第五章 曲轴和连杆的设计与计算

第五章 曲轴和连杆的设计与计算
第五章 曲轴和连杆的设计与计算

第五章 曲轴和连杆的设计与计算

1 曲轴的机构示意图

2 曲轴强度设计计算

2.1 曲轴尺寸经验数据

支承颈直径0d ,由【1】附件1查得N P k 1000g =.即

mm

P g

11.158~14.1395~4.4d 0≈≈

取0d =158mm

其他各部分尺寸见下表

曲轴各部分尺寸名称 代号

经验数据

实际尺寸(mm )

曲柄轴颈直径 A d

)( 1.4~1.10d 173.8 支承颈长度

0L

)( 2.2~1.50d

237 曲柄两臂外侧面间的长度

q L )( 3.0~2.50d

395

曲柄颈长度 a L )( 1.7~1.30d 205.4 圆角半径 r

)(0.1~0.080d

12.64 曲柄臂的直径 a

0d 1.8~1.3)(

205.4 曲柄臂的高度 h

装大带轮轴的直径 1d

D )(2.1~1.1

第三章 曲柄连杆机构 练习题

第三章曲柄连杆机构练习题 1、曲柄连杆机构由哪些零件组成?其功用是什么? 2、试述气缸体的三种形式及特点。 P29 3、解释下列名词: a、上止点b,下止点c,活塞行程d,汽缸工作容积 e,燃烧室容积f,汽缸总容积g,发动机排量h,压缩比 i,工作循环j,四冲程发动机k,二冲程发动机 4、铝合金活塞预先做成椭园形、锥形或阶梯形,为什么? 5、什么是矩形环的泵油作用?有什么危害? 6、什么是发动机的点火顺序?什么是发动机的作功间隔角?确定发动机的点火 顺序的原则有哪些?

7、内燃机中的飞轮起什么作用? 8、内燃机与外燃机相比,具有哪些优点? 9、曲柄连杆机构的主要零件可以分为哪三组? 10、内燃机的燃烧室有盆型; 楔型和半球型等三种。 12、活塞连杆组由活塞、、、和轴瓦等组成。 13、活塞可分为三部分,、和。 14、活塞环是具有弹性的开口环,有和两种。气环的作用是;油环的作用是。气环的开口切口;切口; 切口和带防转销钉槽等四种形式. 15、连杆分为三部分:即连杆、连杆杆身和连杆(包括连杆盖)。 16、曲轴由曲轴前端轴(自由端)、曲拐及曲轴后端轴三部分组成。 17、请对比四行程汽油机与四行程柴油机的优缺点。 18、简述曲柄连杆机构的功用与工作条件。 19、气缸的排列方式有哪些? 20、按照冷却水冷却气缸套的方式来划分,气缸套有气缸套和气缸套两种。 21、简述气缸盖的功用;工作条件;制造材料和汽缸盖的结构分类。

22、气缸垫有什么作用? 23、简述活塞的功用;工作条件对其要求和制造材料. 24、简述活塞各部的位置和其功用. 25、活塞销有何功用?其工作条件如何?它与活塞之间采用什么方式连接? 26、连杆有何功用?其工作条件;材料及对其要求如何?

高速公路沥青路面设计实例

高速公路沥青路面设计实例 一、设计资料: 本公路等级为高速公路,经调查得,近期交通量如下表所示。交通量年平均 区。 增长率为9.5%,设计年限为15年,该路段处于Ⅳ 2 二、交通分析: 轴载分析路面设计以BZZ-100为标准轴载。 1、以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 (1)累计当量轴次 注:轴载小于25KN的轴载作用不计。 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。

2、验算半刚性基层层底拉应力中的累计当量轴次 (1)轴载换算 车型i P(KN) C1C2i N(次/日) 小客车 前轴16.5 1 18.5 6750 0.0686 后轴23.0 1 1 6750 0.05286 中客车 SH130 前轴25.55 1 18.5 2000 0.67194 后轴45.10 1 1 2000 3.42328 大客车 CA50 前轴28.70 1 18.5 1250 1.06448 后轴68.20 1 1 1250 58.5039 小货车 BJ130 前轴13.40 1 18.5 4250 0.00817 后轴27.40 1 1 4250 0.13502 中货车 CA50 前轴28.70 1 18.5 1500 1.27737 后轴68.20 1 1 1500 70.2047 中货车 EQ140 前轴23.70 1 18.5 2125 0.39131 后轴69.20 1 1 2125 111.74 大货车 JN150 前轴49.00 1 18.5 2125 130.647 后轴101.60 1 1 2125 2412.73 特大车日野 KB222 前轴50.20 1 18.5 1500 111.916 后轴104.30 1 1 1500 2100.71 拖挂车 五十铃 前轴60.00 1 18.5 187.5 58.2617 后轴100(3轴) 3 1 187.5 562.5 5624.304 注:轴载小于50KN的轴载作用不计 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 三、设计指标的确定 8 2 1 ? ? ? ? ? ' ' P P n C C i i 8 2 1 1 ? ? ? ? ? ' ' ='∑ = P P n C C N i i i i

框架结构设计步骤

砼框架结构设计手算步骤 一.确定结构方案与结构布置 1.结构选型是否选用框架结构应先进行比较。根据何广乾的模糊评判法,砼结构8~18层首选框剪结构,住宅、旅馆则首选剪力墙。对于不需要电梯的多层采用框架较多。 2.平面布置注意L,l,l’,B的关系。 3.竖向布置注意高宽比、最大高度(分A、B两大类,B类计算和构造有更严格的要求),力求规则,侧向刚度沿竖向均匀变化。 4.三缝的设置按规范要求设置,尽量做到免缝或三缝合一。 5.基础选型对于高层不宜选用独立基础。但根据国勤兄的经验,对于小高层当地基承载力标准值300kpa 以上时可以考虑用独基。 6.楼屋盖选型 高层最好选用现浇楼盖 1)梁板式最多的一种形式。有时门厅,会议厅可布置成井式楼盖,其平面长宽比不宜大于1.5,井式梁间距为2.5~3.3m,且周边梁的刚度强度应加强。采用扁梁高度宜为1/15~1/18跨度,宽度不超过柱宽50,最好不超过柱宽。 2)密肋梁方形柱网或接近方形,跨度大且梁高受限时常采用。肋梁间距1~1.5m,肋高为跨度的1/30~1/20,肋宽150~200mm。 3)无梁楼盖地震区不宜单独使用,如使用应注意可靠的抗震措施,如增加剪力墙或支撑。 4)无粘结预应力现浇楼板一般跨度大于6m,板厚减薄降低层高,在高层中应用有一定技术经济优势。在地震区应注意防止钢筋端头锚固失效。 5)其他 二.初步确定梁柱截面尺寸及材料强度等级 1.柱截面初定分抗震和非抗震两种情况。对于非抗震,按照轴心受压初定截面。对于抗震,Ac=N/(a*fc) N=B*F*Ge*n B=1.3(边柱),1.2(等跨中柱),1.25(不等跨中柱)Ge=12~15kN/m2 a为轴压比fc为砼抗压强度设计值F为每层从属面积n为层数。框架柱上下截面高度不同时,每次缩小100~150为宜。为方便尺寸标注修改,边柱一般以墙中心线为轴线收缩,中柱两边收缩。柱截面与标号的变化宜错开。 2.梁截面初定梁高为跨度的1/8~1/14,梁宽通常为1/2~1/3梁高。其余见前述。对于宽扁梁首先应注意满足挠度要求,否则存在梁板协调变形的复杂内力分析问题。梁净跨与截面高度之比不宜小于4。框架梁宽不宜小于1/2柱宽,且不小于250mm。框架梁的截面中心线宜与柱中心线重合,当必须偏置时,同一平面内的梁柱中心线间的偏心距不宜大于柱截面在该方向的1/4。 3.砼强度等级一级现浇不低于C30,其余不低于C20。 三.重力荷载计算 1.屋面及楼面永久荷载标准值分别计算各层 2.屋面及楼面可变荷载标准值 3.梁柱墙门窗重力计算 4.重力荷载代表值=自重标准值+可变荷载组合值+上下各半层墙柱等重量 可变荷载组合值系数:雪、屋面积灰为0.5,屋面活荷载不计,按实际考虑的各楼面活荷载为1。将各层代表值集中于各层楼面处。 四.框架侧移刚度计算 计算梁柱线刚度,计算各层D值,判断是否规则框架。分别计算框架纵横两个方向。 五.计算自振周期 T1=(0.6或0.7)X1.7Xsqrt(Ut) Ut___假想把集中在各层楼面处的重力荷载代表值作为水平荷载而算得的结构顶点位移。0.6或0.7为考虑填充墙的折减系数。对于带屋面局部突出的房屋,Ut应取主体结构顶点位移,而不是突出层位移。此时将

路面结构设计计算示例

课程名称: 学生: 学生学号: 专业班级: 指导教师: 年月日

路面结构设计计算 1 试验数据处理 1.1 路基干湿状态和回弹模量 1.1.1 路基干湿状态 路基土为粘性土,地下水位距路床顶面高度0.98m~1.85m。查路基临界高度参考值表可知IV5区H1=1.7~1.9m,H2=1.3~1.4m,H3=0.9~1.0m,本路段路基处于过湿~中湿状态。 1.1.2 土基回弹模量 1) 承载板试验 表1.1 承载板试验数据 承载板压力(MPa) 回弹变形 (0.01mm) 拟合后的回弹变形 (0.01mm) 0.02 20 10 0.04 35 25 0.06 50 41 0.08 65 57 0.10 80 72 0.15 119 剔除 0.20 169 剔除 0.25 220 剔除 计算路基回弹模量时,只采用回弹变形小于1mm的数据,明显偏离拟合直线的点可剔除。拟合过程如图所示:

路基回弹模量: 210101 1000 (1)4 n i i n i i p D E l πμ===-=∑∑ 2)贝克曼梁弯沉试验 表1.2 弯沉试验数据 测点 回弹弯沉(0.01mm ) 1 155 2 182 3 170 4 174 5 157 6 200 7 147 8 173 9 172 10 207 11 209 12 210 13 172 14 170 根据试验数据: l = ∑ll l = 155+?+170 14 =178.43

15.85(0.01mm)S = =s = √∑(ll ?l )2l ?1 =20.56(0.01mm) 式中:l ——回弹弯沉的平均值(0.01mm ); S ——回弹弯沉测定值的标准差(0.01mm ); l i ——各测点的回弹弯沉值(0.01mm ); n ——测点总数。 根据规要求,剔除超出(2~3)l S ±的测试数据,重新计算弯沉有效数据的平均值和标准差。计算代表弯沉值: 1174.79 1.64515.85200.86(0.01mm)a l l Z S - =+=+?=l 1=l +l l l =178.43+ 1.645×20.56=21 2.25 Z a 为保证率系数,高速公路、一级公路取2.0,二、三级公路取1.645,四级公路取1.5。 土基的回弹模量: 220201220.70106.5 (1)(10.35)0.71246.3(MPa)200.860.01 p E l δμα??= -=?-?=? 1.2 二灰土回弹模量和强度 1. 2.1 抗压回弹模量 二灰土抗压回弹模量为:735MPa 。 1.2.2 f50mm×50mm试件劈裂试验 表1.3 二灰土试件劈裂试验数据 f50mm×50mm试件劈裂试验 最大荷载(N ) 2t P Dh σπ= (kPa ) 处理结果 有效数据平均值t σ(kPa ) 250.57 有效数据样本标准差S (kPa ) 12.07 变异系数C v (%) 4.82 变异系数应小于6%,否则可在剔除偏差较大的数据后,重新计算平均值和标准差。设计

连杆设计的详细计算

第四章典型零部件(连杆)的设计 连杆是发动机最重要的零件之一,近代中小型高速柴油机,为使发动机结构紧凑,最合适的连杆长度应该是,在保证连杆及相关机件运动时不与其他机件相碰的情况下,选取小的连杆长度,而大缸径的中低速柴油机,为减少侧压力,可适当加长连杆。 连杆的结构并不复杂,且连杆大头、小头尺寸主要取决于曲轴及活塞组的设计。在连杆的设计中,主要考虑的是连杆中心距以及大、小头的结构形式。。连杆的运动情况和受力状态都比较复杂。在内燃机运转过程中,连杆小头中心与活塞一起作往复运动,承受活塞组产生的往复惯性力;大头中心与曲轴的连杆轴颈一起作往复运动,承受活塞连杆组往复惯性力和不包括连杆大头盖在内的连杆组旋转质量惯性力;杆身作复合平面运动,承受气体压力和往复惯性力所产生的拉伸.压缩交变应力,以及压缩载荷和本身摆动惯性力矩所产生的附加弯曲应力。 为了顺应内燃机高速化趋势,在发展连杆新材料、新工艺和新结构方面都必须既有利于提高刚度和疲劳强度,有能减轻质量,缩小尺寸。 对连杆的要求: 1、结构简单,尺寸紧凑,可靠耐用; 2、在保证具有足够强度和刚度的前提下,尽可能的减轻重量,以降低惯性力; 3、尽量缩短长度,以降低发动机的总体尺寸和总重量; 4、大小头轴承工作可靠,耐磨性好; 5、连杆螺栓疲劳强度高,连接可靠。 但由于本设计是改型设计,故良好的继承性也是一个考虑的方面。 4.1连杆材料 结合发动机工作特性,发动机连杆材料应当满足发动机正常工作所需要的要求。应具有较高的疲劳强度和冲击韧性,一般选用中碳钢或中碳合金钢,如45、40Cr等,本设计中发动机为中小功率发动机,故选用一般的45钢材料基本可以满足使用要求。

第三章 平面连杆机构

第三章平面连杆机构 平面连杆机构是由若干构件和低副组成的平面机构,又称平面低副机构。这种机构可以实现预期的运动规律及位置、轨迹等要求。平面连杆机构用于各种机械中,常与机器的工作部分相连,起执行和控制的作用,在工程实际中应用十分广泛。平面连杆机构的主要优点有:1、低副为面接触,所以压强小,易润滑,磨损少,可以承受较大的载荷。2、构件结构简单,便于加工,构件之间的接触是由构件本身的几何约束来保持的,故工作可靠。3、在原动件等速连续运动的条件下,当各构件的相对长度不同时,可使从动件实现多种形式的运动,满足多种运动规律的要求。其主要的缺点有:1、运动副中存在间隙,当构件数目较多时,从动件的运动累计误差较大。2、不容易精确地实现复杂的运动规律,机构设计相对复杂。3、连杆机构运动时产生的惯性力难以平衡,所以不适用于高速场合。 平面连杆机构是常用的低副机构,其中以由四个构件组成的平面四杆机构应用最广泛,而且是组成多杆机构的基础。因此本章着重讨论平面四杆机构的基本形式及在实际中的应用,理解四杆机构的运动特性及设计平面四杆机构的基本设计方法。 3.1 平面连杆机构及其应用 连杆机构有平面连杆机构和空间连杆机构。其中,若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。平面连杆机构较空间连杆机构应用更为广泛,在平面连杆机构中,结构最简单的且应用最广泛的是由四个构件所组成的平面四杆机构,其它多杆机构可看成在此基础上依次增加杆件而组成。故本章着重介绍平面四杆连杆机构。 3.1.1铰链四杆机构的类型 所有运动副均为转动副的四杆机构称为铰链四杆机构。它是平面四杆机构的基本形式。如图3-1所示。图中固定不动的构件AD是机架;与机架相连的构件AB、CD称为连架杆;不与机架直接相连的构件BC称为连杆。连架杆中,能作整周回转的构件称为曲柄,只能作往复摆动的构件称为摇杆。 图3-1 铰链四杆机构 根据两连架杆中曲柄(或摇杆)的数目,铰链四杆机构可分为曲柄摇杆机构、双曲柄机构和双摇杆机构三种基本形式。

毕业设计手算计算书基本步骤模板1

1 建筑设计 1.1 建筑方案的比选与确定 根据毕业设计任务书的要求,在参观了一些办公大楼的基础上,我先后做出了三个方案,经过初选,摈弃方案三,现将方案一与方案二做一比较,以此确定最终的建筑设计方案。 1.1.1建筑功能比较 由于此保险公司办公楼要求有营业大厅,故可以采用两种方式,一种是将营业大厅单独设置在一边,即采用裙楼的方式,主楼办公区8层,裙楼2层,这样功能划分明确,且建筑物有错落感,外形美观,但结构布置和计算麻烦些;另一种则用对称的柱网,一楼设置营业大厅,与办公区2-8层的布置不同,这样主要的问题就是底层的功能划分了,考虑方便,美观,防火等,此方案绘图和计算相对容易些,考虑到是初次设计完整的一栋框架结构,主要目的是掌握思想方法,故采用方案2,柱网完全采用对称布置。关于底层平面的布置的问题又有如下两种方案: 方案一建筑底层平面布置完全对称,这样有利于引导人流,且外形较好,里面效果好,现浇整体布局较为紧凑,便于设计计算和施工;由于底层有大型的营业大厅,而且要求与办公区隔离,该方案楼梯布置比较困难,若分两边布置,则使建筑无门厅主楼梯,不利于交通组织,将其因为对称布局带来的优势丧失,且将对电梯的布置带来问题;若于中门厅处布置一部主楼梯,则为了防火需要(以防形成“袋形走廊”),要在建筑两侧加设防火楼梯与防火出口,造成不经济,且将楼梯置于建筑两头不利于抗震设计。 方案二建筑底层平面非对称布置,可能导致交通组织不明确,但在设置两个入口后问题得到解决,营业大厅不布置在中间,而是放在最右边,有其单独的入口,中间用一道门即可与办公区的门厅隔离,达到设计要求。该方案楼梯布置较为合理,于门厅布置主楼梯一部,通向楼顶,设置防火卷门,即起到消防楼梯的作用,引导人流且同两部电

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

连杆设计的详细计算

第四章典型零部件 ( 连杆 ) 的设计 连杆是发动机最重要的零件之一,近代中小型高速柴油机,为使发动机结构紧凑,最合 适的连杆长度应该是,在保证连杆及相关机件运动时不与其他机件相碰的情况下,选取小的连杆长度,而大缸径的中低速柴油机,为减少侧压力,可适当加长连杆。 连杆的结构并不复杂,且连杆大头、小头尺寸主要取决于曲轴及活塞组的设计。在连杆的设计中,主要考虑的是连杆中心距以及大、小头的结构形式。。连杆的运动情况和受力状态都比较复杂。在内燃机运转过程中,连杆小头中心与活塞一起作往复运动,承受活塞组产生的往复惯性力;大头中心与曲轴的连杆轴颈一起作往复运动,承受活塞连杆组往复惯性力和不包括连杆大头盖在内的连杆组旋转质量惯性力;杆身作复合平面运动,承受气体压力和往复惯性力所产生的拉伸 . 压缩交变应力,以及压缩载荷和本身摆动惯性力矩所产生 的附加弯曲应力。 为了顺应内燃机高速化趋势,在发展连杆新材料、新工艺和新结构方面都必须既有 利于提高刚度和疲劳强度,有能减轻质量,缩小尺寸。 对连杆的要求: 1、结构简单,尺寸紧凑,可靠耐用; 2、在保证具有足够强度和刚度的前提下,尽可能的减轻重量,以降低惯性力; 3、尽量缩短长度,以降低发动机的总体尺寸和总重量; 4、大小头轴承工作可靠,耐磨性好; 5、连杆螺栓疲劳强度高,连接可靠。 但由于本设计是改型设计,故良好的继承性也是一个考虑的方面。 4.1 连杆材料 结合发动机工作特性 , 发动机连杆材料应当满足发动机正常工作所需要的要求。应具有 较高的疲劳强度和冲击韧性,一般选用中碳钢或中碳合金钢,如 45、40Cr 等,本设计中发动机为中小功率发动机,故选用一般的 45 钢材料基本可以满足使用要求。

东南大学建筑结构设计复试

趁还有点印象赶紧回忆下卷子吧要知道东大的复试卷子很难搞到 《建筑结构设计》 40分选择+20分填空+90分计算去年也是这个分布 选择都出自第三册上的选择题。注意一点,第三册上的选择题有些答案是第一册和第三册找不到了,不过今年也没考 填空也算是源自第三册选择吧,一条是根据建筑层标高算结构标高。一条是算个剪力,一条是算准永久组合和频遇组合 一条是数框剪结构的柱,墙,结构的个数。还算好,把第三册选择搞搞清楚就差不多 计算题共3条,每条30分。每一题有3问。 第一题类似于第三册水平结构那章的第2个例题,砌体结构加了个钢梁进行验算,但多了内容 第一问,钢梁与楼板无有效连接件。验算钢梁的强度,整体稳定,挠度 第2问,高厚比,还有啥的忘了 第2问,告诉你边跨跨内,支座配筋,验算楼板强度和裂缝 第二题是和第三册竖向结构那章的那个框架结构改造类似,但也复杂了 柱有牛腿,加了吊车梁,柱也是变截面。然后去掉吊车,将一梁搁在牛腿上,就和例题改造方案一类似 问题1:判断牛腿是否满足要求,通过算Dmax 问题2,画竖向荷载的内力图 问题3,算水平力下的位移 第三题,框架剪力墙 跟第一册书上例题差不多,我还以为不会考这么复杂 第1问,分别算框架,剪力墙分别受水平侧向荷载下得位移。框剪的位移15‘ 第2问,说明框架的最大层间位移的位置,剪力墙,,框剪的最大层位移的位置5‘ 第3问,当只有顶部有一根刚性连杆的时候,计算体系水平侧位移 题外话:对于外校生来说,建筑结构设计的卷子真的很难搞到手。我百度了很久,淘宝了很久,花了95大洋才弄了几张不知道是何年马月的期末卷子,还不全。郁闷,真烧钱。但这不代表东大的卷子真的就无迹可寻,只不过只在同学间流传,没公布到网上。所以如果你有学长朋友之类的,去问问吧。弄到一份卷子,你就赚了。至于像俺一样的外校,且无熟人,那只好老老实实的了。 复试中的面试 哎,复试的笔试加面试简直是让我郁闷透了。不知道最后个结果会怎么样。反正个人感觉很糟糕。提醒大家一下吧。专业面试也不是漫天随便问的,都是根据个人情况进行的。比如如果你本科学的桥梁,那就会问你个桥梁的问题。如果你工作过,问你干过哪些工程,顺带问这些工作方向的专业问题。所以,大家之前得想好,崩自我介绍的时候乱吹,否则问的问题范围会很大。至于英语面试,不谈了,英语一直是哥的痛。我就不信我整不好英语。 《结构力学》结构力学你想考多少分?130吗?那我劝你赶紧再把目标提高点吧。考140不是难事。要知道,东大的结构力学的出题并不灵活,题型从05年以后很固定。即便是08年,上面的题也该要掌握的。还有,东大土木今年上400分的好像有18个吧。你不在专业课上捞点分,难不成指望英语,数学这种每年一变的科目?况且专业课考140又没捞多少

曲柄连杆机构维修练习题

曲柄连杆机构习题 一、单选题(70 题) 1. 气缸体(盖)平面变形检验标准要求之一是,每50x 50 mm2范围内平面度误差不 大于()。B A. O.5mm; B.0.05mm ; C.O.005mm 2. 气缸盖变形,经铣削后造成的燃烧室容积变化,对于汽油机燃烧室容积减小不应小于公称 容积的()。C A. 10%; B.0.5 %; C.5 % 3. 气缸体平面变形较大时应采取()。A A. 磨削法修复; B. 铲削法修复; C. 研磨法修复 4. 气缸磨损最严重处多见于()。A A. 第一道环对应的气缸表面; B. 气缸中部位置; C. 气缸下部位置 5. 气缸的修理尺寸是根据气缸的()来确定的。A A. 最大磨损直径; B. 最小磨损直径; C. 磨损平均直径 6. 活塞的最大磨损部位是()。A A. 活塞环槽 B. 活塞销座孔 C. 活塞裙部 7. 发动机大修时,活塞销应选用()。B A. 加大一级活塞销 B. 与活塞同级别的活塞销 C. 标准活塞销 8. 活塞销与座孔试配合格的要求是()。B A. 以手掌之力能把活塞销推入销座孔的1/4,接触面积达75%以上 B. 以手掌之力能把活塞销推入销座孔1/2?2/3,接触面积达75%以上 C. 以手掌之力能把活塞销全部推入销座孔,接触面积达75%以上 9. 活塞环漏光度检验时,同一活塞环上漏光弧长所对应的圆心角总和不得超过( B )。 A. 25° B.45 ° C.90 ° 10. 造成连杆弯、扭变形的主要原因是()。C A. 曲轴弯曲 B. 装配不当 C. 发动机超负荷和爆燃

11. 连杆轴颈的最大磨损通常发生在()。C A. 靠近主轴颈一侧 B. 远离主轴颈一侧 C. 与油道孔相垂直的方向 12. 曲轴裂纹危害最大的是()。B A. 油孔附近的轴向裂纹 B. 曲柄臂与轴颈过渡区的横向裂纹 C.前二者都不是的其他部位裂纹 13. 主轴颈中心线是确定和检验曲柄半径的基准。所以磨削曲轴轴颈时,应当首先磨削()。A A. 主轴颈 B. 连杆抽颈 C. 无论哪个轴颈先磨都可以 14. 为了保证镗削后连杆轴承孔轴心线与连杆衬套孔轴心线的平行度,应当以( B )。 A. 连杆小头孔为定位基准 B. 连杆大端孔为定位基准 C.加工后的连杆小端衬套孔和与其配合的活塞销为定位基准 15. 发动机的有效转矩与曲轴角速度的乘积称之为(B )。 A、指示功率B 、有效功率C、最大转矩D、最大功率 16. 发动机在某一转速发出的功率与同一转速下所可能发出的最大功率之比称之为(D)。 A、发动机工况B 、有效功率C、工作效率D、发动机负荷 17. 燃油消耗率最低的负荷是()。C A、发动机怠速时 B、发动机大负荷时 C、发动机中等负荷时D 、发动机小负荷时 18. 汽车耗油量最少的行驶速度是()。B A、低速B 、中速C、全速D、超速 19. 曲轴上的平衡重一般设在()。C A、曲轴前端B 、曲轴后端C 、曲柄上 20. 曲轴后端的回油螺纹的旋向应该是()。B

建筑结构设计步骤

1、首先是柱网的布置,这一阶段你可以理解为概念设计,你要大概确定哪些位置需要布置柱,如果是某些对室内空间有要求的建筑,比如住宅,你还需要确定是布矩形柱还是L型柱或者T型柱,这一阶段你可以先不确定柱的尺寸,只要先确定哪些位置需要布置柱就行了。具体怎么布你需要查一查规范,这个我在这里也很难说清楚,一般主要是首先在保证结构尽量规整(比如框架尽可能要形成闭合体系,就是围成一个矩形)的基础上,根据建筑的使用要求再进行调整(比如有的地方不能放柱)。 2、确定梁的位置。一般没意外的话墙下尽可能要有梁,柱网没有形成闭合体系的地方要通过梁把两个闭合体系连接成一个整体,楼板跨度过大的地方要设置次梁,楼板开洞处板洞要用梁围合,梁不能凭空搭接,梁的两端要么搭在柱上,要么搭在别的梁上。以上两部分算概念设计,确实有规范可循,但主要靠经验,你可以查一查《建筑抗震设计规范》、《混凝土结构设计规范》 3、梁柱尺寸的确定,柱截面尺寸估算你可以根据轴压比公式来估算,不会的话百度下很多的,比较长我不细说了。梁高主要根据跨度取,我也不说多复杂了,主梁一般取1/10不到,次梁取1/12,梁宽你一般取200~350之间,高宽比最好不要大于2,主梁你可以外围的梁取250宽,中部的取300,次梁取200~250,比如一块7*9最边上的板,外部9米长的跨度部分取800*250,内部的取800*300,7米跨度部分外部的取600*250,内部的取600*300,9米跨一半的地方搭根次梁取500*250。 4、建模,其实前面3点已经是在PKPM里建模做了,第四部主要是加荷载,比如墙的重量转化成梁上的线荷载,板上的面层转化成楼面恒载等等,具体不细说了。然后楼层组装,设定建筑的一些系数,最后去SATWE里计算,然程序自动给你配筋 5、出施工图了,用梁平法和柱平法把施工图出出来让后根据制图规范改吧。 6、JCCAD里做基础,地质报告看看好,系数设好,布基础、地梁,导荷载,然后自动计算,写了好多了也不细说了,主要在1、2、3里给你讲下最开始怎么从梁柱的布置入手。 一、起因 与钢、混凝土、砌体等材料相比,土属于大变形材料,当荷载增加时,随着地基变形的相应增长,地基承载力也在逐渐加大,很难界定出一个真正的“极限值”,而根据现有 理论的、半理论半经验的或经验的承载力计算公式,可以得出不同的值。因此,地基极限承载力的确定,实际上没有一个可以通用的界定标准,也没有一个可以适用于一切土类的计算公式,主要依赖于根据工程经验所定下的界限和相应的安全系数加以调整,考虑一个满足工程要求的地基承载力值。它不仅与土质、土层埋藏顺序有关,而且与基础底面的形状、大小、埋深、上部结构对变形的适应程度、地下水位的升降、地区经验的差别等等有关,不能作为土的工程特性指标。 另一方面,建筑物的正常使用应满足其功能要求,常常是承载力还有潜力可挖,而变形已达到或超过正常使用的限值,也就是由变形控制了承载力。以往的工程实践证明,绝大多数地基事故皆由地基变形过大且不均匀造成。 因此,根据传统习惯,地基设计所选用的承载力通常是在保证地基稳定的前提下,使建筑

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

机械原理课程设计连杆机构b完美版

机械原理课程设计 任务书 题目:连杆机构设计B4 姓名:戴新吉 班级:机械设计制造及其自动化2011级3班 设计参数 设计要求: 1.用解析法按计算间隔进行设计计算; 2.绘制3号图纸1张,包括: (1)机构运动简图; (2)期望函数与机构实现函数在计算点处的对比表; (3)根据对比表绘制期望函数与机构实现函数的位移对比图;

3.设计说明书一份; 4.要求设计步骤清楚,计算准确。说明书规范。作图要符合国家标。按时独立完成任务。 目录 第1节平面四杆机构设计............................................ 1.1连杆机构设计的基本问题........................................... 1.2作图法设计四杆机构 (3) 1.3作图法设计四杆机构的特点 (3) 1.4解析法设计四杆机构 (3) 1.5解析法设计四杆机构的特点 (3) 第2节设计介绍.................................................... 2.1按预定的两连架杆对应位置设计原理 ................................ 2.2 按期望函数设计.................................................. 第3节连杆机构设计................................................ 3.1连杆机构设计..................................................... 3.2变量和函数与转角之间的比例尺 (8) 3.3确定结点值 (8)

曲柄连杆机构的拆装

曲柄连杆机构得拆装 实训步骤及操作方法: 1、曲柄连杆机构得拆卸 拆卸曲柄连杆机构机件时,应先将发动机外部机件拆卸,如分电器,发电机及V带、水泵、化油器、汽油泵、起动机与机油滤清器等。对于AFE电控汽油喷射发动机应拆卸节气门体、怠速稳定阀及燃油分配器等。 然后分解正时齿形带机构.先拆下齿形带护罩,转动曲轴使第一缸活塞处于压缩行程上止点,检查正时记号,凸轮轴正时齿形皮带轮上标记须与气门罩盖平面对齐,最后拆下张紧装置,拆下齿形带。 (1)拆下气缸盖 ①旋出气门罩盖得螺栓取下气门罩盖与档油罩; ②松下张紧轮螺母,取下张紧轮; ③拆下进、排气歧管; ④按要求顺序旋松气缸盖螺栓,并取下气缸盖与气缸盖衬垫;

⑤拆下火花塞 (2)拆下并分解曲轴连杆机构 ①拆下油底壳、机油滤网、浮子与机油泵; ②拆下曲轴带轮; ③拧下曲轴正时齿带轮固定螺栓,取下曲轴正时齿带轮; ④拧下中间轴齿带轮得固定螺栓,取下中间齿带轮;拆卸密封凸缘,取出中间轴; ⑤拆卸前油封与前油封凸缘; ⑥拆卸离合器压盘总成及飞轮总成,为保证其动平衡,应在飞轮与离合器壳上作装配记号; ⑦拆下活塞连杆组件: 拆下活塞连杆组件前,应检查连杆大端得轴向间隙,该车极限间隙值为0、37mm,大于此值应更换连杆。拆下连杆轴承盖,将活塞连杆组从气缸中抽出. 拆下活塞连杆组后,注意连杆与连杆大头盖与活塞上得记号应与气缸得序号一致,如无记号,则应重新打印. ⑧检查曲轴轴向间隙,极限轴向间隙为0、25mm,超过此值,应更换止推垫圈; ⑨按规定顺序松开主轴承盖螺栓,拆下主轴承盖,取下曲轴; ⑩分解活塞连杆组件。 2、曲柄连杆机构得装配 曲柄连杆机构得装配质量直接关系到发动机得工作性能,因此,装合时须注意下列事项。 ①各零部件应彻底清洗,压缩空气吹干,油道孔保持畅通; ②对于一些配合工作面(如气缸壁、活塞、活塞环、轴颈与轴承、挺杆等),装合前要涂以润滑油; ③对于有位置、方向与平衡要求得机件,必须注意装配记号与平衡记号,确保安装关系正确与动平衡要求,如正时链条、链轮、活塞、飞轮与离合器总成等。 ④螺栓、螺母必须按规定得力矩分次按序拧紧。螺栓、螺母、垫片等应齐全,以满足其完整性与完好性; ⑤使用专用工具。 安装顺序一般与拆卸顺序相反. (1)活塞连杆组得装合 ①将同一缸号得活塞与连杆放在一起,如连杆无缸号标记,应在连杆杆身上打所属缸号标记; ②将活塞顶部得朝前“箭头”标记与连杆杆身上得朝前“浇铸”标记对准; ③将涂有机油得活塞销,用大拇指压入活塞销孔与连杆铜套中,如压不进去,可用热装合法装配; ④活塞销装上后,要保证其与铜套得配合间隙为0、003~0、008mm ,经验检验法就是用手晃动活塞销与销孔铜套无间隙感,活塞销垂直向下时又不会从销孔或铜套中滑出。(注意铜套与连杆油孔对正); ⑤安装活塞销卡环; ⑥用活塞环专用工具安装活塞环,先装油环,再装第二道环,最后装第一道环,环得上下面不能装错,标记“TOP”朝活塞顶; ⑦检查活塞环得侧隙、端隙。

建筑结构设计计算步骤探讨

新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。以SATW软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。 1.完成整体参数的正确设定 计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。 (1)振型组合数是软件在做抗震计算时考虑振型的数量。该值取值太小不能正确 反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。《高层建筑混凝土结构技术规程》5.1.13-2 条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9 倍,且计算振型数应使振型参与质量不小于总质量的90%。一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。振型组合数是否取值合理,可以看软件计算书中的x, y 向的有效质量系数是否大于0.9 。具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9 ,若小于0.9 ,可逐步加大振型个数,直到x,y 两个方向的有效质量系数都大于0.9 为止。必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3 倍。如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。 (2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发祥该角度绝对值大于15 度,应将该数值回填到软件的“水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。 (3)结构基本周期是计算风荷载的重要指标。设计人员如果不能事先知道其准确值,可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。 上述的计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。 2. 确定整体结构的合理性 整体结构的科学性和合理性是新规范特别强调内容。新规范用于控制结构整体性的

曲柄连杆机构

曲柄连杆机构 第二章曲柄连杆机构 一、选择题: 1. 在曲柄连杆机构中,引起发动机水平振动的是()力。 a. 往复惯性力 b. 离心惯性力 c. 气体压力 d. 惯性力 2. 当汽油机转速为3000~6000r/min 时,活塞冲程为()冲程/ 秒。 a. 100~200 b. 50~100 c. 150~250 d. 250~300 3. 曲轴箱的型式有三种,其刚度由大到小顺序为()。 a. 平分式龙门式隧道式 b. 龙门式隧道式平分式 c. 隧道式龙门式平分式 d. 隧道式龙门式平分式 4. 492Q 型汽油机气缸体采用()铸造。

a. 合金铸铁 b. 优质灰铸铁 c. 铝合金铸铁 d. 球墨铸铁 5. 活塞在工作状态下发生椭圆变形,是由于()作用的结果。 a. 侧压力 b. 销座处热膨胀 c. 侧压力和销座热膨胀 d. 气体压力、侧压力和销座处热膨胀 6. ( ) 用来减少第一道环的热流。 a. 油环 b. 隔热堤 c. 气环 d. 活塞销 7. 活塞环的数目由()决定的。 a. 气体压力 b. 缸壁间隙和气体压力 c. 发动机转速 d. 气体压力、缸壁间隙和发动机转速 8. 在作功冲程时,气环的密封作用,主要靠()。 a. 第一密封面的密封作用 b. 第二次密封作用

c. 活塞环本身的弹力 9. 为了保护活塞裙部表面,加速走合,在活塞裙部较多采用的措施是()。 a. 涂石墨 b. 喷油润滑 c. 镀锡 d. 镀铬 10. 活塞环的泵油作用,是由活塞环()存在引起的。 a. 开口间隙和侧隙 b. 开口间隙和背隙 c. 缸壁间隙 d. 侧隙和背隙 11. 外扭切环多装于第()道环槽。 a. 一 b. 一和二 c. 二和三 d. 一和三 12. 扭曲环之所以会扭曲是因为()。 a. 加工成扭曲的 b. 环断面不对称 c. 气体压力作用 d. 活塞环弹力作用

相关文档
最新文档