扑翼仿真飞行器--仿生蜻蜓

扑翼仿真飞行器--仿生蜻蜓
扑翼仿真飞行器--仿生蜻蜓

概念图

该设计只考虑理论实现的可能性

该仿生机器人分为以下几个模块

1,动力模块,蜻蜓身体两侧可以安装伺服电机。翅膀由轻质金属混合太阳能电池板构成,兼顾飞行需求和能量补充。

2,能量储存模块,位于蜻蜓尾部,长柱状结构能够容纳聚合物电池,作为伺服电机和其他设备的动力来源。

3,控制模块。蜻蜓的躯干可以充分的容纳控制电路板,控制蜻蜓的飞行以及协调各个其他部位的运行。

4,信息采集模块。蜻蜓的头部拥有很好的广角,合适的微型摄像机能清晰的捕捉图像信息

扑翼飞行器在飞行控制方面有比较好的表现。起飞和降落时都可以把相对飞行速度控制在一个很低的水平,只需要在蜻蜓原本的腿部安装轻质弹性结构,就可以比较好的满足起飞和降落需求。考虑到降落时的导航误差,也可以考虑用铺开的弹性大网回收扑翼飞行器。

可能面临的问题,

1,在现行的技术条件下,整体重量超标,可能飞行动力不足。

2,目前的电池储存技术和光伏技术可能和该飞行器的需求上有一定的差距。

3,该蜻蜓的智能化程度需求很高,可能在技术难度上偏高。

以上只是我的思路,

微型扑翼飞行器的现状及关键技术

无人机 本文2007-08-02收到, 作者分别系海军航空工程学院讲师、副教授和助教 图1 微型蝙蝠飞行器 微型扑翼飞行器的现状及关键技术 郭卫刚 贾忠湖 康小伟 摘 要 微型扑翼飞行器是高新技术的产物,是当前国内外研究的热点。简述了微型扑翼飞行器目前的发展现状,提出发展微型扑翼飞行器的几项关键技术,并对微型扑翼飞行器的发展趋势进行了展望。 关键词 扑翼机 微型飞行器 微机电系统(ME M S) MAV(M icro A ir Veh icle微型飞行器)由于具有特殊的用途(如侦察、电子干扰、搜寻、救援、生化探测等)而倍受关注。根据美国国防高级研究计划局(DARPA)提出的要求,微型飞行器的基本技术指标是:飞行器各个方向的最大尺寸不超过150mm,续航时间20m i n~60m in,航程达到10km以上,飞行速度22k m/h~45km/h,可以携带有效载荷,完成一定的任务[1]。 按飞行原理的不同,MAV分为固定翼、旋翼、扑翼三大类型。固定翼布局有许多问题亟待解决,如升阻比相对较小,在低雷诺数状态下机翼不能提供足够的升力,遭遇突风难以保持稳定等。旋翼布局尽管能够垂直起降和悬停,但其飞行速度低,质量大,仅适宜于在比较狭小的空间或复杂地形环境中使用。而综观生物的飞行,无一例外都是采用扑翼飞行方式。同常规布局相比,扑翼布局仅用一套扑翼系统就可代替螺旋桨或喷气发动机提供推力;扑翼可以使MAV像昆虫和鸟类那样低速飞行、盘旋、急转弯甚至倒飞;扑翼下面可以产生一种涡流,这是扑翼飞行器飞行的必要助推力,扑翼飞行器可以通过自身机翼扇动产生的上下大气压差来飞行。微型扑翼飞行器具有一般航空飞行器无法比拟的机动和气动性能,与无人侦察机相比,具有以下优势:可以低速飞行,可以随意改变方向,可以悬停,还可以向后倒退。 1 研究现状 在DARPA的资助下,微型扑翼飞行器的研究得到了很大进展,主要有加州理工学院与加利福尼亚洛杉矶大学共同研制的微型蝙蝠(M icrobat[2]),斯坦福研究中心和多伦多大学共同研制的引导者(M en-tor),乔治亚理工研究院及其协作者研制的昆虫机(Ento m opter)。 1.1 微型蝙蝠 微型蝙蝠是最早的电动扑翼飞行器,其机翼是采用微电机系统(ME MS)技术加工制作而成的。通过质量轻、摩擦低的传动机构将微电机的转动变为机翼的扑动。 加州理工学院在DARPA的倡议下依据仿生昆 19 飞航导弹 2007年第12期

仿生扑翼飞行器的发展与展望

仿生扑翼飞行器的发展与展望 摘要:本文简要介绍了仿生扑翼飞行器的概念、特点及其历史,概述了仿生扑翼飞行器在国内外早期和当前的研究现状及未来的发展趋势。在此基础上,就目前研究中迫切需要解决的一些关键技术进行了讨论,并结合目前研究情况,对我国仿生扑翼飞行器的未来发展前景进行了展望。 关键词仿生;扑翼飞行器;微型飞行器;关键技术 Abstract:The concept,characteristics and usage of flapping-wing air vehicle are briefly introduced.The present research situation and future development trend of FA V are summarized. According to these,several key technologies of FA V are discussed.Taking into account the present situation .the future on the research of FA V in China is outlined. Key words:Bionics ; Flapping-wing air vehicle ; Micro air vehicle ; Key technology 1仿生飞行的历史与进展 1.1向鸟类学习 在中国两千年以前的航空神话和传说中,就有“人要是长着翅膀,就能在空中飞行”、“人骑着某种神奇的动物,可以飞行”等反映古人飞行理想和愿望的文字记载。多数昆虫长着一左一右两个或4个翅膀,他们都是飞行家,飞行技术非常高明。但因为昆虫比较小,翅膀的运动速度太快,不易被观察,在古人眼里,只认为鸟类是可以模仿的、最好的飞行家。传说中春秋时代(公元前770-前481)后期,鲁国著名的能工巧匠公输盘(有些史籍也记作“公输班”)研究并花费3年时间制造了能飞的木鸟,又名木鸢。如图所示 1.2实现飞行 1783年,法国蒙哥尔费兄弟发明热气球并载人飞行,开始了人类真正的空中航行。在人类利用轻于空气的航空器获得成功的 同时,也对重于空气的航空器一飞机进行探索和试验。英国的乔治.凯利(Cayley G)率先提出利用固定机翼产生升力的概念,他把鸟的飞行原理从上升和推进两种功能区别 开来,设计制造了能载人的滑翔机。1903 年莱特兄弟在滑翔机基础上加装自制内燃 机制成的“飞行者”1号试飞成功,持续时间59秒,标志着动力飞机飞行成功,开辟了人类的飞行新纪元,人类翱翔蓝天的梦想 得以真正实现。 1.3微型飞行器 1992年,美国国防高级研究计划局召开了关于未来军事技术的研讨会,第一次提出了微型飞行器MAY(Micro Air Vehicle)的概念,并提出其量级与昆虫及小鸟相似。从现有的研究情况看,微型飞行器按其飞行方式可分为传统的固定翼布局、旋翼布局和仿生扑翼式布局3类。固定翼式和旋翼式微型飞行器的研究迄今为止都达到了相当的水平。2000年8月,“Black Widow”原型机经过不断改进后,留空时间达到30分钟,最大活动半径为1.8km,最大飞行高度约235m,飞行重量为80克。旋翼微型飞行器因能垂直起降和悬停,比较适宜于在室内等狭小空间或较复杂地形环境中使用。回顾人类飞行的历史,研究者们重新认识到,纵观自然界的飞行生物,无一例外均采用扑翼的飞行方式,扑翼飞行是生物进化的最优飞行方式。于是人们又开始着眼于扑翼飞行器的研究。微型扑翼飞行器的机动性、灵活性及低能耗等方面可与蜻蜓、蜜蜂、或蜂鸟等飞行生物相媲美。经过近20年来研究者们的共同努力,微型扑翼飞行器在仿生学飞行机理、能

仿鸟柔性扑翼气动特性与能耗的数值研究

仿鸟柔性扑翼气动特性与能耗的数值研究 Revised on November 25, 2020

仿鸟柔性扑翼气动特性与能耗的数值研究 肖天航,段文博,昂海松 ( 南京航空航天大学航空宇航学院,江苏 南京 210016) 摘 要:建立了适当的三维仿鸟柔性扑翼模型,并以配平重力和平衡阻力为条件,数值计算了它的低雷诺数非定常 流场。研究揭示了翼面初始扭转角度、动态俯仰幅度等重要设计参数与飞行性能的关系,表明扑翼平面的初始扭转 程度、扑翼柔性材料的选择以及两者之间的合理搭配对扑翼机的成功飞行至关重要。研究分析了仿鸟扑翼的流场 涡结构、升力推力产生原理,下扑过程附着上翼面的前缘涡是升力产生的重要机制。对扑翼气动功率的比较分析也 发现,人造扑翼机需要的气动功率明显高出同等大小的鸟类,在效率方面尚不及扑翼飞行生物。 关键词:微型飞行器; 柔性扑翼; 非定常流; 气动特性; 数值模拟 中图分类号:V 211. 1 5 文献标识码:A 动机理方面发挥着重要作用。孙茂教授团队、 R a - m a m u r t h i 、W a n g 等在昆虫扑翼高升力机理的数值 研究方面做了大量的工作,并有不少重要的发现。仿鸟 扑翼由于尺寸更大,速度更快,其雷诺数比昆虫扑翼更 高些。对仿鸟扑翼气动特性的数值模拟研究,比较有代 表性的 工作有,R og e t 等通过建立适当的动网格模 型,数值研 究了弯折变形扑翼的流场; 左德参等针对 仿鸟刚性薄板扑翼、宋书恒、谢辉等针对刚性 NA- CA0014 矩形扑翼,考察了扑动参数对气动特性的影响。 这些研究都有力地推动了扑翼非定常空气动力研究的 进展。但目前针对仿鸟扑翼的数值研究大多将扑翼假 设为刚性不变形模型,不能反映柔性扑翼流场的真实情 况; 研究内容也主要着重于考察各扑动参数对总气动力 的影响,较少关心柔性参数的协调搭配和气动力能否配 平扑翼机重力、前飞阻力问题; 扑翼机的功率消耗和效 率问题也较少涉及。 本文以南京航空航天大学研制的某型扑翼微型飞 行器为基础,建立适当的柔性扑翼模型,在非结构可变 形动态嵌套网格上,数值模拟该仿鸟扑翼的低雷诺数非 定常流场,并以升力平衡重力、推力平衡阻力为条件,构 建重要扑动参数之间的协调搭配关系,研究仿鸟柔性扑 翼的升力推力产生机理和气动功率消耗,分析流场涡结 构的分布和发展情况,同时尽可能地将数值计算结果与 0 引 言 随着微型飞行器研究的深入,扑翼越来越受到重 视,根据仿生学和空气动力研究成果预见,翼展小于 15cm 的微型飞行器,采用扑翼方式比固定翼或旋翼更 具优势。近年来,有关扑翼空气动力的研究,在理 论、实验和数值计算方面都已逐步开展。在实体模型方 面,能实现扑翼飞行的微型扑翼机也相继研制出来,较 成 功的有“M i c r o B a t ”,南京航空航天大学、西北工 业大学的扑翼机等。 目前研制成功的扑翼机大多都有一个共同的特 点: 翅膀由前缘骨架辅以柔性薄膜构成,体型尺寸和 中等偏小的鸟类相差不多,扑动方式也与该体型的鸟类 类似,是仿鸟单对扑翼飞行。以仿鸟飞行为基础的单扑 翼是研究扑翼飞行器的基础,但即使是单扑翼,仿鸟扑 翼的研究也仍然面临相当大的挑战: 其一,很难研制 出像鸟翅膀那样的能弯折、变形、张开和收拢的符合空 气动力学规律的羽翼; 其二,鸟翼复杂的扭转扑动和柔 性变形; 其三,目前的仿鸟扑翼机在稳定性、机动性和效 率等方面仍与鸟类相差很远。因此,扑翼的相关研究任 重道远,扑翼的空气动力原理及气动特性更是首先要探 明的基础问题。 随着计算流体力学的发展,数值模拟在揭示扑翼气 收稿日期:2010-09-03; 修订日期:2011-03-02 基金项目:中国博士后科学基金( 113) ; 江苏省博士后科研资助计划基金( 0902086C) ; 南航大基本科研业务费专项( N S 2010025) 作者简介:肖天航( 1979 - ) ,男,湖南衡阳人,讲师,研究方向: 计算流体力学、飞行器设计. E -m a i l : xthang@ n u aa . e d u . c n *

仿生扑翼飞行器设计与制作

仿生扑翼飞行器设计与制作 摘要:随着仿生学的发展和材料动力技术的不断进步,人类能更好的模仿生物的运动,向大自然学习,服务人类。像鸟一样的飞行是人类几千年的梦想,近几年科研人员在扑翼飞行器的研究和制造方面有了很大的发展,目前世界上已经出现了许多扑翼飞行器,但其仿生程度任然较低。通过学习和研究我们选用了对称的五杆机构来实现飞行器的机翼的动作,并按照飞行原理设计了飞行器的升力机构和推力机构,最后做出了实物,进行了飞行试验。 关键词:仿生;扑翼飞行器;五杆机构;空气动力学;飞行试验 Designing and producting of the flapping wing flight vehicle in bionics ABSTRACT: Along with the development of bionics and material power technology advances, mankind can better imitate biological movement, learning to nature and servicing human. Flying Like a bird is the dream of human for several thousand years, In recent years researchers Made great progress in the flapping wing flight vehicle research and manufacturing. There are already some kind of the flapping wing flight vehicles in the word recently, but the bionic degree lower still. With the studying and researching we choose the symmetrical five-bar mechanism to realize the action of the wing of the aircraft, According to the principle of fly. I design the lift institutions and thrust institutions. Finally I made the craft, and test it. KEY WORDS:Bionic; The flapping wing flight vehicle; Five-bar mechanism; Aerodynamics; Flight test

微型扑翼飞行器机翼气动特性研究

微型扑翼飞行器机翼气动特性研究⒇ 杨淑利,宋文萍,宋笔锋,邵立民 (西北工业大学航空学院翼型叶栅空气动力学国防科技重点实验室,陕西西安 710072) 摘 要:依据微型扑翼飞行器产生升力和推力的机理,设计了一套能够快速、有效求得扑翼飞行器机翼气动特性的计算方法。计算程序通过Visual Basic和Fo rtra n语言混合编程来实现,核心部分是利用改进的片条理论方法估算扑翼机翼的气动性能。计算结果与在西北工业大学微型飞行器专用风洞中所进行的吹风试验结果吻合良好,证明了该方法的正确性和有效性。在此基础上,研究了不同机翼平面形状、不同展弦比、不同上下扑时间比对微型扑翼飞行器机翼气动性能的影响,这些参数对微型飞行器的设计有一定的指导和参考意义。 关 键 词:微型扑翼飞行器,片条理论,机翼,风洞试验 中图分类号:V211.3 文献标识码:A 文章编号:1000-2758(2006)06-0768-06 于20世纪90年代提出的微型扑翼飞行器通过机翼扑动不仅可以产生升力,还可以产生维持扑翼飞行的推力,取代了用螺旋桨或喷气式发动机作为推进器,因此气动效率较固定翼飞行器高出很多[1]。 在研制微型扑翼飞行器时,为了能快速、有效地估算机翼气动特性,本文发展了一套基于改进的片条理论[2]的扑翼气动力计算方法,计算程序是通过Visual Basic和Fo rtra n语言混合编程实现的。计算方法在应用片条理论的基础上,还综合考虑了结构弹性、涡尾迹、失速、翼剖面平均迎角和摩擦阻力等因素的影响。 采用本文方法能够求解扑翼机翼的平均升力、推力、输入和输出功率及推进效率等。所得计算结果和风洞吹风试验结果吻合良好,证明了本文方法的正确性和有效性。另外,本文还研究了机翼平面形状、展弦比、上下扑时间比对机翼气动特性的影响,这些参数对微型飞行器的设计有一定指导和参考意义。 1 机翼气动特性计算方法简述 应用改进的片条理论计算机翼的气动参数,首先,沿展向方向将机翼分成2n个翼剖面,在机翼扑动运动中的每一时刻,求出每个翼剖面的升力和推力,然后叠加得到整个机翼的瞬时升力和推力。 图1显示了第i个翼剖面所受的力和力矩示意图。机翼扑动轴为左右机翼对称轴,弹性轴为机翼的前梁,机翼随前梁的弯曲而弯曲,随其扭转而扭转。第i个翼剖面的弯曲和扭转用h i和θi表示。h i垂直于扑动轴,表示第i个翼剖面的位移;θi位于h i和扑动轴所组成的平面内,表示第i个翼剖面弦向与来流方向的夹角。首先要求得h i和θi运动参数,进而求得i段机翼的气动参数 。 图1 第i个翼剖面的力和力矩示意图 由图1可知 h i=(h0)i+h~i 2006年12月第24卷第6期 西北工业大学学报 J o urnal o f N o rthw estern Po ly technica l U niv er sity Dec.2006 V o l.24N o.6 ⒇收稿日期:2006-02-21 作者简介:杨淑利(1982-),女,西北工业大学硕士生,主要从事微型飞行器的研究。

扑翼式飞行器的发展与展望

扑翼式飞行器的发展与展望 从古至今,人们从没有放弃过对翱翔梦的追求。不仅在许多的古书名著中都有长着翅膀的角色形象,人们也一直在用实际行动尝试着各种飞行的可能。昆虫和鸟类的超强飞行能力逐渐引起了人们的关注,早在中国的汉代时期、欧洲的中世纪就有人模拟鸟类进行飞行活动的记载。随着科技的快速发展,以及飞行器在军事上和民用上的广泛应用前景,扑翼式飞行器已经成为当今的研究热点。 1扑翼式飞行器的发展史 1.1 扑翼式飞行器的早期发展 历史上记载了许多人们对飞行的各种尝试方法,《墨子?鲁问》中记载,鲁班制造的木鸟可以飞行三天;古代中国甚至有人将大鸟的羽毛贴在身上试图飞起来,但最终都失败了。人们逐渐认识到想要飞行必须加上合适的机械装置。 15世纪70年代,著名发明家莱昂纳多?达芬奇设计出一种由飞行员自己提供动力的飞行器,并称之为“扑翼飞机”。“扑翼飞机”模仿鸟儿、蝙蝠和恐龙时代的翼龙,具有多个翅膀。达芬奇认为扑翼机具备推力和提升力。之后人们仿照它进行了很多尝试,有的可以上下蹦跳几下,有的摔成碎片,结果都失败了。 1874年,法国生物学家马雷用连续拍摄的方式初步掌握了鸟类复杂的飞行扑翼动作,以当时的技术水平,这种高难度的动作是无法实现的,与此同时热气球的出现,就使早起人们对制造飞行器尝试告一段落,研究开始转向了其他领域。 1.2扑翼式飞行器国内外的研究现状 随着仿生技术、空气动力学和微加工技术的日益发展,加之军事和民用的广泛应用前景,扑翼式飞行器再次成为了国内外科学领域研究的热点。1997年,DAPRA投入3500万美元,开始了为期四年的MAV的研究计划。加州理工学院、多伦多大学、佐治亚技术研究所、佛罗里达大学、Vanderbilt大学等单位研制了不同结构的扑翼MAV,翼展一般在15cm左右,多采用电池提供能源,飞行时间约在几分钟到十几分钟。加州大学伯克利分校研制的“机器苍蝇”扑翼MAV 总重约为43mg,直径为5mm~10mm,采用太阳能电池和压电驱动。 西北工业大学研制的扑翼MAV采用聚合物锂电池和微型电机驱动,可实现扑翼15Hz~20Hz左右的频率上下拍动,翼展超过15cm。 2扑翼式飞行器的优势及可行性 按照飞行原理的不同划分,MAV可分为固定翼、旋翼和扑翼三种。同其他形式的微型飞行器相比,扑翼式飞行器可以通过自身机翼扇动产生的上下大气压差来飞行。它具有尺寸小、噪音弱、灵活性强、隐蔽性好的特点。 通过分析昆虫各个部分的结构,选用合理的驱动装置,并由电池或其他化学物质提供能源,仿照昆虫结构,同时辅以MEMS设备和装配技术,便可以加工制造出扑翼式微型飞行器。 3关键技术 3.1 空气动力学问题 微型飞行器不同于普通飞机,它的雷诺数大约在104左右,空气的粘性阻力相对比较大,并且扑翼式飞行器是以模仿鸟和昆虫类扑翅运动为基础,但是昆虫和鸟类的翅膀是平面薄体结构,而非机翼的流线型。我们应充分研究这种非传统

超小型仿生扑翼飞行器扑翼结构有限元分析

目录 摘要 (1) ABSTRACT (2) 0 引言 (4) 1 国内外仿生扑翼飞行器研究的发展综述 (6) 1.1 国外研究的现状 (6) 1.2 国内研究的现状 (10) 1.3 课题研究的主要内容 (11) 2 超小型仿生扑翼飞行器扑翼有限元模型的建立 (11) 2.1 有限元分析的概述 (11) 2.1.1 有限元分析的原理 (11) 2.1.2弹性力学基础 (14) 2.2 ANSYS软件的介绍 (21) 2.2.1 前处理模块PREP7 (22) 2.2.2 求解模块SOLUTION (23) 2.2.3 后处理模块POST1和POST26 (24) 2.3 扑翼有限元模型的建立 (24) 2.3.1 超小型仿生扑翼飞行器扑翼几何物理模型的建立 (25) 2.3.2 单元类型的选择 (28) 2.3.3 单元特性的定义 (30) 2.3.4 有限元网格划分 (31)

2.4 本章小结 (32) 3 超小型仿生扑翼飞行器扑翼的静态力学特性讨论 (33) 3.1 超小型仿生扑翼飞行器扑翼的结构线性静力学分析 (33) 3.2 超小型仿生扑翼飞行器扑翼的结构非线性静力学分析 (37) 3.3 初探材料特性对仿生扑翼刚度等性能的影响 (40) 3.4 本章小结 (45) 4 结论 (45) 参考文献 (47) 译文 (50) 原文说明 (60)

摘要 超小型仿生扑翼飞行器是一种模仿鸟类或昆虫飞行的新概念飞行器,在应用技术上超出了传统的飞机设计和气动力的研究范畴,同时开创了微机电系统技术(MEMS)在航空领域的应用。设计和制造具有良好动力学特性的高效仿生扑翼,是超小型仿生扑翼飞行器研究中的一个关键环节,同时也是目前非常富有挑战性的研究难题。 本文利用有限元的基础理论,对仿照蜻蜓翅翼,设计的仿生扑翼进行结构静力学等内容的分析,研究了超小型仿生扑翼飞行器扑翼的结构特性等。文中的建模、分析方法及所得结论,为超小型仿生扑翼飞行器扑翼的设计、制作和应用提供了一定的理论依据。 本文基于蜻蜓真实的翅翼样本,利用ANSYS10.0软件,分别建立了仿生扑翼1和仿生扑翼2的几何结构模型,并通过选择适当的单元类型及设定特性参数,完成三维仿生扑翼1和仿生扑翼2的有限元模型。在此基础上,对超小型仿生扑翼飞行器扑翼进行静态特性分析,分别对仿生扑翼1和仿生扑翼2进行线性和非线性力学分析,比较两种情况下结构的变形及应力等静态性能,并初步探讨了改变材料特性对仿生扑翼刚度变形的影响,总结出仿生扑翼的几何外形和结构布局以及材料都会对扑翼的刚性产生一定的影响。 关键词:超小型飞行器,仿生扑翼,有限元分析

仿生扑翼飞行器原理

仿生扑翼飞行器原理 一.扑翼飞行器简介 扑翼飞行器是区别于固定翼飞行器、旋转翼飞行器的另一类飞行器,其飞行原理直接来自自然界的鸟类和昆虫的飞行方式。与固定翼和旋转翼相比有明显的优势。与固定翼飞行器相比,它可同时将举升、悬停、推进等功能集中在一个扑翼系统中;与旋转翼飞行器相比,它的能量利用率更高,即可推进飞行,也可滑翔飞行,而且更灵活。 二.飞行器的飞行原理 传统飞行器大致可分为三类:一类是根据牛顿第二定律,即作用力与反作用力定律,获得空气的反作用力进行飞行的,包括各类固定、旋转、扑翼飞行器;第二类是阿基米德原理,获取空气的浮力进行飞行,如各类飞艇,热气球;第三类是根据动量守恒定理飞行的,如,火箭,宇宙飞船的飞行等。 由上可知扑翼飞行器的动力来源是空气对飞行器的反作用力。从简单飞艇入手,飞行器的上升原因是因为空气对其竖直向上的推力大于其自身的重力。要获得前进方向的运动必须还得有一个水平的推力,这样飞行器才能完成基本的飞行。比如固定翼飞行器,一般由引擎提供水平的推力,机翼在高速气流的作用下产生升力,再如直升飞机,由引擎提供升力,螺旋桨与水平面的夹角产生的分力作为推力。 综上所述,扑翼飞行器必须能同时获得空气对其在水平和竖直方向上的足够的反作用力,即升力和推力,才能完成简单飞行。 三.对鸟类飞行的分析

了辉煌的成就,但是鸟类仍 是地球上最棒的‘飞行器’。 这里以鸽子作为研究对象。 鸽子可以在前进方向上以任 何角度飞行,还可以从容的 变化飞行姿势,随时转弯, 随意的起飞降落,同时飞行 动作可以清楚的观察。 鸽子的飞行主要归功于它灵活有力的翅膀和尾翼。下面我们将试着简 单的说明一下鸽子的飞行原理。根据前面的飞行原理,鸽子的翅膀必 须能产生竖直向上的升力和水平的推力(这两个力不一定是严格的水 平和竖直)。 1.升力的产生:在这里我们先假设空气是静止的。鸽子的翅膀可以围 绕身体作一定角度的摆动,向下摆动时翅膀展开,向上摆动时翅膀折 叠成到V形,而且往返摆动的时间不相等(这个有待验证)。由于翅 膀上下摆动时受力面积不同,从而导致翅膀上下摆动时的受力大小不 同,向下摆动时空气对翅膀的反作用力F1(竖直向上)大于向上摆 动时空气对翅膀的反作用力F2(竖直向下), 当F1>G时,产生向上的升力 连续的飞行动作是一个循环的过程,循环单元就是翅膀做一次 上下摆动,向上摆动记作T1,向下摆动记作T2。

载人扑翼飞行器研制的可行性报告

载人扑翼飞行器研制的可行性报告 摘要:北京二环到五环频频全线拥堵,上海高峰时段驾车出行举步维艰,深圳交通遭遇黑色周一,道路堵塞已成常态,十五个大城市每日因拥堵蒙受损失十几亿元,拥堵已成为各大城市的流行病,2010年中秋前夜的一场秋雨,北京上海各地出现创纪录大堵车,北京一地160条道路堵塞,济南,成都,长沙也显拥堵现象,交通拥堵已向二三线城市蔓延。随着中国经济社会的高速发展,人民生活水平的快速提高,机动车保有量以及增长速度屡创新高。据调查,现在每增加100万辆车,北京需要增加的公路里程数至少应该达到2800公里,这一数字相当于三环以内已经有的公路网络的容量,因此,很难在道路上面再去拓展,再去增加。各种治堵方案层出不穷,但至目前为止,作用有限,效果不尽人意。故而,对于人们日常出行,如果思考角度从地面二维空间向低空三维空间转变,鉴于三维空间的无限性,通过一种合适的方式和手段,必能解决现有的各种出项困局。 扑翼飞行器是人类最古老的梦想之一,就是能够肩插双翅像鸟一样在天空自由飞翔。与传统的固定翼和旋翼飞行器相比,扑翼飞行器的主要特点是,将升力、悬停、推进、控制功能全面集成于扑翼系统中,可以用很少的能量进行远距离飞行,同时具有高效率、高机动性、低噪音、无须专用起飞着陆场地等。 载人的大致上可以分为两类:一类是手动的,就是动力来源于手臂扑扇;一类是引擎作为动力来源的。在1894年左右,一个叫做奥多Otto Lilienthal的家伙在德国变得非常出名,主要是他几次公开的滑翔飞行,而且都成功了。同时这位老兄也对扑翼飞机进行了数次的实验。最后他还建造了这样的一架飞行器,可惜这位老兄走的太早,这项工程就没有完成。 最近的(意思就是中间的我就不搞文字工作了)在2010.8.2号,多伦多航空学院的一个哥们叫做todd reichert,试飞了一架人力的扑翼飞机,这飞机有个好名字叫做雪鸟。这架翼展达32M重约92.59磅的大家伙使用碳纤维、玻萨轻木、泡沫制作而成的;这个飞机可以飞15.91英里每小时。 2,空气动力学原理 如果你想深入的了解扑翼飞机,编者的建议是去英文网页搜索,那里有很多注释。

【CN109850144A】一种太阳能扑翼仿生飞行器【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910302505.6 (22)申请日 2019.04.16 (71)申请人 吉林大学 地址 130012 吉林省长春市前进大街2699 号 (72)发明人 张志君 陈默 杨贺捷 梁玉辉  辛相锦  (74)专利代理机构 长春吉大专利代理有限责任 公司 22201 代理人 邵铭康 朱世林 (51)Int.Cl. B64C 33/00(2006.01) B64C 33/02(2006.01) B64D 27/24(2006.01) (54)发明名称 一种太阳能扑翼仿生飞行器 (57)摘要 一种太阳能扑翼仿生飞行器属飞行器技术 领域,本发明中扑翼飞行器采用微型直流电机与 二级齿轮减速器的连接来驱动扑翼结构;仿生扑 翼太阳能薄膜翼板提供了铺放柔性薄膜太阳能 电池板的空间;扑翼飞行器尾翼由两个舵机分别 驱动曲柄转动,带动连杆摆动以实现尾翼的上 下、左右四个方向的转动。本发明能实现扑翼飞 行器的节能、高效、可持续,同时鸟类翅膀、尾翼 的结构及运动方式,在本发明的仿生扑翼飞行运 动得以体现,具有结构新颖、传动机构简单可靠、 能源可再生的优点。权利要求书2页 说明书5页 附图9页CN 109850144 A 2019.06.07 C N 109850144 A

权 利 要 求 书1/2页CN 109850144 A 1.一种太阳能扑翼仿生飞行器,其特征在于:由太阳能薄膜右翼板(A)、驱动-传动装置 (B)、太阳能薄膜左翼板(C)和仿生尾翼(D)组成,其中:所述的太阳能薄膜右翼板(A)和太阳能薄膜左翼板(C)为关于机身a-a中轴线的对称结构;太阳能薄膜右翼板(A)中右连杆(2)的a孔(a)与驱动-传动装置(B)中限位杆对a(15)上的i孔(i)和摇臂a(12)上的n孔(n)活动连接;右连杆(2)的b孔(b)经螺栓与摇臂对a(12)上的m孔(m)固接;太阳能薄膜左翼板(C)中左连杆(3)的a1孔(a1)与驱动-传动装置(B)中限位杆对b(36)上的i1孔(i1)和摇臂对b(35)上的n1孔(n1)活动连接;左连杆(3)的b1孔(b1)经螺栓与摇臂对b(35)上的m1孔(m1)固接;仿生尾翼(D)铰接于机身(1)的后端;仿生尾翼(D)中机身(1)的q槽(q)、r槽(r)、s槽(s)经o孔(o)与驱动-传动装置(B)的固定架(20)固接;驱动-传动装置(B)的太阳能充电控制器(32)和蓄电池(33)与侧机架(18)固接;太阳能充电控制器(32)与太阳能薄膜右翼板(A)和太阳能薄膜左翼板(C)的太阳能电池板(4)电路连接,蓄电池(33)一端连接太阳能充电控制器(32),蓄电池(33)另一端连接驱动-传动装置(B)的无刷电机(7)。 2.按权利要求1所述的一种太阳能扑翼仿生飞行器,其特征在于:所述的太阳能薄膜右翼板(A)与太阳能薄膜左翼板(C)为关于机身a-a中轴线的对称结构,其结构相同,方向相反,均由太阳能电池板(4)、翼板(5)、骨架(6)组成,其中骨架(6)上设有p孔(p);太阳能薄膜右翼板(A)上还设有右连杆(2),右连杆(2)左端设有a孔(a)和b孔(b);太阳能薄膜左翼板(C)上还设有左连杆(3),左连杆(3)右端设有a1孔(a1)和b1孔(b1);太阳能薄膜左翼板(C)的骨架(6)经p孔(p)与左连杆(3)固接,翼板(5)由骨架(6)支撑;太阳能电池板(4)粘接于翼板(5)上面;太阳能薄膜右翼板(A)的骨架经p孔与右连杆(2)固接,翼板由骨架支撑;太阳能电池板粘接于翼板上面。 3.按权利要求1所述的一种太阳能扑翼仿生飞行器,其特征在于:所述的驱动-传动装置(B)由无刷电机(7)、右机架(8)、一级小齿轮(9)、一级大齿轮(10)、二级小齿轮a(11)、摇臂对a(12)、轭a(13)、驱动杆对a(14)、限位杆对a(15)、二级大齿轮a(16)、螺栓组a(17)、侧机架(18)、二级小齿轮b(19)、固定架(20)、左机架(21)、一级轴(22)、二级轴(23)、二级大齿轮b(24)、轭b(34)、摇臂对b(35)、限位杆对b(36)、驱动杆b(37)和螺栓组b(38)组成,其中:右机架(8)与左机架(21)为关于机身a-a中轴线的对称结构;右机架(8)上设有c孔(c)、d孔(d)、e孔(e)、f孔(f)、g孔(g)和h孔(h);左机架(21)上设有c1孔(c1)、d1孔(d1)、e1孔(e1)、f1孔(f1)、g1孔(g1)和h1孔(h1);限位杆对a(15)上设有i孔(i);摇臂对a(12)上设有j孔(j)、k孔(k)、m孔(m)和n孔(n);限位杆对b(36)上设有i1孔(i1);摇臂对b(35)上设有j1孔(j1)、k1孔(k1)、m1孔(m1)和n1孔(n1);固定架(20)上设有o孔(o);右机架(8)与左机架(21)平行排列,并经侧机架(18)固接;无刷电机(7)经c孔(c)、d孔(d)、e孔(e)、f孔(f)与右机架(8)螺栓固接;无刷电机(7)经c1孔(c1)、d1孔(d1)、e1孔(e1)、f1孔(f1)与左机架(21)螺栓固接;一级小齿轮(9)固接于无刷电机(7)输出端;一级轴(22)与二级轴(23)平行排布;一级轴(22)上自右至左依次固接二级小齿轮a(11)、一级大齿轮(10)和二级小齿轮b(19),且一级轴(22)两端活动连接于右机架(8)的g孔(g)和左机架(21)的g1孔(g1)上;二级轴(23)上前后固定安装着二级大齿轮a(16)和二级大齿轮b(24),且二级轴(23)两端活动连接于右机架(8)的h孔(h)和左机架(21)的h1孔(h1)上;一级小齿轮(9)与一级大齿轮(10)啮合;二级小齿轮a(11)与二级大齿轮a(16)啮合;二级小齿轮b(19)与二级大齿轮b(24)啮合;限位杆对a(15)固接于右机架(8)右侧;摇臂对a(12)上的n孔(n)经销轴与连杆(1)的a孔(a)、限位 2

仿生扑翼飞行器原理

仿生扑翼飞行器原理 This model paper was revised by the Standardization Office on December 10, 2020

仿生扑翼飞行器原理 一.扑翼飞行器简介 扑翼飞行器是区别于固定翼飞行器、旋转翼飞行器的另一类飞行器,其飞行原理直接来自自然界的鸟类和昆虫的飞行方式。与固定翼和旋转翼相比有明显的优势。与固定翼飞行器相比,它可同时将举升、悬停、推进等功能集中在一个扑翼系统中;与旋转翼飞行器相比,它的能量利用率更高,即可推进飞行,也可滑翔飞行,而且更灵活。 二.飞行器的飞行原理 传统飞行器大致可分为三类:一类是根据牛顿第二定律,即作用力与反作用力定律,获得空气的反作用力进行飞行的,包括各类固定、旋转、扑翼飞行器;第二类是阿基米德原理,获取空气的浮力进行飞行,如各类飞艇,热气球;第三类是根据动量守恒定理飞行的,如,火箭,宇宙飞船的飞行等。 由上可知扑翼飞行器的动力来源是空气对飞行器的反作用力。从简单飞艇入手,飞行器的上升原因是因为空气对其竖直向上的推力大于其自身的重力。要获得前进方向的运动必须还得有一个水平的推力,这样飞行器才能完成基本的飞行。比如固定翼飞行器,一般由引擎提供水平的推力,机翼在高速气流的作用下产生升力,再如直升飞机,由引擎提供升力,螺旋桨与水平面的夹角产生的分力作为推力。 综上所述,扑翼飞行器必须能同时获得空气对其在水平和竖直方向上的足够的反作用力,即升力和推力,才能完成简单飞行。 三.对鸟类飞行的分析

尽管人类对飞行器的研究有了辉煌 的成就,但是鸟类仍是地球上最棒的 ‘飞行器’。这里以鸽子作为研究对 象。鸽子可以在前进方向上以任何角度 飞行,还可以从容的变化飞行姿势,随 时转弯,随意的起飞降落,同时飞行动 作可以清楚的观察。 鸽子的飞行主要归功于它灵活有力的翅膀和尾翼。下面我们将试着简单的说明一下鸽子的飞行原理。根据前面的飞行原理,鸽子的翅膀必须能产生竖直向上的升力和水平的推力(这两个力不一定是严格的水平和竖直)。 1.升力的产生:在这里我们先假设空气是静止的。鸽子的翅膀可以围绕身体作一定角度的摆动,向下摆动时翅膀展开,向上摆动时翅膀折叠成到V形,而且往返摆动的时间不相等(这个有待验证)。由于翅膀上下摆动时受力面积不同,从而导致翅膀上下摆动时的受力大小不同,向下摆动时空气对翅膀的反作用力F1(竖直向上)大于向上摆动时空气对翅膀的反作用力F2(竖直向下), 当F1>G时,产生向上的升力 连续的飞行动作是一个循环的过程,循环单元就是翅膀做一次上下摆动,向上摆动记作T1,向下摆动记作T2。

基于仿生学的扑翼机设计与仿真

基于仿生学的扑翼机设计与仿真 苏扬、邵冠豪、史佳针、李根、李凯兴 (中国民航大学航空工程学院,天津,300300) 摘要:仿生扑翼飞行器是一种模仿昆虫或鸟类扑翼飞行的新型飞行器。由于具有重量轻、体积小、隐身性、可操作性好和成本低等特点,在国防和民用领域均有十分广泛的应用前景。本文主要介绍了基于仿生学研制的某小型扑翼无人飞行器,并对其设计思想和制作工艺进行详细阐述与说明。 关键词: 仿生学扑翼机无人侦察制作工艺 0 前言 论文详细介绍了一款基于仿生学研制的小型扑翼无人飞行器。该扑翼飞行器可以作为无人侦察机使用,整机重20g,采用四翅扑翼机构,翼展为280mm,整机全长仅190mm。该机采用轻木为材料来制作机身,KT板来制作尾翼。不但价格低廉,加工方便,而且还能很大程度上保持较轻的重量和足够的强度。扑翼传动机构采用3D打印技术进行制作,材料为PLA塑料。整机外形尺寸是以家燕为仿生对象来进行设计的,整机的外形尺寸参数如表1所示。 表 1 扑翼无人飞行器试验机结构参数(单位mm) 名称机身长度机身宽度机身最高处翼展机翼弦长机翼厚度垂尾高度 参数190 40 35 280 85 0.015 55 1 扑翼飞行器的设计与建模 扑翼机构采用四翅机构是由于四翅机构可以利用Wei-Fogh效应而产生较高的升力[2],这会对之后添加工作负载产生很大的帮助。机身结构外形尺寸参数是根据尺度效应[3]来确定的,在最大限度地减重和模仿家燕的同时,还留有一定的可调裕度以适应不同重量的负载。尾翼结构采用应用较为成熟的常规式尾翼。控制方面采用电磁舵机+微型接收机来作为控制舵面的方式。整机三维建模如图1所示。

仿生扑翼飞行器原理

仿生扑翼飞行器原理标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

仿生扑翼飞行器原理 一.扑翼飞行器简介 扑翼飞行器是区别于固定翼飞行器、旋转翼飞行器的另一类飞行器,其飞行原理直接来自自然界的鸟类和昆虫的飞行方式。与固定翼和旋转翼相比有明显的优势。与固定翼飞行器相比,它可同时将举升、悬停、推进等功能集中在一个扑翼系统中;与旋转翼飞行器相比,它的能量利用率更高,即可推进飞行,也可滑翔飞行,而且更灵活。 二.飞行器的飞行原理 传统飞行器大致可分为三类:一类是根据牛顿第二定律,即作用力与反作用力定律,获得空气的反作用力进行飞行的,包括各类固定、旋转、扑翼飞行器;第二类是阿基米德原理,获取空气的浮力进行飞行,如各类飞艇,热气球;第三类是根据动量守恒定理飞行的,如,火箭,宇宙飞船的飞行等。 由上可知扑翼飞行器的动力来源是空气对飞行器的反作用力。从简单飞艇入手,飞行器的上升原因是因为空气对其竖直向上的推力大于其自身的重力。要获得前进方向的运动必须还得有一个水平的推力,这样飞行器才能完成基本的飞行。比如固定翼飞行器,一般由引擎提供水平的推力,机翼在高速气流的作用下产生升力,再如直升飞机,由引擎提供升力,螺旋桨与水平面的夹角产生的分力作为推力。 综上所述,扑翼飞行器必须能同时获得空气对其在水平和竖直方向上的足够的反作用力,即升力和推力,才能完成简单飞行。 三.对鸟类飞行的分析

尽管人类对飞行器的研究有了辉煌 的成就,但是鸟类仍是地球上最棒的 ‘飞行器’。这里以鸽子作为研究对 象。鸽子可以在前进方向上以任何角度 飞行,还可以从容的变化飞行姿势,随 时转弯,随意的起飞降落,同时飞行动 作可以清楚的观察。 鸽子的飞行主要归功于它灵活有力的翅膀和尾翼。下面我们将试着简单的说明一下鸽子的飞行原理。根据前面的飞行原理,鸽子的翅膀必须能产生竖直向上的升力和水平的推力(这两个力不一定是严格的水平和竖直)。 1.升力的产生:在这里我们先假设空气是静止的。鸽子的翅膀可以围绕身体作一定角度的摆动,向下摆动时翅膀展开,向上摆动时翅膀折叠成到V形,而且往返摆动的时间不相等(这个有待验证)。由于翅膀上下摆动时受力面积不同,从而导致翅膀上下摆动时的受力大小不同,向下摆动时空气对翅膀的反作用力F1(竖直向上)大于向上摆动时空气对翅膀的反作用力F2(竖直向下), 当F1>G时,产生向上的升力 连续的飞行动作是一个循环的过程,循环单元就是翅膀做一次上下摆动,向上摆动记作T1,向下摆动记作T2。

扑翼飞行器研制现状

扑翼飞行器研制现状 UTIAS Ornithopter No.1 多伦多大学有动力单座扑翼飞行器 WIKI UTIAS Ornithopter No.1 Role Experimental ornithopter Manufacturer University of Toronto Institute for Aerospace Studies Designer James DeLaurier First flight 8 July 2006 Number built 1 The UTIAS Ornithopter No.1 (registration C-GPTR) was an ornithopter built in Canada in the late 1990s. On 8 July 2006, it took off under its own power, assisted by a turbine jet engine, making a flight of around 300 metres that lasted 14 seconds. Specifications General characteristics Crew: One pilot Length: 7.47 m (24 ft 6 in) Wingspan: 12.56 m (41 ft 2 in) Gross weight: 322 kg (710 lb)

Powerplant: 1 × K?nig SC-430, 18 kW (24 hp) Performance Cruising speed: 82 km/h (51 mph) Ornithopter Report for 8 July 2006 Hello Everyone We have been runway testing once again. Recall that testing last year was curtailed because of problems with the jet-boost engine. At first this was due to electromagnetic interference: the main engine’s ignition scrambling the jet’s electronic control unit. Measures were taken to correct this, both by us and AMT Netherlands (the engine’s manufacturer). However, after this was dealt with a new problem occurred, where the engine’s glow plug simply wouldn’t ignite. A big clue was that the RPM wasn’t being displayed on the EDT (Electronic Data Terminal), and it turned out that the RPM sensor was damaged. AMT sent us a new one, and the problem was solved. A run-up on 8 June showed no problems with both engines, and the aircraft was then on standby for runway testing. The weather was suitable on Saturday, 8 July, and the team met early in the morning. The first run was at 9:00 and 50 mph was reached with the wings flapping at 0.8 Hz. There were a couple of brief liftoffs, but nothing close to sustained flight. Essentially, this was a repeat of the last run from 2005. The second run was at 9:10 and 51 mph was reached with 1.0 Hz flapping. Again, brief liftoffs were attained, but longer and higher. Runs 3 and 4 (9:20 and 9:38) were virtually identical, with slightly above 50 mph being reached with flapping between 1.05 and 1.1 Hz. Some very large hops were attained, but the engine was throttled back before the hopping continued. The final run was at 10:16, and the wings were given maximum throttle (1.0 Hz). The aircraft then lifted off and stayed off of the runway for a sustained flight of 14 seconds. The height was above one meter and the distance covered was about a third of a kilometer. After about 10 seconds of straight and level flight (amazing looking by the way), a cross wind caused the right wing to begin lifting and the aircraft began to experience roll divergence. Jack Sanderson then throttled back and brought it down, but its roll angle by that time was large enough that it touched the left wing tip and spun around to collapse the nose gear. Jack was fine and the damage isn’t drastic, so the team was in a celebratory mood while walking the aircraft back to the hangar. The important thing to remember is that the aircraft needed the jet boost to stay aloft. It wasn’t a pure flapping-wing flight. We had known that the wing was marginal because it was trying to fly a 770 lb aircraft, whereas it was designed for a 600 lb aircraft. Ornithopter wings are not happy operating at off-design conditions. What we learned is that the wing is actually slightly sub-marginal (not unexpected) and the jet boost was needed. Of course, in all fairness I should say that the jet alone

相关文档
最新文档