高中数学:异面直线所成的角求法(汇总大全)

高中数学:异面直线所成的角求法(汇总大全)
高中数学:异面直线所成的角求法(汇总大全)

异面直线所成的角

一、平移法:

常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直角平移法:

1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小.

解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF =

3

FG =EG =1

∴∠EGF =120° ∴AD 与BC 成60°的角。

2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC

和AB 的中点.求异面直线SA 和EF 所成角. 正确答案:45°

3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA

2

π

,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN ,则QN ∥SM

∴∠QNB 是SM 与BN 所成的角或其补角

连结BQ ,设SC =a ,在△BQN 中 BN =

a 2

5 NQ =21SM =

4

2a BQ =

a 4

14

∴COS ∠QNB =

5

10

2222=

?-+NQ BN BQ NQ BN

4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,

若BC =CA =CC 1,求BM 与AN 所成的角.

解:连接MN ,作NG ∥BM 交BC 于G ,连接AG , 易证∠GNA 是BM 与AN 所成的角.

设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6

cos ∠GNA =10

305

62556=

??-+。

B

M A

N C

S

A B

C D A 1B 1

C 1

D 1

E

F 5.如图,在正方体1111D C B A ABCD -中,E 、F 分别是1BB 、CD 的中点.求AE 与F D 1所成

的角。

证明:取AB 中点G ,连结A 1G ,FG , 因为F 是CD 的中点,所以GF ∥AD ,

又A 1D 1∥AD ,所以GF ∥A 1D 1,

故四边形GFD 1A 1是平行四边形,A 1G ∥D 1F 。

设A 1G 与AE 相交于H ,则∠A 1HA 是AE 与D 1F 所成的角。 因为E 是BB 1的中点,所以Rt △A 1AG ≌△ABE, ∠GA 1A=∠GAH,

从而∠A 1HA=90°,

即直线AE 与D 1F 所成的角为直角。 6.如图1—28的正方体中,E 是A′D′的中点

(1)图中哪些棱所在的直线与直线BA′成异面直线; (2)求直线BA′和CC′所成的角的大小;

(3)求直线AE 和CC′所成的角的正切值; (4)求直线AE 和BA′所成的角的余弦值 解:(1)

∵ A '?平面BC′,又点B 和直线CC′都在平面BC′,且B ?CC′,

∴ 直线BA′与CC′是异面直线 同理,正方体12条棱中的C′D′、DD′、DC 、AD 、B′C′所在的直线都和直线BA′成异面直线

(2)∵ CC′∥BB′,∴ BA′和BB′所成的锐角就是BA′和CC′所成的角 ∵ ∠A′BB′=45° ∴ BA′和CC′所成的角是45°

(3)∵ AA′∥BB′∥CC′,故AE 和AA′所成的锐角∠A′A E 是AE 和CC′所成的角 在Rt △AA′E 中,tan ∠A′AE =

A E AA ''

=21

,所以AE 和CC′所成角的正切值是

2

1

(4)取B′C′的中点F ,连EF 、BF ,则有EF =∥

A '

B '=∥

AB, ∴ ABFE 是平行四边形,从而BF =∥

AE, 即BF ∥AE 且BF=AE.

∴ BF 与BA′所成的锐角∠A′BF 就是AE 和BA′所成的角

设正方体各棱长为2,连A′F ,利用勾股定理求出△A′BF 的各边长分别为 A′B =22,A′F =BF =5,由余弦定理得: cos ∠A′BF =

5

105

222)

5()5()22(2

2

2

=

??-+

7. 长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的大

小。

F

(图1-29) 5

5

B ' (图1-28) A '

A

B C '

D '

C

D F

E

解法一:如图④,过B1点作B1E∥BC1交CB的延长线于E点。

则∠DB1E或其补角就是异面直线DB1与BC1所成角,连结DE交AB于M,DE=2DM=35,

cos∠DB1E=734

∴∠DB1E=cos

arc

734

解法二:如图⑤,在平面D1DBB1中过B点作BE∥DB1交D1B1的延长线于E,则∠C1BE就是异面直线DB1与BC1所成的角,连结C1E,在△B1C1E中,

∠C1B1E=135°,C1E=35,cos∠C1BE=734

,∴∠C1BE=cos

arc

734

练习:

8. 如图,PA 矩形ABCD,已知PA=AB=8,BC=10,求AD与PC所成角的余切值?

9.在长方体ABCD- A1B1C1D1中,若棱B B1=BC=1,AB=3,求D B和AC所成角的余弦

值.?

中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。

解法一:如图①连结B1C交BC1于0,过0点作OE∥DB1,则∠BOE为所求的异面直线DB1与BC1所成的角。连结EB,由已知有B1D=34,BC1=5,BE=

35

,∴cos∠BOE=

734∴∠BOE=cos

arc

734

170

解法二:如图②,连DB、AC交于O点,过O点作OE∥DB1,过E点作EF∥C1B,则∠OEF 或其补角就是两异面直线所成的角,过O点作OM∥DC,连结MF、OF。则OF=

73

2

,cos∠OEF=

734

,∴异面直线B1D与BC1所成的角为cos

arc

734

解法三:如图③,连结D1B交DB1于O,连结D1A,则四边形ABC1D1为平行四边形。在平行四边形ABC1D1中过点O作EF∥BC1交AB、D1C1于E、F,则∠DOF或其补角就是异面直线DB1与BC1所成的角。在△ADF中DF=

35

,cos∠DOF=

734

,∴∠DOF=cos

arc

734

170

课堂练习

10.在正四面体ABCD中,已知E是棱BC的中点,求异面直线AE和BD所成角的余弦值。

E

D B

A

补形平移法:在已知图形外补作一个相同的几何体,以例于找出平行线。

解法一:如图⑥,以四边形ABCD为上底补接一个高为4的长方体ABCD-A2B2C2D2,连结D2B,则DB1∥D2B,∴∠C1BD2或其补角就是异面直线DB1与BC1所成的角,连C1D2,

则△C1D2C2为Rt△,cos∠C1BD2=-

734

170

,∴异面直线DB1与BC1所成的角是cos

arc

734

170

课堂练习:

11.求异面直线A1C1与BD1所成的角的余弦值。

在长方体ABCD-A1B1C1D1的面BC1上补上一个同样大小的长

方体,将A1C1平移到BE,则∠D1BE或其补角就是异面直

线A1C1与BD1所成的角,在△BD1E中,

BD1=3,

二、利用模型求异面直线所成的角

模型1 引理:已知平面α的一条斜线a与平面α所成的角为θ1,平面α内的一条直线b与斜线a所成的角为θ,与它的射影a′所成的角为θ2。求证:cosθ= cosθ1·cosθ2。

在平面α的斜线a上取一点P,过点P分别作直线c、b的垂线PO、PB,垂足为O、B

连接OB,则OB⊥b.

在直角△AOP中,

AP

AO

=

1

cosθ.

在直角△ABC中,

AO

AB

=

2

cosθ.

在直角△ABP中,

AP

AB

=

θ

cos.

?2

?1c

b

a

θ

P

α

O

A

B

所以 θθθcos cos cos 21==?=

AP

AB

AO AB AP AO 所以θθθcos cos cos 21= 证明:设PA 是α的斜线,OA 是PA 在α上的射影, OB//b ,如图所示。则∠PAO=θ1,∠PAB=θ,∠OAB=θ2, 过点O 在平面α内作OB ⊥AB ,垂足为B ,连结PB 。

可知PB ⊥AB 。所以cosθ1=PA

OA

, cosθ=PA AB ,cosθ2=OA AB 。 所以cosθ= cosθ1·cosθ2。

利用这个模型来求两条异面直线a 和b 所成的角,即引理中的角θ。

需:过a 的一个平面α,以及该平面的一条斜线b 以及b 在α内的射影。

12. 如图,MA ⊥平面ABCD ,四边形ABCD 是正方形,且MA=AB=a ,试求异面直线MB 与

AC 所成的角。

解:由图可知,直线MB 在平面ABCD 内的射影为AB , 直线MB 与平面ABCD 所成的角为45°,

直线AC 与直线MB 的射影AB 所成的角为45°, 所以直线AC 与直MB 所成的角为θ,满足

cosθ=cos45°· cos45°=2

1

,所以直线AC 与MB 所成的角为60°。

13. 已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中

点,则异面直线AB 与1CC 所成的角的余弦值为( D ) (A )

34 (B )54 (C )74 (D) 34

解:设BC 的中点为D ,连结1A D ,AD ,易知1A AB θ=∠即为异面直线AB 与1CC 所成的角,

由三角余弦定理,易知113

co c s 4

os cos AD AD A AD DAB A A AB θ=∠∠?=

?=.故选D 14. 如图,在立体图形P-ABCD 中,底面ABCD 是一个直角梯形,∠BAD=90°,AD//BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成30°角,AE ⊥PD 于D 。求异面直线AE 与CD 所成的角的大小。 解:过E 作AD 的平行线EF 交AD 于F ,由PA ⊥底面ABCD 可知,直线AE 在平面ABCD 内的射影为AF ,直线AE 与平面ABCD 所成的角为∠DAE ,其大小为60°,

P

b A

B

O α

P E

D

B C

B C A 1

1

1

D

A B C

D M

射影AF与直线CD所成的角为∠CDA,其大小为45°,所以直线与直线所成的角θ满足cosθ=cos60°· cos45°=

4

2

,所以其大小为arccos

4

2

模型2 定理:四面体ADBCD两相对棱AC、BD间的夹角为θ,则有

证明:

()C A

D

A

C

A

A

B

C

A

D

A

A

B

C

A

D

B

D

A

A

B

D

B

COS

D

B

D

B

C

A

D

B

?

+

?

=

?

+

=

?

+

=

=

?

θ

2

2

2

2

2

2

2

2

2

2

2

2

2CD

AB

BC

AD

CD

AC

AD

BC

AC

AB-

-

+

=

-

+

+

-

+

-

=

所以有:

15.长方体ABCD-A1B1C1D1中,AB=AA1=2cm,AD=1cm,求异面直线A1C1与BD1所成的

角?

解:连结BC1、A1B在四面体为,易求得

由定理得:

所以

二、向量法求异面直线所成的角

16. 如图,在正方体ABCD-A1B1C1D1中,E、F分别是相邻两侧面BCC1B1及CDD1C1的中心。

求A1E和B1F所成的角的大小。

解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线到某个点上。

作法:连结B1E,取B1E中点G及A1B1中点H,

连结GH,有GH//A1E。过F作CD的平行线RS,

分别交CC1、DD1于点R、S,连结SH,连结GS。

B

A1D1

C1

H

S

由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。 在△GHS 中,设正方体边长为a 。

GH=

4

6

a (作直线GQ//BC 交BB 1于点Q , 连QH ,可知△GQH 为直角三角形),

HS=

2

6a (连A 1S ,可知△HA 1S 为直角三角形),GS=426

a (作直线GP 交BC 于点P ,连

PD ,可知四边形GPDS 为直角梯形)。∴Cos ∠GHS=6

1

所以直线A 1E 与直线B 1F 所成的角的余弦值为6

1。 解法二:(向量法) 分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用 点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。

以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2

则点A 1的坐标为(0,2,2),点E 的坐标为(1,0,1), 点B 1的坐标为(0,0,2),点F 的坐标为(2,1,1); 所以向量1EA 的坐标为(-1,2,1),向量B 1的坐标为(2,1,-1), 所以这两个向量的夹角θ满足 |

|||1111F B EA ?=

2

22222)1()1()2()1()2()1()1(1122)1(-++?++--?+?+?-=-

6

1

。 所以直线A 1E 与直线B 1F 所成的角的余弦值为6

1

17. 已知空间四边形ABCD 中,AB=BC=CD=DA=AC=BD=a ,M 、N 分别为BC 和AD 的中点,

设AM 和CN 所成的角为α,求cosα?(平移法也可)

解:由已知得,空间向量AB ,AC ,AD 不共面, 且两两之间的夹角均为60°。由向量的加法可以得到

AM =21(AB +AC ),NC =21-AD +AC

所以向量AM 与向量NC 的夹角θ(即角α或者α的补角) 满足|

|||NC AM ?,其中

AM ·

=21(+)·(2

1

-+) =21(21-·+·

+(2

1

-)·+·) 1 A

B

C

D

M

N

=21a 2(41-+2141-+1)=2

1

a 2; |AM |2=21(AB +AC )·21(AB +AC )=41(1+1+1)a 2=43

a 2;

|NC |2=(21-AD +AC )·(21-AD +AC )=41+121- a 2=43 a 2。所以cosα=| cosθ|=3

2

18. 已知空间四边形ABCD 中,AB=CD=3,E 、F 分别是BC 、AD 上的点,且BE :EC=AF :

FD=1:2,EF=7,求AB 和CD 所成的角的大小。 解:取AC 上点G ,使AG :GC=1:2。连结EG 、FG , 可知EG//AB ,FG//CD ,3EG=2AB ,3FG=CD 。

由向量的知识可知EF =EG +GF =BA 3

2

+CD 31,

设向量BA 和CD 的夹角为θ。

则由|EF |2=(BA 32+CD 31)·(BA 3

2+CD 31)=4+1+4cosθ=7, 得cosθ=2

1

,所以AB 和CD 所成的角为60°。

19. (思考题)如图,已知平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为a 的正方

形,侧棱AA 1长为b ,且AA 1与AB 、AD 的夹角都是120°. 求:(1)AC 1的长; (2)直线BD 1与AC 所成的角的余弦值.

技巧与方法:数量积公式及向量、模公式的巧用、变形用.

2

211222111112122111111221222111112

22221112221111111212222||||||)

)((||)

)((,2||,)2(.22||,22||,

0,21

120cos ,21120cos 90,,120,,||||,|:|222||||||)

)(())((||)1(:b a AB AA AD AB AD AA AB AD AA AB AD AA AB AD AA BD BD BD ab AD AB AB AD AD AB AA AD AA AB AB AD AA AD AB BD AC AB AD AA BA AD BD AD AB AC a AC ab b a AC ab b a AC AD AB ab a b AD AA ab a b AB AA AD AB AD AA AB AA a AD AB b AA AD AB AD AA AB AA AD AB AA AD AB AA AD AB AA AC AA AC AA AC AC AC +=?-?-?+++=-+-+=?=-=?--+?+?+?=-++=?∴-+=+=+==-+=∴-+=∴=?-=??=?-=??=?∴?

>==>=<<===?+?+?+++=++++=++=?=依题意得由已知得解

2212||b a BD +=∴ 2

2

11124|

|||,cos b

a b AC BD AC BD AC BD +-=

>=

<

A

B

C D

E F G

∴BD 1与AC 所成角的余弦值为2

2

24b

a b .

判断是非:(1)(3)(8)(10)正确,其余错; 选择:1(C);2(D);3(D);4(D).

5.(2)相交,(5)平行,其余异面;(6):(D),取AB 中

点M ,CC 1中点N ,连B 1E 和B 1F ;(7)答案:(A),延长B 1A 1至M ,使A 1M =A 1D 1,连MA ,取AB 中点N .8(D);9(E);10(D);11(C); 三.3

4

,取AD 中点E ,则∠MEN =90°;

四.5

7

,取AC 中点F ,连EF 、BF ,求得BE =21AD =5,BF =21AC =32;

五.

5

5

2,分别取AC 、B 1C 1的中点P 、Q ,则PMQN 是矩形,设CC 1=MQ =a ,则MP =21a ;

六.6

1

,取AC 中点F ,连EF 、BF ,则EF =4,BE =BF =3.

异面直线所成的角---作业

: 班级: 学号: 一、判断是非(下列命题中,正确的打“√”,错误的打“×”)

(1)梯形的四个顶点在同一平面内; (2)对边相等的四边形是平行四边形; (3)平行于同一直线的两直线平行; (4)垂直于同一直线的两直线平行; (5)两条直线确定一个平面; (6)经过三点可以确定一个平面; (7)无公共点的两直线异面; (8)两异面直线无公共点;

(9)两异面直线可以同时平行于一直线; (10)两异面直线可以同时垂直于一直线; (11)不同在一个已知平面内的两直线异面; (12)互相垂直的两条直线必可确定一平面 二、选择题

1. 没有公共点的两条直线的位置关系是( )

(A)平行 (B)异面 (C)平行或异面 (D)不能确定 2. 分别在两相交平面内的两条直线的位置关系是( )

(A)异面 (B)平行 (C)平行或异面 (D)平行或异面或相交 3. 两条异面直线指的是( ) (A)在空间不相交的两条直线

(B)某一平面内的一条直线和这个平面外的一条直线

(C)分别位于两个不同平面的两条直线

(D)不同在任一平面内的两条直线

4. a 、b 是异面直线,b 、c 也是异面直线,那么a 、c 的位置是( )

(A)异面 (B)异面或平行 (C)异面或相交 (D)相交、平行或异面 5. 说出正方体中各对线段的位置关系:

(1) AB 和CC 1; (2)A 1C 和BD 1; (3)A 1A 和CB 1; (4)A 1C 1和CB 1; (5)A 1B 1和DC ; (6)BD 1和DC.

6. 在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )

31032()

()

()

()2

10

5

5

A B C D

7. 如图,A 1B 1C 1—ABC 是直三棱柱(三侧面为矩形),∠BCA=90°,点D 1、F 1 分别是A 1B 1、A 1C 1的中点若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( ) 3013015()()

()

()

10

2

15

10

A B C D

8. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与AC

(A)相交且垂直 (B)相交但不垂直 (C)异面且垂直 (D)异面但不垂直

9. 设a 、b 、c 是空间中的三条直线,下面给出四个命题:

①如果a ⊥b 、b ⊥c ,则a ∥c ; ②如果a 和b 相交,b 和c 相交,则a 和c 也相交; ③如果a 、b 是异面直线,c 、b 是异面直线,则a 、c 也是异面直线; ④如果a 和b 共面,b 和c 共面,则a 和c 也共面, 在上述四个命题中,真命题的个数是( )

(A)4 (B)3 (C)2 (D)1 (E)0 10. 如果直线l 和n 是异面直线,那么和直线l 、n 都垂直的直线 (A)不一定存在 (B)总共只有一条 (C)总共可能有一条,也可能有两条 (D)有无穷多条

11. 如图,四面体SABC 的各棱长都相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线

EF 与SA 所成的角等于

(A)90° (B)60° (C)45° (D)30°

三.如图,四面体ABCD 中,AC ⊥BD,且AC =4,BD =3,M 、N 分别是AB 、CD 的中点,

求MN 和BD 所成角的正切值

F A

B C

E

S

(第11题)

四.如图,四面体ABCD 中,AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =BC =6,BD =8,E

是AD 中点,求BE 与CD 所成角的余弦值?

五.如图,正三棱柱的九条棱都相等,三个侧面都是正方体,M 、N 分别是BC 和A 1C 1的中

点。求MN 与CC 1所成角的余弦值?

六.如图,四面体ABCD 中,E 为AD 中点,若AC =CD =DA =8,AB =BD =5,BC =7,

求BE 与CD 所成角的余弦值?

A

B

C

D

(第四题) E

6

6

8

(第五题)

M

A

B

C N

C 1

A 1

B 1

8

A

B

C

D

E

(第六题) 7

8

5

4

4

5

高中数学公式史上最全大全

高中数学公式大全 (最全面,最详细) 高中数学公式大全 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上bx再加上c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

(完整版)文科高中数学公式大全(超全完美)

高 中文科数学公式总结 一、函数、导数 1.元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??.A A ??≠?? 集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有 22n -个. 2. 真值表 常 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.) 3. 充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词?表示任意,?表示存在;?的否定是?,?的否定是?。 例:2 ,10x R x x ?∈++> 的否定是 2 ,10x R x x ?∈++≤ 5. 函数的单调性

(1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 6. 复合函数)]([x g f y =单调性判断步骤: (1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性 (1)前提是定义域关于原点对称。 (2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 (3)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 8.若奇函数在x =0处有意义,则一定存在()00f =; 若奇函数在x =0处无意义,则利用 ()()x x f f -=-求解; 9.多项式函数1 10()n n n n P x a x a x a --=++?+的奇偶性 多项式函数()P x 是奇函数?()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数?()P x 的奇次项(即偶数项)的系数全为零. 10. 常见函数的图像: 11. 函数的对称性 (1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)对于函数)(x f y =(R x ∈),)()(x a f x a f -=+恒成立,则函数)(x f 的对称轴是a x = (3)对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2 b a x +=; 12. 由 )(x f 向左平移一个单位得到函数)1(+x f 由)(x f 向右平移一个单位得到函数)1(-x f 由 )(x f 向上平移一个单位得到函数1)(+x f 由)(x f 向下平移一个单位得到函数1)(-x f 若将函数)(x f y =的图象向右移a 、再向上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线 0),(=y x f 的图象向右移a 、向上移b 个单位,得到曲线0),(=--b y a x f 的图象. 13. 函数的周期性 (1))()(a x f x f +=,则)(x f 的周期T a =||; (2)()()f x a f x +=-,则)(x f 的周期2T a =|| (3)1 ()() f x a f x += ,则)(x f 的周期2T a =|| (4)()()f x a f x b +=+,则)(x f 的周期T a b =|-|; 14. 分数指数 (1)m n a =0,,a m n N *>∈,且1n >).

异面直线所成的角求法总结加分析

异面直线所成的角求法 总结加分析 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

异面直线所成的角 一、平移法: 常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直接平移法 1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF = 3 ,求AD 、BC 所成角的大小. 解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF = 3 FG =EG =1 ∴∠EGF=120° ∴AD 与BC 成60°的角。 2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和AB 的中点.求异面直线SA 和EF 所成角. 答案:45° 3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA = 2 π ,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM ∴∠QNB 是SM 与BN 所成的角或其补角

A B C D A 1 B 1 C 1 D 1 E F 连结BQ ,设SC =a ,在△BQN 中 BN = a 25 NQ =2 1SM = 4 2 a BQ = a 4 14 ∴COS∠QNB= 5 10 2222= ?-+NQ BN BQ NQ BN 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若 BC =CA =CC 1,求BM 与AN 所成的角. 解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角. 设:BC =CA =CC 1=2,则AG =AN = 5 ,GN =BM = 6 , cos∠GNA= 10 30 5 62556= ??-+。 5.如图,在正方体1111D C B A ABCD -中,E 、F 分别是1BB 、CD 的中点.求AE 与F D 1所 成的角。 证明:取AB 中点G ,连结A 1G ,FG , 因为F 是CD 的中点,所以GF ∥AD , 又A 1D 1∥AD ,所以GF ∥A 1D 1, 故四边形GFD 1A 1是平行四边形,A 1G∥D 1F 。 设A 1G 与AE 相交于H ,则∠A 1HA 是AE 与D 1F 所成的角。

如何求异面直线所成的角

如何求异面直线所成的角 立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。其中“作”是关键,那么如何作两条异面直线所成的角呢?本文就如何求异面直线所成的角提出了最常见的几种处理方法。 Ⅰ、用平移法作两条异面直线所成的角 一、端点平移法 例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若 1AB BC CC ==,求CD 与AF 所成的角的余弦值。 解:取BC 的中点E ,连结EF ,DF , //DF EC Q 且DF EC = ∴四边形DFEC 为平行四边形 //EF DC ∴ EFA ∴∠(或它的补角)为CD 与AF 所成的角。 设2AB =, 则EF = AF = EA = 故2222EF FA EA EFA EF FA +-∠==g arccos 10 EFA ∴∠= 二、中点平移法 例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。 解:连结MD ,取MD 的中点O ,连结NO , Q O 、N 分别MD 、AD 为的中点, ∴NO 为DAM ?的中位线, ∴//NO AM , ONC ∴∠(或它的补角)为AM 与CN 所成的角。 设正四面体ABCD 的棱长为2 ,则有2NO = ,CN = ,2CO =, 故2222 cos 23 NO CN CO ONC NO CN +-∠= =g 2 arccos 3 ONC ∴∠= 1 B D C

异面直线所成的角的求法

异面直线所成的角的求法 法一:平移法 在正方体 ABCD A i B i C i D i 中,求下列各对异面直线所成的角。 恵,求直线AB 与CD 所成的角。 习题1?在空间四边形ABCD 中,AD = BC = 2, E, F 分别为AB 、CD 的中点,EF =为, 求AD 、BC 所成角的大小. 例1: (1) AA 1 与 BC ; (2) DD 1 与 AB ; (3) A i B 与 A C 。 法二: 例2: 求直线AB 与MN 所成的角。 中位线 在空间四边形 ABCD 中,AB = CD ,且AB CD ,点M 、N 分别为BC 、AD 的中点, 变式:在空间四边形 ABCD 中,点M 、N 分别为 BC 、AD 的中点,AB = CD = 2,且 MN =

正 ABC 的边长为a , S 为 ABC 所在平面外的一点,SA = SB = SC = a, E , F 分别 是SC 和AB 的中点.求异面直线 SA 和EF 所成角. S 是正三角形 ABC 所在平面外的一点,如图 SA = SB = SC ,且 ASB = BSC = CSA = - , M 、N 分别是AB 和SC 的中点.求异面直线 SM 与BN 所成的角的 余弦值. 如图,在直三棱柱 ABC — A i B i C i 中,/ BCA = 90° M 、N 分别是 A i B i 和A i C i 的中 点, 若BC = CA = CC i ,求BM 与AN 所成的角. 5.如图1 — 28的正方体中,E 是A D 勺中点 (1) 图中哪些棱所在的直线与直线 BA 成异面直线? (2) 求直线 (3) 求直线 (4) 求直线 2. 3. 4 . BA 和CC 所成的角的大小; AE 和CC 所成的角的正切值; AE 和BA 所成的角的余弦值 B A (图 1— 28)

异面直线所成的角求法 答案

异面直线所成的角的两种求法 初学立几的同学,遇到的第一个难点往往便是求异面直线所成的角。难在何处?不会作! 下面介绍两种求法 一.传统求法--------找、作、证、求解。 求异面直线所成的角,关键是平移点的选择及平移面的确定。 平移点的选择:一般在其中一条直线上的特殊位置,但有时选在空间适当位置会更简便。 平移面的确定:一般是过两异面直线中某一条直线的一个平面,有时还要根据平面基本性质将直观图中的部分平面进行必要的伸展,有时还用“补形”的办法寻找平移面。 例1 设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB =122,CD =4 2,且四边形EFGH 的面积为12 3, 求AB 和CD 所成的角. 解? 由三角形中位线的性质知,HG∥AB,HE∥CD, ∴ ∠EHG 就是异面直线AB 和CD 所成的角. ∵? EFGH 是平行四边形,HG =2 1 AB =62, H G F E D C B A

HE =2 1 ,CD =23, ∴? S EFGH =HG·HE·sin∠EHG=126 sin∠EHG,∴ 12 6sin∠EHG=123. ∴? sin∠EHG= 2 2 ,故∠EHG=45°. ∴? AB 和CD 所成的角为45° 注:本例两异面直线所成角在图中已给,只需指出即可。 例2.点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=2 2 AD ,求异面直线AD 和BC 所成的角。(如图) 解:设G 是AC 中点,连接DG 、FG 。因D 、F 分别是AB 、CD 中点,故EG∥BC 且EG= 2 1 BC ,FG∥AD,且FG=2 1 AD ,由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为 所求。由BC=AD 知EG=GF=2 1 AD ,又EF=AD ,由余弦定理可得cos∠EGF=0,即∠EGF=90°。 注:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角。通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系。 例3.已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 与CN 所成的角的余弦值; A B C G F E D

异面直线所成角求法-总结加分析

异面直线所成的角 一、平移法: 常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直接平移法 1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小. 解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF =3 FG =EG =1 ∴∠EGF=120° ∴AD 与BC 成60°的角。 2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和 AB 的中点.求异面直线SA 和EF 所成角. 答案:45° 3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2 π ,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM ∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN = a 25 NQ =2 1SM = 4 2a BQ = a 4 14 ∴COS∠QNB=5 10 2222= ?-+NQ BN BQ NQ BN 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC = CA =CC 1,求BM 与AN 所成的角. 解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角. 设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6 , cos∠GNA= 10 305 62556=??-+。 B M A N C S

最全面高中数学公式大全最全-高中数学公式大全总结(精华版)

高中数学常用公式及结论 元素与集合的关系 : x A x C U A , x C U A x A . 1 ? A A 2 n 2 n 2 n 1个;非空子集有 2 1 个;非空的真子集有 集合 { a ,a , , a } 的子集个数共有 个;真子集有 1 2 n n 2 2 个. 3 二次函数的解析式的三种形式: ax 2 (1) 一般式 f (x) bx c(a 0) ; h)2 (2) 顶点式 f (x) a(x k(a 0) ; (当已知抛物线的顶点坐标 (h, k ) 时,设为此式) (3) 0) ;(当已知抛物线与 x 轴的交点坐标为 零点式 f (x) a(x x 1 )( x x 2 )(a ( x 1,0),( x 2 ,0) 时,设 为此式) 2 a(x x 0 ) ( 4)切线式: f ( x) (kx d ), (a 0) 。(当已知抛物线与直线 y kx d 相切且切点的横 坐标为 x 0 时,设为此式) 4 5 真值表: 同真且真,同假或假 ; 常见结论的否定形式 原结论是 都是大于 小于 反设词 不 是 不都是不大于不小于 存在某 存在某 原结论 至少有一个至多有一个至少有 n 个至多有 n 个 p 或 q p 且 q 反设词 一个也没有至少有两个 n n q q 1)个 1)个 至多有( 至少有( p 且 p 或 x ,成立 x ,不成立 x ,不成立 x ,成立 对所有 对任何 6 ( 下图 ): ( 原命题与逆否命题同真同假;逆命题与否命题同真同假 . ) 四种命题的相互关系 原命题 若p则q 互逆 逆命题 若q则p 互 互 互 否 为 为 互 否 逆 逆 否 否 否命题 若非p则非q 逆否命题 若非q则非p 互逆 p p q ,则 q ,且 充要条件: (1) P 是 q 的充分条件,反之, q 是 p 的必要条件; 、 ( 2)、 q ≠> p ,则 P 是 q 的充分不必要条件; (3) 、p ≠ > p ,且 q p ,则 P 是 q 的必要不充分条件; 4、p ≠ > p ,且 q ≠ > p ,则 P 是 q 的既不充分又不必要条件。 7 函数单调性 : 增函数: (1) y 随 x 的增大而增大。 、文字描述是:

补充构造异面直线所成角的几种方法

一. 异面直线所成角的求法 1、正确理解概念 (1)在异面直线所成角的定义中,空间中的点O 是任意选取的,异面直线a 和b 所成角的大小,与点O 的位置无关。 (2)异面直线所成角的取值范围是(0°,] 90? 2、熟练掌握求法 (1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一作二证三计算。 (2)求异面直线所成角的步骤: ①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊点。 ②求相交直线所成的角,通常是在相应的三角形中进行计算。 ③因为异面直线所成的角θ的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。 3、“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 例1如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线B 1E 与GF 所成角的余弦是 。 E F 1 A 1 B 1 C 1 D A B C D G E F 1 A 1 B 1 C 1 D A B C D G

例 2 已知 S 是正三角形ABC所在平面外的一点,如图SA=SB=SC, 且∠ASB=∠BSC=∠CSA= 2 π ,M、N分别是AB和SC的中点. 求异面直线SM与BN所成的角的余弦值. 例3长方体ABCD—A1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的大小。 B M A N C S B M A N C S B M A N C S

高中数学公式大全(最全面,最详细)

高中数学公式大全(最全面,最详细) 高中数学公式大全 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上bx再加上c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式: sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4) 五倍角公式: sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角公式:

异面直线所成角的几种求法(最新编写)

异面直线所成角的几种求法 异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。 一、向量法求异面直线所成的角 例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。求A 1E 和B 1F 所成的角的大小。 解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线 到某个点上。作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。过F 作CD 的平行线RS ,分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。 由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。在△GHS 中,设正方体边长为a 。GH=a (作直线GQ//BC 交BB 1于点Q ,46连QH ,可知△GQH 为直角三角形),HS=a (连A 1S ,可知△HA 1S 为直角三角形),2 6GS=a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。426∴Cos ∠GHS=。6 1所以直线A 1E 与直线B 1F 所成的角的余弦值为。61解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。 以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。 B A C D F E B 1A 1D 1C 1 G H S R P Q 1

高中数学常用公式大全

高中数学常用公式大全 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==I U U I . 3.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 4.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 5.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a b x ,2?-=,则 {}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 7.真值表

立体几何异面直线成角求法习题

构造异面直线所成角的几种方法 异面直线所成角的大小,是由空间任意一点分别引它们的平行线所成的锐角(或直角)来定义的.准确选定角的顶点,平移直线构造三角形是解题的重要环节.本文举例归纳几种方法如下,供参考. 一、抓异面直线上的已知点 过一条异面直线上的已知点,引另一条直线的平行线(或作一直线并证明与另一直线平行),往往可以作为构造异面直线所成角的试探目标. 例1(2005年全国高考福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) 二、抓异面直线(或空间图形)上的特殊点 考察异面直线上的已知点不凑效时,抓住特殊点(特别是中点)构造异面直线所成角是一条有效的途径. 例2(2005年全国高考浙江卷)设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________. 三、平移(或构造)几何体 有些问题中,整体构造或平移几何体,能简化解题过程. 例3(2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=?且 PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____. 1. 解:连B 1G ,则A 1E ∥B 1G ,知∠B 1G F 就是异面直线A 1E 与GF 所成的角.在 △B 1GF 中,由余弦定理,得 cos B 1GF =2221112B G GF B F B G GF +-= ?=0, 故∠ B 1 G F = ,应选(D). 2评注:本题是过异面直线FG 上的一点G ,作B 1G ,则A 1E ∥B 1G ,知∠B 1G F 就是所求的 角,从而纳入三角形中解决. 解:取AE 中点G, 连结GM 、BG ∵GM ∥ED ,BN ∥ED ,GM =21ED ,BN =2 1 ED . ∴ GM ∥BN ,且GM =BN . ∴BNMG 为平行四边形,∴MN//BG ∵A 的射影为B . ∴AB ⊥面BCDE . P B C A

高中数学公式大全(完整版)

高中数学常用公式及常用结论 1.包含关系 A B A A B B =?=I U U U A B C B C A ???? U A C B ?=ΦI U C A B R ?=U 2.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 3.充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.函数的单调性 (1)设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->? []b a x f x x x f x f ,)(0) ()(2 121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函 数. 5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数 )(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2 b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2 b a x += 对称. 8.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2),)0)(()(1 )(≠=+x f x f a x f ,或1()() f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 9.分数指数幂 (1)m n a = (0,,a m n N * >∈,且1n >).(2)1m n m n a a - = (0,,a m n N * >∈,且1n >). 10.根式的性质 (1 )n a =.(2)当n a =;当n ,0 ||,0 a a a a a ≥?==? -∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r a b a b a b r Q =>>∈. 12.指数式与对数式的互化式 log b a N b a N =?=(0,1,0)a a N >≠>. ①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a , ④.积的对数:N M MN a a a log log )(log +=,商的对数:N M N M a a a log log log -=, 幂的对数:M n M a n a log log =;b m n b a n a m log log =

如何求异面直线所成的角

3 3 如何求异面直线所成的角 立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也 是高考的热点,求异面直线所成的角常分为三个步骤:作 证 求。其中“作”是关键,那 么如何作两条异面直线所成的角呢?本文就如何求异面直线所成的角提出了最常见的几种处 理方法。 I 、用平移法作两条异面直线所成的角 、端点平移法 例1、在直三棱柱 ABC A 1B 1C 1中, CBA 900 ,点D , F 分别是 AQ , A ,B i 的中点,若 AB BC CC i ,求CD 与AF 所成的角的余弦值。 解:取BC 的中点E ,连结EF ,DF , QDF//EC 且 DF EC 四边形DFEC 为平行四边形 EF // DC EFA (或它的补角)为CD 与AF 所成的角。 设 AB 2,则 EF 76,AF 730 arccos 10 、中点平移法 例2、在正四面体ABCD 中, 解:连结MD ,取MD 的中点0,连结NO , Q O 、N 分别MD 、AD 为的中点, NO 为DAM 的中位线, NO//AM , ONC (或它的补角)为AM 与CN 所成的角。 広 J 7 设正四面体ABCD 的棱长为2,则有NO —,CN 73, CO — 2 2 皿 NO 2 CN 2 CO 2 故 cos ONC ----------------- 2NOgCN 2 ONC arccos-故EFA EF 2 FA 2 EA 2 2EFgFA 730 10 75,EA 45 M , N 分别是BC, AD 的中点,求AM 与CN 所成的角的余弦值。 EFA A l A D

高中数学公式及知识点总结大全(精华版)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 高中数学公式及知识点总结大全(精华版) ?中?科数学公式及知识点速记?、函数、导数1、函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,若,则为增函数;若数. 2、函数的奇偶性对于定义域内任意的,都有,则是偶函数;对于定义域内任意的,都有,则是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称。 3、函数在点处的导数的?何意义函数在点处的导数是曲线在处的切线的斜率程是.*?次函数:(1)顶点坐标为 4、?种常?函数的导数①;②;③;(2)焦点的坐标为;④;⑤;⑥;⑦;⑧ 5、导数的运算法则(1). (2). (3) 6、会?导数求单调区间、极值、最值 7、求函数的极值的?法是:解?程.当. 时:(1) 如果在附近的左侧,右侧,那么是极?值;(2) 如果在附近的左侧指数函数、对数函数分数指数幂(1)((2)(,右侧,那么是极?值.,且). ,且).,则为减函,相应的切线?1 1/ 15

根式的性质(1)当为奇数时,当为偶数时,; .有理指数幂的运算性质(1).(2).(3).注:若 a>0,p 是?个?理数,则 ap 表示?个确定的实数.上述有理指数幂的运算性质,对于?理数指数幂都适?..指数式与对数式的互化式:..对数的换底公式 :(,且 ,,且 ,).对数恒等式:推论(,且,).(,且,).常?的函数图象?、三?函数、三?变换、解三?形、平?向量 8、同?三?函数的基本关系式,=.9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)的正弦、余弦,等于的同名函数,前?加上把看成锐?时该函数的符号;的正弦、余弦,等于的余名函数,前?加上把看成锐?时该函数的符号。 ,,.,,.,,.2

高中数学公式大全最全

高中数学常用公式及结论 1 元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??.A A ??≠? 2 集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个. 3 二次函数的解析式的三种形式: (1) 一般式2 ()(0)f x ax bx c a =++≠; (2) 顶点式2 ()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式) (4)切线式:02()()(()),0x kx d f x a x a =-+≠+。(当已知抛物线与直线y kx d =+相切且切点的横坐标为0 x 时,设为此式) 4 真值表: 同真且真,同假或假 5 6 ) 充要条件: (1)、p q ?,则P 是q 的充分条件,反之,q 是p 的必要条件; (2)、p q ?,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ?,则P 是q 的必要不充分条件; (4)、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。 7 函数单调性: 增函数:(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的 1212 ,,x x D x x ∈<且,都有 12()() f x f x <成立,则就叫f (x )在x ∈D 上是增函数。D 则就是f (x )的递增区间。 减函数: (2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的 1212 ,,x x D x x ∈<且,都有 12()() f x f x >成立,则就叫f (x )在x ∈D 上是减函数。D 则就是f (x )的递减区间。 单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数; (3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数; 注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。

高中数学公式大全(必备版)

高中数学公式及知识点速记 1、函数的单调性 (1)设1212[,],x x a b x x ∈<、且那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导, 若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。 2、函数的奇偶性 ) 若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。 若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应 的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数 ①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧x x 1 )(ln '= 5、导数的运算法则 (1)'''()u v u v ±=±. (2)'''()uv u v uv =+. % (3)'' '2 ()u u v uv v v -=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时: ① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂 (1)m n a =. (2)11 m n m n a a - == . 8、根式的性质 (1 )n a =. (2)当n a =; (

立体几何中求异面直线所成的角解法举例

立体几何中求异面直线所成的角解法举例 此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点. 例1:如图,在Rt AOB △中,π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ; (II )求异面直线AO 与CD 所成角的正切值. 解法1(几何法): (I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O = , CO ∴⊥平面AOB , 又CO ?平面COD . ∴平面COD ⊥平面AOB . (II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角. 在Rt COE △中,2CO BO ==,112 OE BO ==, CE ∴ 又12 DE AO == ∴在Rt CDE △ 中,tan CE CDE DE ∠= ∴异面直线AO 与CD 解法2:(I )同解法1. (II )(坐标法)建立空间直角坐标系O xyz -, 如图,则(000)O ,, ,(00A ,,(200)C ,, ,D , ∴(00OA = , ,(CD =- , ∴cos OA CD OACD OA CD <>= ,= O C A D B E x

∴异面直线AO 与CD 小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有: ①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线或利用中位线; ②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系. 一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:0,2π?? ??? . 例2:如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4. (Ⅰ)证明PQ ⊥平面ABCD ; (Ⅱ)求异面直线AQ 与PB 所成的角余弦值; (Ⅲ)求点P 到平面QAD 的距离. 解法一(几何法): (Ⅰ)取AD 的中点,连结PM ,QM . 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又?PQ 平面PQM ,所以PQ ⊥AD . 同理PQ ⊥AB ,所以PQ ⊥平面ABCD . (Ⅱ)连结AC 、BD 设O BD AC = ,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在PQ 上,从而P 、A 、Q 、C 四点共面.取OC 的中点N ,连接PN . 因为 21,21===OC NO OA NO OQ PO ,所以OA NO OQ PO =, 从而AQ ∥PN ,∠BPN (或其补角)是异面直线AQ 与PB 所成的角. 因为3PB ==, PN === 10)2()22(22 2 2 =+==ON OB BN Q B C P A D O M

相关文档
最新文档