泰克DSA71604C示波器眼图测试V1.0

泰克DSA71604C示波器眼图测试V1.0
泰克DSA71604C示波器眼图测试V1.0

泰克DSA71604C示波器眼图测试

泰克DSA71604C示波器测试眼图目前有2种方法;一种是利用余辉来进行测试;第二种是利用示波器内置的DPO-JET 软件来进行测试,本文以第二种测试方法为主做个简单的介绍,以求抛砖引玉;

用示波器探头测试到信号,然后点击示波器面板上run/stop键停止测试,再点击示波器软件菜单File—>Save as—>Waveform,弹出Save as菜单,此时在Source这一栏选择刚才测试用的示波器探头所在的channel(这里我们示波器测试探头为CH1),然后在Save in:Oscilloscope Memory这一栏Ref1,Ref2,Ref3,Ref4中随便选择一个,在这里我们选择Ref3,然后点击Save;

然后关闭CH1,点击示波器软件菜单File—>Reference Waveform Controls,此时会在示波器屏幕底部出现一个Reference面板(figure 1),并且在Reference这一栏会自动选择刚才存储在示波器内存里的波形,但此时波形是关闭的,需要点击Display开关将OFF变成ON,这时示波器才会调出刚才保存在示波器内存里的波形,点击Reference 面板右侧的X关闭Reference面板;

figure 1

接下来就开始启动DPO-JET软件,点击Analyze > Jitter and Eye Analysis > One Touch Jitter,DPO-JET会自动对选择的波形进行分析,并自动将分析结果转化为图形(figure 2)

figure 2

此时可看到下列测试选项(figure 3),在select这一栏有Period/ Freq,jitter,time,eye,ampl这五个子项,每个

子项又包含了若干细的测试选项,比如现在可以在Period/Freq里面加入Freq测试项,然后点击Recalc

按钮重新对波形进行分析画图,现在就可以在result这一栏里看到测出的Freq值(figure 4),此时测出为5.3985GHz

figure 3

figure 4

由于示波器测试时默认用的Recovery Clock是Constant Clock(figure 5),所以测试时需要在Configure这一栏将Recovery Clock改为PLL Custom BW模式(figure 6),PLL Mode可以选择Type1或者Type2(这里我们选择Type1),

在Loop BW里设置为3Mhz,然后点击Recalc按钮重新对波形进行分析画图,这样分析出来的数据会更真实;

Figure 5

Figure 6

在Plot这一栏用户可以选择要画的图的类型(figure 7),比如DPO-JET软件默认画的图为Eye Diagram,Histogram,

Bathtub和Spectrum,如果用户想改变或增加画图类型可以在Plot这一栏进行操作,然后再点击Recalc

按钮重新对波形进行分析画图;

figure 7

最后的Reports这一栏是作为刚才最后一次的测试结果的保存(figure 8),DPO-JET软件会将测试结果保存为一个.mht的测试报告文件(用IE浏览器打开),此测试报告文件包含了测试环境,测试配置条件,测试结果等所有信息;

Figure 8

测试报告截图如下(将测试报告分为9个部分截图):

眼图观测实验

实验目的 1、掌握眼图观测的方法。 2、掌握相关眼图的测量方法。实验目的 1、观测眼图。 2、测量沿途的判决电平、噪声容限。 实验模块 1、通信原理0 号模块一块 2、通信原理11 号模块一块 3、示波器 一台实验原理 在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。.

在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用图7.6所示的图形来描述。由此图可以看出: 1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。 3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 )在抽样时刻,阴影区的垂直宽度表示最大信号失真量。4. 5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决; 6)横轴对应判决门限电平。实验步骤 I、观测眼图:1、按如下方式连线:

眼图常用知识介绍

眼图常用知识介绍 关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著 以及色散对长距离传输后的眼图的影响 如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣 现在我们公司常用的测量眼图的仪器为CSA8000 1眼图与常用指标介绍 下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光 功率Rise下降时间峰值抖动 RMSJ 消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议 衡量器件是否符合要求除了满足建议要求之外 一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传 输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á? μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò? óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045 Q因子综合反映眼图的质量问题表明眼图的质量越好 光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好 如果需要准确地测量光功率 信号的上升时间下降的快慢 的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升 峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718 在测量抖动的时候才能保证测量值相对准确 做为一个比较参考一般在发送侧的测量值都大于30dB

工程师必须懂得眼图分析方法

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。 通常眼图可以用下图所示的图形来描述,由此图可以看出: (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

安捷伦-86100c 示波器中文

DCA-J Agilent 86100C 宽带示波器主机和模块 技术指标 四合一仪器 数字通信分析仪、 全功能高带宽示波器、时域反射计,同时还是一台抖动分析仪● ● ● ● ● ● ● ● 自动抖动和振幅干扰分解 内部生成码型触发 模块化平台,测试速率高达40 Gb/s 及以上的信号波形最宽的数据速率覆盖范围,具有光参考接收机,可 用于进行时钟恢复 内置S 参数和TDR 测量 兼容Agilent 86100A/B 系列、83480A 系列和54750 系列模块 小于200 fs 的固有抖动 开放的操作系统- Windows? XP Pro

目录概述 特性 测量 其他功能 技术指标 主机和触发 (包括精密时基模块)计算机系统和存储器 模块 概述 模块选型表 技术指标 多模/ 单模 单模 双电 TDR 时钟恢复 订货信息 2 3 7 8 12 14 15 16 17 19 20 21 22 25

infiniium DCA-J概述特性 四合一仪器 86100C Infiniium DCA-J是一台功能强大的仪器,它 集四种功能于一身: ·通用高带宽采样示波器:新增的码型锁定触发功能,显著增强了其作为通用示波器的用途 ·数字通信分析仪:新推出的眼线模式(Eyeline Mode)测试功能,为进行眼图分析增添了强大的工具 ·时域反射计 ·抖动分析仪 轻松选择所需的仪器模式,立即开始测量。 可以灵活地进行配置,满足用户需求 86100C 支持广泛的模块,可以同时测试光信号和 电接口信号。用户可以选择适合的模块,获得所需的 特定带宽、滤波功能和灵敏度。 码型锁定触发加强了采样示波器的功能 86100C 上的增强触发选件(选件001)为等时采样示波器提供了一项前所未有的重要能力。这种新的触 发机制可使DCA-J 以重复的输入数据码型生成触发, 即码型触发。以前,这种能力需要使用码型源才能向 示波器提供此类触发输出。PatternLock 自动检测码型 长度、数据速率和时钟速率,使得复杂的触发机制对 用户完全透明。 PatternLock 使86100C 工作起来给用户的感觉更像是一个实时示波器。它大大简化了在数据码型中对特 定比特位的研究工作。因此,熟悉实时示波器,但不 太熟悉等效时间采样示波器的用户也将能够快速使用 这款仪器。 PatternLock 为码型触发增加了一个全新的方式, 使得主机软件能够以出色的时基精度,在数据码型的 特定位置进行采样。这一功能是86100C 具备的许多新功能(将在下文中描述)的基础构件。抖动分析 DCA-J 中的“J”代表抖动分析。86100C 是一款具 有抖动分析功能的数字通信分析仪。86100C 增添了第 四种操作模式抖动模式。超高带宽、低固有抖动和先 进的分析算法,在抖动测量中提供了最高的精度。 随着电接口和光接口应用中数据速率的增加,抖 动日益成为一个测量挑战。把抖动分解为各种组成成 分进行分析也变得越来越重要。抖动分析可使用户深 入了解设备及系统设计中的抖动裕量和性能优化情况。 许多新兴标准都要求分解抖动,以满足标准。传统上, 抖动分离技术非常复杂,通常很难配置;而随着数据 速率的增加,能够分离抖动的仪器也变得非常有限。 DCA-J 可提供简单地单键设置和执行高级波形分析。抖动模式把抖动分解为各种组成成分,并把抖动 数据用各种信息量丰富的形式显示出来。抖动模式以86100C 支持的所有速率运行,消除了传统上从复杂的 抖动分析中传统数据速率的限制。86100C 在抖动分析 方面实现了几种关键特点: ·超低固有抖动(随机抖动和确定性抖动),实现了非常低的抖动本底噪声,提供了无可比拟的抖动测量 灵敏度。 ·高带宽测量通道,实现了极低的固有抖动,可对 40 Gb/s 及以上的所有数据速率进行抖动分析。 · PatternLock(码型锁定)触发技术提供了出色的采样效率,实现了非常快的抖动测量速度。 抖动分析功能分为两个软件包选件。选件200 是增强的抖动分析软件;选件201 是高级波形分析软件。选件200 包括: ·把抖动分解为总体抖动(TJ)、随机抖动(RJ)、确定性抖动(D J )、周期抖动(P J )、数据相关抖动(DDJ)、占空比失真(DCD)以及由码间干扰(ISI)引起的抖动。 ·以各种图形和表格形式显示抖动数据 ·把抖动数据导出为方便的定界文本格式 ·保存/ 调用抖动数据库 ·抖动频谱 ·隔离和分析子速率抖动(SRJ),即比特率的整数子速率(integer sub-rate)时的周期抖动。 · Bathtub 曲线显示 ·可以调节的总体抖动概率 Windows 是微软公司在美国的注册商标。 3

眼图观测实验 光纤通信_实验5实验报告

课程名称:光纤通信 实验名称:实验5 眼图观测实验 姓名: 班级: 学号: 实验时间: 指导教师: 得分:

一、实验目的 1、了解和掌握眼图的形成过程和意义。 2、掌握光纤通信系统中的眼图观测方法。 二、实验内容 1、观测数字光纤传输系统中的眼图张开和闭合效果。 2、记录眼图波形参数,分析系统传输性能。 三、实验器材 1.主控&信号源模块 2.25号光收发模块 3.示波器 四、实验原理 1、实验原理框图

眼图测试实验系统框图 2、实验框图说明 本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道; 通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。 3、眼图基本概念及实验观察方法 所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。 ●被测系统的眼图观测方法 通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。 眼图测试方法框图 ●眼图的形成示意图

一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。 八种状态如下所示: 八种状态示意图 眼图合成示意图如下所示: 眼图合成示意图 一般在无串扰等影响情况下从示波器上观测到的眼图与理论分析得到的眼图大致接近。 ●眼图参数及系统性能 眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光

光纤通信系统测量中的眼图分析方法

实验四 光纤通信系统测量中的眼图分析方法测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验仪器 1、ZYE4301F 型光纤通信原理实验箱1台 2、20MHz 模拟双踪示波器1台 3、万用表1台 三、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测量,并且可以用示波器直观的显示出来。图1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种不同有 组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图2所示的眼图,是由3比特长8种组合码叠加而成,示波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图3所示的形状规则的眼图进行分析: 1、当眼开度 V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V V ?增加,无畸变眼图的眼皮厚度应该等于零。 图1眼图的测试系统

3、系统无畸变眼图交叉点发散角b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度- +-++-V V V V 应该等 于零。 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算: 定时抖动= %100??Tb T

光纤通信系统的眼图测试实验

太原理工大学现代科技学院 光纤通信课程实验报告 专业班级 学号 姓名 指导教师

实验名称 光纤通信系统的眼图测试实验 同组人 专业班级 学号 姓名 成绩 实验三 光纤通信系统的眼图测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验内容 1、测量数字光纤通信系统传输各种数字信号的眼图 2、观察系统眼图,并通过眼图来分析系统的性能 三、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、20MHz 双踪模拟示波器 1台 3、万用表 1台 4、FC/PC-FC/PC 单模光跳线 1根 5、850nm 光发端机和光收端机(可选) 1套 6、ST/PC-ST/PC 多模光跳线(可选) 1根 四、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测 量,并且可以用示波器直观的显示出来。图20-1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用 数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 图1、眼图测试系统框图 ……………………………………装………………………………………订…………………………………………线………………………………………

伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种 不同有组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图20-2所示的眼图,是由3比特长8种组合码叠加而成,示 波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图20-3所示的形状规则的眼图进行分析: 1、当眼开度V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、 信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V 增加,无畸变眼图的眼皮厚度应该等于零。 3、系统无畸变眼图交叉点发散角 b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲 失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算:定时抖动= …………………………………装……………………………………订………………………………………线……………………………………………

Agilent 2000系列示波器

InfiniiVision 2000 X 系列示波器 技术资料 新一代示波器: 突破性技术为同等预算提供性能更优异的示波器

突破性技术为寻求经济型示波器的客户带来更高性能 Agilent InfiniiVision X 系列示波器概览 InfiniiVision 2000 X 系列 InfiniiVision 3000 X 系列 模拟通道2?和?4?个模拟通道 数字通道数MSO 型号标配?8?通道 可通过?DSOX2MSO 升级MSO 型号标配?16?通道 可通过?DSOX3MSO 升级带宽?(可升级)70、100、200 MHz 100、200、350、500 MHz 采样率1 GSa/s, 通道全开2 GSa/s, 半通道交叉模式2 GSa/s, 通道全开4 GSa/s, 半通道交叉模式存储器深度100 kpts 每通道2 Mpts 标配, 4 Mpts 可选(选件?DSOX3MemUp)波形更新速率 50,000?个波形/秒1,000,000?个波形/秒WaveGen 内置?20 MHz 函数发生器有?(选件?DSOX2WAVEGEN)有?(选件?DSOX3WAVEGEN)搜索和导航无有 串行协议分析无 有(多个选件)分段存储器有?(选件?DSOX2SGM)有?(选件?DSOX3SGM)模板极限测试有?(选件?DSOX2MASK)有?(选件?DSOX3MASK)AutoProbe 接口 无 有 安捷伦科技公司是市场上发展最为快速的示波器厂商: 我们致力于投资技术发展,为您解决测量难题。安捷伦对高新技术的孜孜以求为您带来了 InfiniiVision X 系列示波器,以满足较少的预算仍需求出色的性能、功能与灵活性客户的需求。无论您在工作中需要基础入门级的 示波器还是有较多分析能力的示波器,您都希望获得最大程度的投资回报。InfiniiVision X 系列示波器共有 26 种型号,确保为您提供既满足当前需求,又可在未来进行升级的产品。 是否需要更深的存储器或更多带宽? 请看?InfiniiVision 7000B 系列示波器 ● 2?或?4?个模拟通道以及?16?个可选的数字通道● 100 MHz ~ 1 GHz 带宽● 8 Mpts 存储器?(标配)● 搜索和导航功能 ● 提供串行协议分析应用软件● 提供?FPGA 动态探头应用软件 更多详情,请见 https://www.360docs.net/doc/7d10034671.html,/find/7000

眼图观测

眼图观测 实验目的 1、掌握眼图观测的方法。 2、掌握相关眼图的测量方法。 实验模块 1、通信原理0 号模块一块 2、通信原理11号模块一块 3、示波器一台 实验原理 在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 图23-1 眼图的一般描述 在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。当有码间串扰时,波形失真,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用图7.6所示的图形来描述。由此图可以看出: 1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。 3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

数字光纤通信系统信号眼图测试

实验二数字光纤通信系统信号眼图测试 一.实验目的 1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理; 2.学习通过数字示波器调试、观测眼图; 3.掌握判别眼图质量的指标; 4.熟练使用数字示波器和误码仪。 二.实验原理 眼图是估计数字传输系统性能的一种十分有效的实验方法。这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。图2.1是测量眼图的装置图。由AV5233C误码仪产生一定长度的伪随机二进制数据流(AMI码、HDB3码、RZ 码、NRZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。光接收机将从光纤传输的光脉冲变为电脉冲,并输入到AV4451(500MHz)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。 用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。AV5233C误码仪用来产生伪随机数字序列信号。在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。例如N可取7、10、15、23、31等。如果只考虑3比特非归零码,应有如图2.2所示的8种组合。将这8种组合同时叠加,就可形成如图2.3所示的眼图。 图2.1 眼图测量装置

眼图分析

清风醉明月 slp_art 随笔- 42 文章- 1 评论- 20 博客园首页新随笔联系管理订阅 眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eye diagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图

眼图测量方法B

三、眼图测量方法 之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。“叠加显示”就是用模拟余辉的方法不断累积显示。 传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。图一形象表示了这种方法形成眼图的过程。 图一传统眼图测量方法的原理 传统方法的第一个缺点就是效率太低。对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。 如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。这种同

Agilent示波器使用

Agilent54621A/22A/24A示波器使用方法 以Agilent54622A示波器为例,介绍一下Agilent示波器的使用方法: 一、示波器的注意事项: 使用示波器首先要保证,示波器和测试机器不能共地,否则会造成炸机或损坏示波器,所以我们为保证安全使用示波器,一般会将示波器电源线地线剪掉。 为保证测试波形的正确有效性,须根据所测试的波形,选择正确合适的频率、幅值范围;为保证所测试波形的正确有效性,尽量不要将已经抓住的波形展开,避免因将波形展开而造成波形失真,最好在测试时就选择好正确量程范围。 二、前面板纵览: 如下图所示,54622A示波器的前面板: 通过示波器的前面板的纵览,示波器主要包括显示和控制面板: 1)、示波器显示包括通道采集、设置信息、测量结果,以及用于设置参数的软键,如图:

通过上图可看出,示波器显示具体有以下内容: 状态行:最上面一行,包括垂直、水平和触发设置信息; 显示区:显示区包括波形采集、通道识别符,以及模拟触发和地电平指示器; 测量行:测量行一般包括自动测量结果和游标测量结果,但它也能显示高级触发设置数据和菜单信息; 软键:可以使用这些软键为前面板键设置其它参数。 2)、控制面板如图: 我们首先看一下做出标识部分的旋钮、按键的功能,其它按键功能我们将在后面做详细讲解:标识1为水平扫描速度(时间/格)旋钮,当对其旋转时,注意所引起的状态行显示出扫描速度值的变化; 标识2为延迟时间旋钮,旋转时注意在状态行中它的量值的变化,它是用于水平移动的,中心值为0.00s处,可以进行左右移动,移动显示数值为时基参考点(零位中心值)和触发点(旋钮所在位置)间的距离; 标识3为扫描方式选择按键,可选择对波形采用何种方式扫描,在我们使用的这款示波器中,有三种选择方式: Main-采用主扫描模式测试波形,时间范围为50s~5ns; Roll-采用滚动模式测试波形,时间范围为50s~500ms; Delayed-采用延迟工作模式,此模式下波形分成两半,延迟扫描的图标会出现子阿显示屏首行中央,显示屏的上半部分显示主扫描,而下半部分显示延迟扫描; 标识4为Entry旋钮,许多软键可使用此键来选择量值; 标识5为2个通道的幅值调节范围,如果使用普通探棒,其幅值范围为50V~10MV,所以在测试超出此范围的波形时需使用差动探棒; 标识6为位置旋钮,用来垂直移动信号,如果信号已过校准零位,会随着转动位置旋钮短时显示电压值,指示参考地电平与屏幕中心的距离,还应注意屏幕左端的参考地电平符号随位

眼图测量

眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eyediagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出: (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图 图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。

是德科技keysight7000B系列示波器说明书技术资料安捷伦agilent

Agilent InfiniiVision 7000B 系列示波器 技术资料 提供最佳的信号可视性

2 为什么不考虑现在订购一台? 示波器是一种用来观测信号的工具。由于通用示波器除了显示传统示波器通道的信号之外, 还需要更大的空间以显示数字信号和串行信号, 因此具有高分辨率的大尺寸显示屏变得越来越重要。 想知道其中的奥秘吗? 安捷伦工程师开发的 I nfiniiVision 7000B 系列示波器采用了先进的技术,与市场上的任何其他示波器相比,可使您看到更多微小的信号细节和更多的偶然事件。请看 I nfiniiVision 7000B 系列示波器 — 业界最佳的信号查看产品。 体验 InfiniiVision 7000B 系列示波器卓越性能的最佳方法就是亲自去看一看。欢迎您现在就与安捷伦科技公司联系申请试用。 InfiniiVision 7000B 系列具有高达 1 GHz 的带宽。每个型号都配有 12.1 英寸 XGA LCD 大显示屏, 并且非常轻巧, 仅有 6.5 英寸深、13 磅重。 InfiniiVision 7000B 系列示波器有 14 种型号可供选择。 安捷伦还为客户先前购买的 7000 系列 DSO 提供了升级套件, 只需 5 分钟即可将 DSO 轻松升级至 MSO 。

3 InfiniiVision 7000B 系列为什么具有最佳信号可视性? 1. 最大的显示屏 示波器是一种显示被测信号波形的工具,而大尺寸、高分辨率显示屏可以提升示波器的显示能力。因为通用示波器除了要显示传统的示波器通道,还需要更大的空间来显示数字和串行信号,所以更大的显示屏变得越来越重要。 使用更大尺寸的显示屏,您能够同时轻松查看多达 20 个基于串行协议的通道。12.1 英寸的显示屏比同类产品几乎大了 40%。 2. 最快的架构 与其他任何一款示波器相比,可显示被测信号更多的细节。InfiniiVision 7000B 系列可显示其他示波器可能错过的抖动、偶然事件和微小的信号细节。旋转旋钮,仪器就可快速而轻松地响应。需要查看数字通道吗? 仪器同样可以灵敏地做出响应。需要解码串行数据包? Agilent InfiniiVision 系列具有业界唯一的硬件加速串行总线解码功能,能够在不影响模拟测量的同时进行串行调试。 InfiniiVision 示波器在先进的 0.13 μm ASIC 中集成了采集存储器、波形处理和显示存储器。这种已获专利的第三代技术(MegaZoom III)利用响应灵敏、始终可用的深存储器,每秒可采集高达 100,000 个波形。 3. 具有深入洞察力的应用软件 您还可以定制您的通用示波器。广泛的应用软件包可对特定应用的问题提供有价值的深入观察。(详细信息参见第 8-9页和第 13-14 页)。 硬件加速的串行解码 ? I 2 C 、SPI ? 内核辅助FPGA 调试? 安全环境? CAN/LIN ? 分段存储器? MIL-STD-1553? RS-232/UART ? 矢量信号分析 ? FlexRay ? I 2S ? DSO/MSO 离线分析? 模板测试 ? 功率测量

现代眼图测量方法和data pattern

***Eyediagram ****传统眼图生成 硬件CDR恢复出理想时钟,时钟上升沿作为触发源,触发一次,叠加一个UI。 ****现代眼图生成 同步切割,叠加显示:示波器捕获一连串数据,用软件PLL恢复出时钟,用恢复出来的时钟按照比特位进行切割,切割一次叠加一次。

****CJPAT 在8B/10B编码之前,CJPA T数据包构成如下: Preamble/SFD: 55 55 55 55 55 55 55 D5 Modified JPAT sequence: 7E for 580 bytes: Low density transition pattern B5 for 172 bytes: high density transition pattern 7E for 580 bytes: Low density transition pattern B5 for 172 bytes: high density transition pattern CRC F3 CF F9 0F IPG 00 00 00 00 00 00 00 00 00 00 00 00 END 共1528byte,经过8B10B编码成为15280bit At 6.144 Gbps, the UI is about 162.76 ps CJPAT duration/pattern: 162.76 ps * 15280 = 2.487 us/pattern ****PRBS Pseudo Random Binary Sequence:伪随机二进制序列。0和1在周期内部是随机出现的(即码流生成函数和初始码确定后,码流的顺序是固定的),但各个周期中的码流却是完全相同的。 The sequence is not truly random in that it is completely determined by a relatively small set of initial values, called the PRNG's state, which includes a truly random seed.(这说明每个周期的初始码不是固定的)在高速信号链路进行无码测试时,基本上都是用PRBS码模拟真实的码流环境。因为PRBS的频谱特征与白噪声非常接近。

眼图——概念与测量

眼图——概念与测量 中文名称:眼图 英文名称:eye diagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出: 眼图的重要性质 (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。 ”

相关文档
最新文档