos 2500+sin200cos500,y= cos 2200+ sin 2500+ cos 200 sin 500 则x+y=2+sin700………① x-y= -

070sin 21- ……….②, ①+②得x=43,故原式=4

3 点评:本题巧妙构造对偶对称式结合正余弦的平方关系整体求解。较之利用两角和、二倍角公式及降幂求值的方法简单得多。

六、巧妙联想

例6、求sin 2180+cos 2480+sin180cos480的值。

解:令A=180,B=420,从而C=1200,从而有A+B+C=1800,在三角形ABC 中,由余弦定理

知:)1.......(cos 2222

C ab b a c -+=,结合正弦定理:

C R c B R b A R a sin 2,sin 2,sin 2===(其中R 为三角形的外接圆的半径)……(2),

将(2)代入(1)式,则有:C B A B A C cos sin sin 2sin sin sin 222-+=

而sin 2180+cos 2480+sin180cos480= sin 2180+sin 2420-2sin180sin420cos1200=sin 21200=43. 点评:待求式的特殊的结构形式会使人联想起正余定理,从而从角度和形式得到一个很重要

的定理:在ABC ?中,C B A B A C cos sin sin 2sin sin sin 222-+=,逆用公式实现化

简求值的目的。

七、系数替换 例、.cos cos sin 21,3)4tan(2的值求

已知α

αααπ

+=+。 8

51tan 21tan cos cos sin 2cos sin cos cos sin 21.21tan 3tan 1tan 13)4tan(22222=++=++=+=?=-+?=+ααααααααααααααπ:解 点评:本题如能将待求式中的“1”替换成“αα22cos sin +”,则问题便迎刃而解。

系数代换也是三角化简求值最为常见的技巧之一。

三角函数式的化简与求值

三角函数式的化简与求值 三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场 已知 2π<β<α<43π,cos(α-β)=13 12,sin(α+β)=-53 ,求sin2α的值_________. ● 案例探究 [例1] 不查表求sin 220°+cos 280°+3cos20°cos80°的值. 命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高. 知识依托:熟知三角公式并能灵活应用. 错解分析:公式不熟,计算易出错. 技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会. 解法一:sin 220°+cos 280°+3sin 220°cos80° = 21 (1-cos40°)+21 (1+cos160°)+ 3sin20°cos80° =1-21cos40°+21 cos160°+3sin20°cos(60°+20°) =1-21cos40°+2 1 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20° -sin60°sin20°) =1- 21cos40°-41cos40°-43sin40°+43sin40°-2 3sin 220° =1-43cos40°-43(1-cos40°)= 41 解法二:设x =sin 220°+cos 280°+3sin20°cos80° y =cos 220°+sin 280°-3cos20°sin80°,则 x +y =1+1-3sin60°= 2 1 ,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y = 41,即x =sin 220°+cos 280°+3sin20°cos80°=4 1.

三角函数辅助角公式化简

精选文库 7.已知函数()4cos sin 16f x x x π?? =+- ?? ? ,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -??? ?上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数. (1)求函数 的单调增区间;

精选文库 (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使 取最大值时的集合; (2)已知中,角 的边分别为 ,若 ,求的最小值. 14.已知()( ) 1 3sin cos cos 2 f x x x x ωωω= +-,其中0ω>,若()f x 的最小正周期为4π. (1)求函数()f x 的单调递增区间; (2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围. 15.已知a r =(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数 f (x )=a r ?b r 且f (3 π -x )=f (x ). (Ⅰ)求f (x )的解析式及单调递增区间; (Ⅱ)将f (x )的图象向右平移3π单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4 π ] 上恒成立,求实数a 的取值范围. 16.已知向量a v =(2cos 2 x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2 x ω),(ω>0),设函数f (x )=a v ?b v ,且f (x )的最小正周期为π. (1)求函数f (x )的表达式; (2)求f (x )的单调递增区间. 17.已知函数()()sin (0,0,)2 f x A x A π ω?ω?=+>><的部分图象如图所示. (1) 求函数()f x 的解析式; (2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α??= ???,求sin 6πα?? - ??? 的值. 18.已知函数 (1)求函数在上的单调递增区间; (2)若 且 ,求 的值。

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

三角函数的化简求值

【知识要点】 利用同角三角函数的基本关系式——平方关系、商数关系、倒数关系和两角和差倍半角公式来化简求值. 和差化积、积化和差公式: sin sin 2sin cos 22αβ αβαβ+-+= sin sin 2sin cos 22 αβαβαβ-+-= cos cos 2cos cos 22αβαβαβ+-+= cos cos 2sin sin 22 αβαβαβ+--= 1sin cos [sin()sin()]2αβαβαβ=++- 1cos sin [sin()sin()]2 αβαβαβ=+-- 1cos cos [cos()cos()]2αβαβαβ=++- 1sin sin [cos()cos()]2αβαβαβ=+-- 【典型例题】 例1求234cos cos cos cos 9999 π πππ的值. 例2化简下列各式: (1)2sin10cos 20sin 20?-?? (2)22sin sin cos sin cos tan 1x x x x x x +---(3)66441sin cos 1sin cos θθθθ---- 例3已知tan 2α=,求:(1) 4sin 2cos 5sin 3cos αααα -+;(2)223sin 3sin cos 2cos αααα+-.

例4已知sin()410πα- =,7cos 225α=,求sin α及tan()3πα+的值. 例5已知α为第二象限内的角,3sin 5α= ,β为第一象限内的角,5cos 13 β=,求tan (2α-β)的值. 【课堂练习】 1.若sin cos 2sin cos x x x x +=-,则sin cos x x =( ).

三角函数式化简

三角函数式化简 孙小龙 所谓三角函数化简,就是灵活运用公式,对复杂的三角函数式进行变形,从而得到较为简单的三角函数式以便于进行问题讨论,所以三角函数式的化简是研究复杂三角函数式的基础。下面我们一起深入探究如何进行三角函数式化简。 方法引导 三角函数式化简通常是最让人头疼的一类题型,因为化简没有明确的方向,很难继续进行。其实化简只要遵守“三看”原则,即能顺利化简。一是看角,二是看名,三是看式子的结构和特征。 (1) 看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建待求角; 如倍角关系、半角关系、互余关系、互补关系等; (2) 看函数名的特点,向同名函数转化,弦切互化; (3) 看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式。另外,根据式 子的特点,还可以使用辅助角公式。 了解了化简原则之后,下面我们开始化简了。 例一 化简f(x)=2cosxsin(x+3 π )-3sin 2x+sinxcosx 分析:首先先看角,式子中的角度不统一,所以首要任务是统一角度,根据式子的结构特点和π 3的特殊性,可以运用两角和的正弦公式将式子展开 f (x )=2cos x sin(x +3 π)-3sin 2 x +sin x cos x ?????→用三角公式展开2cos x (sin x cos 3 π +cos x sin 3 π)-3sin 2 x +sin x cos x = 2sin x cos x +3cos 2 x -3sin 2 x 第一步化简完成后,再次观察式子的结构特点,每一个单项式都是二次的,所以再运用降幂公式把式子变为一次式 2sin x cos x + 3cos 2 x -3sin 2 x ???? →降幂公式 sin2x +3cos2x 继续运用辅助角公式进行彻底化简 sin2x + 3cos2x ????→辅助角公式 2sin(2x + 3 π ). 例二 化简: 42212cos 2cos 2.2tan()sin () 44 x x x x ππ-+ -+ 分析:我们还是先从角度入手,分子上角度统一,分母角度不统一,但仔细观察发现分母中两个角 呈互余关系,再看函数名的特点,我们可以运用诱导公式进行化简;分子上仔细观察结构,提出1 2, 可以得到完全平方式 42212cos 2cos 2.2tan()sin ()44 x x x x ππ-+ -+诱导公式及完全平方式 → 12(4cos x?4cos x+1)242cot(π4+x)sin (π4 +x )2=(2cos x?12)24sin(π4+x)cos(π4+x) 统一角度后,分析式子的结构特点,运用降幂公式进行化简 (2cos x?12) 2 4sin(π4+x)cos(π 4+x) 降幂公式 → 2cos 2x 22sin(π+2x)= 2cos 2x 22cos 2x = 12 cos 2x 我们可以通过两个例题发现化简题目中透露出来的隐藏信息,这就是三角函数式化简要求 最终形式:正弦型函数(通常情况) 化简方法: 1、切割化弦; 2、降幂公式; 3、用三角公式转化出现特殊角; 4、 异角化同角; 5、异名化同名; 6、高次化低次; 7、辅助角公式; 8、分解因式。 任何三角函数式化简只要掌握了化简的原则和要求,遇到化简题就能轻而易举的攻破了,但首先有个前提:熟练掌握常见三角函数变换公式,如同角三角函数变换公式、诱导公式、两角和与差的余弦正弦正切公式、倍角与半角公式、辅助角公式等。同时还要了解其他三角函数变换公式,如三角函数积化和差和和差化积公式、三倍角公式和万能置换公式等。 小试牛刀 1. 化简βαβαβα2cos 2cos 2 1 cos cos sin sin 2222-+。 2. 化简x x x x x x f 2sin 2cos sin cos sin )(2244-++=

三角函数诱导公式专项练习(含答案)

三角函数诱导公式专项练习 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.() A. B. C. D. 2.的值为() A. B. C. D. 3.已知,则cos(60°–α)的值为 A. B. C. D.– 4.已知,且,则()A. B. C. D. 5.已知sin(π-α)=-,且α∈(-,0),则tan(2π-α)的值为( ) A. B.- C.± D. 6.已知,则=( ) A. B. C. D. 7.已知,,则() A. B. C. D. 8.已知,则() A. B. - C. D. - 9.如果,那么 A. - B. C. 1 D. -1 10.已知,则() A. B. C. D. 11.化简的值是()

A. B. C. D. 12.的值是() A. B. C. D. 13.已知角的终边经过点,则的值等于 A. B. C. D. 14.已知,则() A. B. C. D. 15.已知的值为()A. B. C. D. 16.已知则() A. B. C. D. 17.已知,且是第四象限角,则的值是( ) A. B. C. D. 18.已知sin=,则cos=( ) A. B. C.- D.- 19.已知cos α=k,k∈R,α∈,则sin(π+α)=( ) A.- B. C.± D.-k 20.=( ) A. sin 2-cos 2 B. sin 2+cos 2 C.±(sin 2-cos 2) D. cos 2-sin 2 21.的值为 A. B. C. D. 22.() A. B. C. D.

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳 出 锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 、 化简或求值 例1 (1) 已知tan 2cot 1,且 是锐角,求乙tan 2 cot 2 2的值。 (2) 化简 a sin bcos ? acos bsin ?。 分析 (1)由已知可以求出tan 的值,化简?、tan 2 cot 2 2可用 1 tan cot ; (2)先把平方展开,再利用sin 2 cos 2 1化简 解(1)由tan 2cot 1得tan 2 2 tan ,解关于tan 的方程得 tan 2或 tan 1。又是锐角,二 tan 2。二、tan 2 cot 2 2 = 1 2 2 2,「 tan cot 2 = tan cot (2) a sin bcos ? acos bsin 2 -2 ? 2 2 cos b sin cos = a 、已知三角函数值,求角 求C 的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cosA 和sin B 的 值,进而求出 代B 的值,然后就可求出 C 的值。 \ tan 2 2tan cot cot 2 = : (tan cot )2 tan cot 由tan 得cot a 2 sin 2 2ab sin cos b 2 cos 2 + a 2 cos 2 2ab cos sin b 2s in 2 2 2 a sin 2 b 2 tan 说明 在化简或求值问题中,经常用到 cot 1 等。 “ 1” 的代换, 即 sin 2 2 cos J 2 例2在厶ABC 中,若cosA — 2 .3 2 sin B 0 A, B 均为锐角,

三角函数辅助角公式化简

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π?? =-+ ?? ? , x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34ππ?? -??? ?上的单调性. 2.已知函数( )4sin cos 3f x x x π?? =+ ?? ? (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ?? -????上的最大值和最小值及取得最值时x 的值. 3.已知函数( )4tan sin cos 23f x x x x ππ??? ?=-- ? ???? ? (1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ?? -???? 上的单调递增区间及最大值与最小值. 4.设函数( )2 sin cos 2 f x x x x =+- . (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ??????=- +-+ ? ? ?? ?? ??? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122?? -??? ?上的值域. 6.已知函数( )21 cos cos 2 f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[] 0,π上的单调区间.

7.已知函数()4cos sin 16f x x x π? ?=+- ?? ?,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -???? 上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数 .

(完整版)三角函数化简求值专题复习

三角函数化简求值专题复习 高考要求 1、理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。 2、 掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式) 3、 能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。 热点分析 1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强. 2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题 3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解. 【例1】求值: ? +?? ??+?+?80cot 40csc 10sin 20tan 10cos 20sin 2. 解:原式的分子? ? ?+??+ ?=20cos 10sin 20sin 20cos 10cos 20sin 2 ??+?=20cos 10cos 20sin 2? ? +?=20cos 10cos 40sin 320cos 20cos 60sin 220cos 80sin 40sin =? ? ?=??+?= , 原式的分母= ? ? +?=??+?80sin 80cos 40cos 280sin 80cos 40sin 1 ()??+?+?=80sin 80cos 40cos 40cos ?? ?+?=80sin 20cos 60cos 240cos 310cos 10cos 30cos 280sin 20cos 40cos =? ? ?=??+?= , 所以,原式=1. 【变式】1、求值 () ? +??+?+?10cos 110tan 60tan 110cos 40cos 2 解:()()2 5cos 25cos 45cos 225cos 250cos 40cos 25cos 21060cos 240cos 25cos 210sin 23 10cos 21240cos 25cos 210sin 310cos 40cos 2=? ??=??+?=??-?+?=? ?? ? ? ???+?+?=??+?+?=·原式 【变式】2、求0 2 2 10sin 21)140 cos 1140 sin 3( ?- 。 分析:原式= 202020210sin 21 140cos 140sin 140sin 140cos 3? -

三角函数化简题

4三角函数得化简、求值与证明日期:2009年月日星期 ,能正确地运用三角公式进行三角函数式得化简与恒等式得证明、 用、 (1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式得逆用等。(2)化简要求:①能求出值得应求出值; ②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数得求值类型有三类:(1)给角求值:一般所给出得角都就就是非特殊角,要观察所给角与特殊角间得关系,利用三角变换消去非特殊角,转化为求特殊角得三角函数值问题;(2)给值求值:给出某些角得三角函数式得值,求另外一些角得三角函数值,解题得关键在于“变角”,如等,把所求角用含已知角得式子表示,求解时要注意角得范围得讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得得所求角得函数值结合所求角得范围及函数得单调性求得角。 3、三角等式得证明:(1)三角恒等式得证题思路就就是根据等式两端得特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端得化“异”为“同”;(2)三角条件等式得证题思路就就是通过观察,发现已知条件与待证等式间得关系,采用代入法、消参法或 、三角函数得求值: ,化非特殊角为特殊角; ?2、正确灵活地运用公式,通过三角变换消去或约去一些非特殊角得三角函数值; ?3、一些常规技巧:“1”得代换、切割化弦、与积互化、异角化同角等、 1、三角函数式得化简: 三角函数式得化简常用方法就就是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角得三角函数互化、 ?2、三角恒等式得证明: 三角恒等式包括有条件得恒等式与无条件得恒等式、①无条件得等式证明得基本方法就就是化繁为简、左右归一、变更命题等,使等式两端得“异”化为“同”;②有条件得:代入法、消去法、综合法、分析法等、 ( A) A、B、C、D、 2、函数得最小正周期( B) A、B、C、D、 3、等于( D) A、1 B、2 C、-1 D、-2 4、已知,则实数得取值范围就就是__[-1,]___。 ____。 ,(),则?( ) ???或 略解:由得或(舍),∴,∴、 例2、已知,就就是第三象限角,求得值、 解:∵就就是第三象限角,∴(), ∵,∴就就是第四象限角,∴, ?∴原式 221 cos(15)sin(15)sin(75)cos(75) 3αααα + =---=+-+=-、 例3、已知,求得值、

高一数学 三角函数化简和求值超难方法汇总

第九讲 三角函数式的恒等变形 1基本知识与基本方法 1.1基本知识介绍 ①两角和与差的基本关系式 β αβαβαsin sin cos cos )cos( =±; βαβαβαsin cos cos sin )sin(±=±; .tan tan 1tan tan )tan(β αβ αβα ±= ± ②和差化积与积化和差公式 2cos( 2sin( 2sin sin β αβαβα-+=+, )2sin()2cos(2sin sin β αβαβα-+=- 2cos()2cos(2cos cos β αβαβα-+=+ 2 sin()2sin(2cos cos β αβαβα-+-=- [])sin()sin(21 cos sin βαβαβα-++= [])sin()sin(21 sin cos βαβαβα--+= [])cos()cos(21 cos cos βαβαβα-++= [])cos()cos(21 sin sin βαβαβα--+-= ③倍角公式 αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-= .tan 1tan 22tan 2α α α-= ④半角公式

?? ? ??2sin α2)cos 1(α-± =, ?? ? ??2c o s α2)c o s 1(α+± =, =?? ? ??2tan α)cos 1()cos 1(αα+-± = .sin ) cos 1()cos 1(sin α ααα-=+ ⑤辅助角公式 如果b a ,是实数且022≠+b a ,则 )sin(cos sin 22?ααα++=+b a b a ,其中?满足 2 2 sin b a b += ?2 2 cos b a a += ?. 1.2基本方法介绍 ①变角思想 在三角化简、求值中,往往出现较多相异的角,可根据角与角之间的关系,通过配凑,整体把握公式,消去差异,达到统一角的目的,使问题求解.如已知βα、均为锐角,并且 ,3 1 )tan(,54cos -=-= βαα求βcos 的值.观察到目标角与已知角不 同,应寻找它们的关系,将目标角转化为已知角,即 )(βααβ--=,所以求出1010 3)cos(,53sin =-=βαα 10 10 )sin(- =-βα,则 [])sin(sin )cos(cos )(cos cos βααβααβααβ-+-=--= 50 10 9= . ②变名思想 当条件与所求的三角函数名不一样时,可以利用三角函

三角函数化简技巧

三角函数化简技巧 一、化简要求: 将一个三角函数式化简,最终结果一般都是出现两种形式:1、一元一次(即类似 B x A y ++=)sin(?ω)的标准形式;2、一元二次(即类似y=A(cosx+B)2 +C )的标准形式。 二、三角化简的通性通法: 1、切割化弦; 2、降幂公式; 3、用三角公式转化出现特殊角; 4、 异角化同角; 5、异名化同名; 6、高次化低次; 7、辅助角公式; 8、分解因式。 三、例题讲解: (例1)f(x)=2cosxsinx+ x x x x cos sin 1sin 2cos 22 +--=_y=A(cosx+B)2+C B x A y ++=)sin(?ω (三角函数化简技巧)-3sin 2 x+sinxcosx 解:f (x )=2cos x sin(x +3 π)-3sin 2x +sin x cos x ?????→用三角公式展开 2cos x (sin x cos 3 π +cos x sin 3 π )- 3sin 2x +sin x cos x ????→降幂公式 sin2x + 3cos2x ????→辅助角公式 2sin(2x + 3 π ). (例2)y =2cos 2 x -2a cos x -(2a +1) 解:y =2cos 2 x -2a cos x -(2a +1) ???→配方 2(cos x -2 a )2-22 42+-a a . (例3)若tan x =2,则 x x x x cos sin 1sin 2cos 22 +--=_______. (例4)sin 4α+cos 4α=_______. 解:sin 4α+cos 4α?? →(sin 2α+cos 2α)2-2sin 2αcos 2α??→1-2 1 sin 22α?? →1-11-cos222α ? =13cos 244 α+. (例5)函数y =5sin x +cos2x 的最大值是_______. (例6)函数y =sin (3 π -2x )+sin2x 的最小正周期是 (例7)f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,2 π ]上的最小值为-4,那么a 的值等于

(精心整理)三角函数的化简与求值

专题12 三角函数的化简与求值 一、复习目标 1.掌握三角函数恒等变形的一般思路与方法; 2.能利用恒等变形进行三角函数式的化简与求值. 二、基础训练 1.=-15cot 15tan ( ) A .2 B .32+ C .4 D .32- 2.3,(2),2 P π απ=<<若 则化简P 可得 ( ) A .2 cos α - B .2 cos α C .2 sin α- D .2 sin α 3. 若α为锐角,且,3 1 )6sin(=- π α则=αcos . 42 cos 1010)1cos 10170 --= . 三、典型例题 1.(1)若等于则θ θ θ2sin 12cos ,21tan +- = ( ) A .2- B .2 1 - C .3- D .3 (2)若71cos = α,??? ??∈2,0πα,则??? ? ? +3cos πα=__________。 2.已知)3 tan(sin ,2572cos ,1027)4sin(π +αα=α=π-α及求

3.化简:2 2221sin sin cos cos cos 2cos 22 αβαβαβ?+?-? . 4.已知1 0,sin cos 25 x x x π - <<+= . (Ⅰ)的值求x x cos sin -; (Ⅱ)求2 23sin 2sin cos cos 2222tan cot x x x x x x -++的值.

四、课堂练习 1. 对任意的锐角βα,,下列不等关系中正确的是 ( ) A .sin()sin sin αβαβ+>+ B .sin()cos cos αβαβ+>+ C .cos()sin sin αβαβ+<+ D .cos()cos cos αβαβ+<+ 2. 已知,16 3,16π βπ α= = 则 =+?+)tan 1(tan 1βα)( . 3. 已知α为第二象限的角,53sin =α,β为第一象限的角,13 5 cos =β,求) 2tan(βα-的值. 五、巩固练习 1.已知=-=+= +)4 tan(,223)4tan(,52)tan(π βπαβα那么 ( ) A .51 B .41 C .1813 D .2213 2.若=+=-)232cos(,31)6sin(απ απ则 ( ) A .97- B .31- C .31- D .9 7 3.若βα,均是锐角,且2 sin cos(),ααβ=-则的关系是与βα ( ) A .αβ> B .αβ< C .βα= D .2 π αβ+> 4.函数x x x x f cos )cos 4sin 3()(-=的最小正周期为 . 5.已知α为锐角,且2 2 sin sin cos 2cos 0,αααα--=则αtan = ,

三角函数式的化简和证明

简单的三角恒等变换——化简与证明 学习目标:能正确地运用三角函数的有关公式进行三角函数式的求值,化简与恒等式的证明. 学习重点:三角函数的有关公式的灵活应用和一些简单的变性技巧. 学习过程 一、知识清单 1.证明了cos()a b -= ?cos()a b += ?cos()2p a -= ,cos()2 p a += ?sin()a b += sin()a b -= ?tan()a b += ,tan()a b -= 2. cos (+)a b = ?cos 2a = = = sin()a b += ?sin 2a = tan()a b += ?tan 2a = 3.倍角的相对性 sin a = ,cos a = ,tan a = 4.要掌握这些公式的推导和联系,用时注意公式的“正用”,“逆用”和“变用”. 如:降幂扩角公式 2sin a = ;2 cos a = ; 1cos a += ;1cos a -= ; 1sin a += ;1sin a -= . 5. 划一公式:sin cos a x b x += (其中tan f = ,f 所在象限由 确定). 二、范例解析 题型一 三角函数式的化简和证明 1.三角函数式的化简要求:

通过对三角函数式的恒等变形使最后所得到的结果中: ①所含函数和角的名称或种类最少;②各项的次数尽可能地低;③出现的项数最少; ④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值. 2.三角变换的三项基本原则: (1)角的变换:划同角(角的拆分,配角和凑角,1的变换); (2)函数名称的变换:划同名(正切划弦); (3)幂指数的变换:划同次(升幂、降幂公式,同角公式). 例1化简下列各式 ; ②1sin 2cos 21sin 2cos 2a a a a +-=++ ; ③2sin 2cos 1cos 2a a a -=+ ; ④222cos 12tan()sin ()44 a p p a a -=-+ ; 例2 证明下列各式(从左到右或从右到左或左右开攻中间会师,一般化繁为简) ①22tan 2sin 1tan 2a a a =+ ②2 2 1tan 2cos 1tan 2a a a -=+ ③sin 1cos tan 21cos sin a a a a a -==+ ④[]1sin cos sin()sin()2a b a b a b =++- ⑤sin sin 2sin cos 22 q f q f q f +-+=. 三、课下练习: 课本142P 2 ; 143P A 组 1, 2, 3, 4;B 组 1; 146P 8;147P 5.

三角函数化简题

课题:§三角函数的化简、求值与证明 日期:2009年 月 日星期 式进行三角函数式的化简与恒等式的证明. 用. 1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。 .三角函数的求值: 1.寻求角与角之间的关系,化非特殊角为特殊角; 2.正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值; 3.一些常规技巧:“1”的代换、切割化弦、和积互化、异角化同角等. 1.三角函数式的化简: 三角函数式的化简常用方法是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角的三角函数互化. 2.三角恒等式的证明: 三角恒等式包括有条件的恒等式和无条件的恒等式.①无条件的等式证明的基本方法是化繁为简、左右归一、变更命题等,使等式两端的“异”化为“同”;②有条件的等式常用方法有:代入法、消去法、综合法、分析法等. 1、已知θ是第三象限角,且4 4 5 9 sin cos θθ+= ,那么2sin θ等于 ( A )

三角函数辅助角公式化简

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π?? =-+ ?? ? , x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34ππ?? -???? 上的单调性. 2.已知函数( )4sin cos 3f x x x π?? =+ ?? ? (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ?? -????上的最大值和最小值及取得最值时x 的值. 3.已知函数( )4tan sin cos 23f x x x x ππ??? ?=-- ? ???? ? (1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ?? -??? ?上的单调递增区间及最大值与最小值. 4.设函数( )2sin cos f x x x x =+. (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ??????=- +-+ ? ? ?? ????? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122?? -???? 上的值域. 6.已知函数( )2 1 cos cos 2 f x x x x =-- . (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[] 0,π上的单调区间.

7.已知函数()4cos sin 16f x x x π?? =+- ?? ? ,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -??? ?上的最大值和最小值. 8.设函数( )() sin ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数( )2cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, bc =b c +的值. 12.已知函数. (1)求函数 的单调增区间;

三角公式化简求值

三角函数与解三角形知识拓展 (1) 诱导公式的记忆口诀:奇变偶不变,符号看象限. (2)同角三角函数基本关系式的常用变形: (sin α±cosα)2=1±2sin αcosα; (sin α+cosα)2+(sin α-cosα)2=2; (sin α+cosα)2-(sin α-cosα)2=4sin αcosα. (3)降幂公式:cos2α=1+cos 2α 2 ,sin2α= 1-cos 2α 2 . (4)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α. 题型分析 (一) 三角变换,角为先锋 三角函数作为一种特殊函数,其“角”的特殊性不容忽视,因此我们在三角函数恒等变换中,应该首先注意角的形式,从统一角的角度出发,往往能够达到事半功倍的效果. 【例1】【江苏省苏州市2017-2018学年高三上学期期中】已知 π tan2 4 α?? -= ? ?? ,则cos2α的 值是_____. 【答案】 4 5 - 【解析】因为 π tan2 4 α?? -= ? ?? , 所以cos2α= π sin2 2 α ?? -- ? ?? = 22 ππ 2sin cos 44 ππ sin cos 44 αα αα ???? -- ? ? ???? - ???? -+- ? ? ???? = 2 π 2tan 4 π tan1 4 α α ?? - ? ?? - ?? -+ ? ?? = 4 5 - 【点评】(1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”. (2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β 2 - α-β 2,α= α+β 2 + α-β 2 , α-β 2 =(α+ β 2 )-( α 2 +β)等.

相关文档
最新文档