初中二次函数讲解(比较详细)

初中二次函数讲解(比较详细)
初中二次函数讲解(比较详细)

初中二次函数讲解(比较详细)

定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI 越大开口就越小,IaI越小开口就越大。)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的函数

二次函数的三种表达式

①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k

③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)

以上3种形式可进行如下转化:

①一般式和顶点式的关系

对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即

h=-b/2a=(x1+x2)/2

k=(4ac-b^2)/4a

②一般式和交点式的关系

x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)

二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,

可以看出,二次函数的图像是一条永无止境的抛物线。

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

_______

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

7.定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数

周期性:无

解析式:

①y=ax^2+bx+c[一般式]

⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)^2+t[配方式]

此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=ax^2

y=a(x-h)^2

y=a(x-h)^2+k

y=ax^2+bx+c

顶点坐标

(0,0)

(h,0)

(h,k)

(-b/2a,sqrt[4ac-b^2]/4a)

对称轴

x=0

x=h

x=h

x=-b/2a

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y 随x的增大而减小;当x ≥-b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x 的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为

任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a 时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

初中数学二次函数知识点汇总(最新最全)

1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

九年级数学二次函数几种解析式的求法素材

二次函数的解析式求法 求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考 试题,总结出几种解析式的求法,供同学们学习时参考。 一、 三点型 例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函 数的解析式是_______。 分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2 +bx+c,将三个点的坐标代 入,易得a=2,b=-3,c=5 。故所求函数解析式为y=2x 2-3x+5. 这种方法是将坐标代入y=ax 2+bx+c 后,把问题归结为解一个三元一次方程组,求出待定系 数 a, b , c, 进而获得解析式y=ax 2+bx+c. 二、交点型 例2 已知抛物线y=-2x 2+8x-9的顶点为A ,若二次函数y=ax 2+bx+c 的图像经过A 点, 且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。 分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2+8x-9的顶点A (2,-1)。将A 点的坐标代入y=ax(x-3),得到a=21 ∴y=21x(x-3),即 y= x x 23212 . 三、顶点型 例 3 已知抛物线y=ax 2 +bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。 分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2+k.在本题中可设y=a(x+1)2+4.

再将点(1,2)代入求得a=-21 ∴y=-,4)1(212++x 即y=-.272 12+-x x 由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。 四、平移型 例 4 二次函数y=x 2 +bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函 数,122+-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18. 分析 逆用平移分式,将函数y=x 2 -2x+1的顶点(1,0)先向下平移3个单位,再向右平移 两个单位得原函数的图象的顶点为(3,-3)。 ∴y=x 3)3(22--=++x c bx =x .662 +-x ∴b=-6,c=6. 因此选(B ) 五、弦比型 例 5 已知二次函y=ax 2+bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为 2,求这个二次函数的解析式。 分析 弦长型的问题有两种思路,一是利用对称性求出交点坐标,二是用弦比公式d=a ?

二次函数专题讲解

二次函数专题讲解 一、知识综述: 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数c bx ax y ++=2 用配方法可化成:() k h x a y +-=2 的形式,其中a b a c k a b h 4422 -=-=,。 3.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+? ?? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直 线h x =. 4.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2 ;③()2 h x a y -=;④()k h x a y +-=2 ; ⑤c bx ax y ++=2 . 它们的图像特征如下: 函数解析式 开口方向 对称轴 顶点坐标 2ax y = 当0>a 时 开口向上 当0

二次函数解析式的确定(10种)

二次函数解析式的确定2 〈一〉三点式。 1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点, 求抛物线的解析式。 2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。 〈二〉顶点式。 1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。 2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。 〈三〉交点式。 1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。 2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21 a(x-2a)(x-b)的解析式。 〈四〉定点式。 1,在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q , 直线2)2(+-=x a y 经过点Q,求抛物线的解析式。 2,抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。 3,抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。

〈五〉平移式。 1,把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。 2,抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式. 〈六〉距离式。 1,抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。 2,已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物 线的解析式。 〈七〉对称轴式。 1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2 倍,求抛物线的解析式。 2、已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=4 3OC ,求此抛物线的解析式。 〈八〉对称式。 1,平行四边形ABCD 对角线AC 在x 轴上,且A (-10,0),AC=16,D (2,6)。AD 交y 轴于E ,将 三角形ABC 沿x 轴折叠,点B 到B 1的位置,求经过A,B,E 三点的抛物线的解析式。 2,求与抛物线y=x 2+4x+3关于y 轴(或x 轴)对称的抛物线的解析式。

初中数学二次函数复习求函数解析式优质课教案优质课教案教学设计

二次函数专题(一)——求二次函数表达式教学目标 会通过待定系数法求二次函数的关系式; 教学过程 二次函数是初中数学的一个严重内容,也是高中数学的一个严重基础。熟练地求出二次函数的解析式是解决二次函数问题的严重保证。 二次函数的解析式有三种基本形式: 1、大凡式:y=ax2 +bx+c (a≠0)。 2、顶点式:y=a(x-m)2 +k (a≠0),其中点(h,k)为顶点,对称轴为x=h。 3、交点式:y=a(x-x 1)(x-x 2) (a≠0),其中x 1,x 2是抛物线与x轴的交点的横坐标。 求二次函数的解析式大凡用待定系数法,但要根据例外条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设大凡式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。 探究问题,典例指津:

例1、已知二次函数的图象经过(0,1),(2,4),(3,10)三点,请你用待定系数法求这个函数的解析式。 例2、已知二次函数的图象经过(0,1),它的顶点坐标是(8,9),求这个函数的解析式。 练习、已知抛物线的顶点在原点,且过(2,8),求这个函数的解析式。 例3、已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 练习1:根据下列已知条件,求二次函数的解析式: (1)抛物线过点(0,2),(1,1),(3,5) (2)抛物线顶点为M(-1,2)且过点N(2,1) (3)抛物线过原点,且过点(3,-27),(-1,1) (4)已知二次函数的图象经过点(1,0),(3,0),(0,6)求二次函数的解析式。 例4、已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式. 练习2:根据下列已知条件,求二次函数的解析式: (1)抛物线y=ax2+bx+c经过(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。 (2)已知当x=2是,函数有最小值为3,且过点(1,5) (3)二次函数的图像经过点(3,-8)对称轴为直线x=2,抛物线与X轴两个交点之间的距离为6课堂小结 本节课是用待定系数法求函数解析式,应注意根据例外的条件选择适合的解析式形式

求二次函数解析式 综合题 练习+答案

求二次函数解析式:综合题 例1 已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 分析:本题可以利用抛物线的一般式来求解,但因 A(-1,0)、B(1,0)是抛物线与x轴的交点,因此有更简捷的解法. 如果抛物线y=ax2+bx+c与x轴(即y=0)有交点(x1,0),(x2,0).那么显然有 ∴x1、x2是一元二次方程ax2+bx+c=0的两个根.因此,有 ax2+bx+c=a(x-x1)(x-x2) ∴抛物线的解析式为 y=a(x-x1)(x-x2) (*) (其中x1、x2是抛物线与x轴交点的横坐标) 我们将(*)称为抛物线的两根式.

对于本例利用两根式来解则更为方便. 解:∵抛物线与x轴交于A(-1,0)、B(1,0) ∴设抛物线的解析式为 y=a(x+1)(x-1) 又∵抛物线过M(0,1),将x=0,y=1代入上式,解得a=-1 ∴函数解析式为y=-x2+1. 说明:一般地,对于求二次函数解析式的问题,可以小结如下: ①三项条件确定二次函数; ②求二次函数解析式的一般方法是待定系数法; ③二次函数的解析式有三种形式: 究竟选用哪种形式,要根据具体条件来决定. 例2 由右边图象写出二次函数的解析式.

分析:看图时要注意特殊点.例如顶点,图象与坐标轴的交点. 解:由图象知抛物线对称轴x=-1,顶点坐标(-1,2),过原点(0,0)或过点(-2,0). 设解析式为y=a(x+1)2+2 ∵过原点(0,0),∴a+2=0,a=-2.故解析式为 y=-2(x+1)2+2,即y=-2x2-4x. 说明:已知顶点坐标可以设顶点式. 本题也可设成一般式y=ax2+bx+c,∵过顶点(-1,2)和过原点(0,0),

二次函数解析式的8种求法

二次函数解析式的8种求法 河北 高顺利 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2 中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.

例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的. 解: 253212++= χχy = ()232 12-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的. 这两类题目多出现在选择题或是填空题目中 四、一般式 当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2 ,转化成一个三元一次方程组,以求得a ,b ,c 的值; 五、顶点式 若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数; 六、两根式 已知图像与 x 轴交于不同的两点()()1200x x ,,, ,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 例4、根据下面的条件,求二次函数的解析式: 1.图像经过(1,-4),(-1,0),(-2,5) 2.图象顶点是(-2,3),且过(-1,5) 3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,- 29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得: 40542a b c a b c a b c -=++??=-+??=-+? 解得:?? ???-=-==321c b a

(完整版)初中数学-二次函数的解析式(练习题)

第十课 二次函数的解析式 一、知识点: 二次函数的三种表示方式: ⑴ 一般式:____________________________________; ⑵ 顶点式:____________________________________; ⑶ 交点式:____________________________________. 二、例题 例1 已知二次函数的最大值为2,图象的顶点在直线1+=x y 上,并且图象经过点)1,2(,求此二次函数的解析式. 例2 已知二次函数的图象过点)0,3(-、)0,1(,且顶点到x 轴的距离等于2,求此二次函数的表达式. 例3 已知二次函数的图象的顶点为)18,2(-,它与x 轴的两个交点之间的距离为6,求该函数的解析式. 例4 已知二次函数的图像关于直线3=y 对称,最大值是0,在y 轴上的截距是1-,求这个二次函数的解析式. 变式 已知y 是x 的二次函数,当2=x 时,4-=y ,当4=y 时,x 恰为方程0822 =--x x 的根,求这个函数的解析式.

例5 求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式: (1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位. 例6 求把二次函数y =2x 2-4x +1的图象关于下列直线对称后所得到图象对应的函数解析式: (1)直线x =-1; (2)直线y =1. 三、练习: 1.填空: (1)已知二次函数的图象经过点)2,1(-,)3,0(-,)6,1(--,则它的解析式是__________. (2)已知二次函数当3=x 时,函数有最小值5,且经过点)11,1(,则它的解析式是__________. (3)已知二次函数的图像与x 轴的两交点间的距离是8,且顶点为)5,1(M ,则它的解析式是________. (4)函数4)1(2+--=x y 的图象向左平移2个单位,向下平移3个单位后的图象的解析式是_______. (5)函数3)3(22-+-=x y 的图象关于直线1-=x 对称的图象对应的解析式为______________. 2. 已知二次函数c bx ax y ++=2的图像经过点)1,1(--,其对称轴为2-=x ,且在x 轴上截得的线段长为22,求函数的解析式. 3. 已知二次函数25)21(2+-=x a y 的最大值为25,且方程025)21(2=+-x a 两根的立方和为19,求函数表达式. 4. 已知二次函数22-+-=m mx x y 。 ⑴ 试判断此函数的图像与x 轴有无交点,并说明理由; ⑵ 当函数图像的顶点到x 轴的距离为 1625时,求此函数的解析式.

二次函数的三种表达形式.

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c =a(x2+b/ax+c/a) =a[x2-(x1+x2)x+x1?x2] =a(x-x1)(x-x2). 重要概念: a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。 a的绝对值越大开口就越小,a的绝对值越小开口就越大。 能灵活运用这三种方式求二次函数的解析式;

初中教育二次函数地解题方法

11.1班沈阳14号 初中二次函数的解题方法 首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点 坐标为(-b/2a,4ac-b2/4a) ; 顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐 标为(h,k),对称轴为x=h,顶点的位置特征和图像的开口 方向与函数y=ax2的图像相同,有时题目会指出让你用 配方法把一般式化成顶点式。 交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即 y=0有交点A(x1,0)和B(x2,0)的抛物线,即b^2-4ac ≥0] :由一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a ∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[﹙x 2;-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 重要概念:。 1.二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a 对称轴与二次函数图像唯一的交点为二 次函数图像的顶点P。特别地,当h=0时,二次函数图 像的对称轴是y轴(即直线x=0);a,b同号,对称轴在y 轴左b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧

2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当 h=0时,P在y轴上;当k=0时,P在x轴上。h=-b/2a k=(4ac-b2)/4a 3.二次项系数a决定二次函数图像的开口方向和大 小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。 有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。 常见问题 1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。 解决策略是:应用平面几何的有关定理,如等腰三角形的三线合一、直角三角形的勾股定理、射影定理、斜边中线定理等结合两点间的距离公式及二次方程的求根公式、判别式定理、韦达定理等知识求解。用到的数学思想方法有数形结合、分类讨论、转化等。 2、二次函数的定点和动点问题:求动点运动所形成的直线或曲线一般采用消去参数法,即消去参数以后的方程即为动点需满足的函数解析式。

二次函数解析式的几种求法

二次函数解析式的几种求法 初三《数学》“函数及其图象”的难点是二次函数,其重点是求函数的解析式。近几年全国各省市初中毕业会考、中考等,大都有求函数解析式这类题目出现。为使学生更好地掌握这部分知识,就如何求二次函数解析式的问题,谈谈下面几种方法。 一、 已知三点求二次函数的解析式 当已知二次函数的图象经过三已知点时,通常把这三点的坐标 代入一般式c bx ax y ++=2中,可得以a 、b 、c 为未知数的三元方程组,解此方程组求得a 、b 、c 的值再代入一般式可得所求函数解析式。 例1、已知二次函数的图象经过点A )2 3,2(-、B )6,7(、C )30,5(-,求这个二次函数的解析式。 解:设这个二次函数的解析式为c ba ax y ++=2,则由题意得: ???????=+-=++-=++3052567492324c b a c b a c b a 解这个方程组,得21=a ,3-=b ,25=c . 故所求的二次函数的解析式为2 53212+-=x x y . 二、已知顶点坐标、对称轴、或极值求二次函数的解析式 当已知顶点坐标、对称轴、或极值时,可设其解析式为n m x a y +-=2)((即顶点式)较为简便。 例2、已知二次函数图象的顶点为(2,5),且与y 轴的交点的 纵坐标为13,求这个二次函数的解析式。 解:设这个二次函数的解析式为5)2(2+-=x a y . ∵它与y 轴的交点为(0,13), ∴135)20(2=+-a , ∴2=a 故 所求的解析式为5)2(22+-=x y . 即 13822+-=x x y 例3、已知二次函数的图象过点(-1,2),对称轴为1=x 且最小值为-2,求这个函数的解析式。 解:由题设知抛物线的顶点为(1,-2),因此,设所求二次函

求二次函数解析式的四种方法详解

求二次函数解析式的四种基本方法 二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式是解决二次函数问题的重要保证。 二次函数的解析式有三种基本形式: 1、一般式:y=ax 2 +bx+c (a ≠0)。 2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。 3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。 4.对称点式: y=a(x -x 1)(x -x 2)+m (a ≠0) 求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式: 1、若给出抛物线上任意三点,通常可设一般式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。 4.若已知二次函数图象上的两个对称点(x 1、m)(x 2、m),则设成: y=a(x -x 1)(x -x 2)+m (a ≠0),再将另一个坐标代入式子中,求出a 的值,再化成一般形式即可。 探究问题,典例指津: 例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。 解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0) 依题意得:?????=++-=-=+-145c b a c c b a 解这个方程组得:?? ???-===432c b a ∴这个二次函数的解析式为y=2x 2 +3x -4。 例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。 分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。 解:依题意,设这个二次函数的解析式为y=a(x -4)2 -1 (a ≠0) 又抛物线与y 轴交于点)3,0(。

二次函数讲解(比较详细)

初中二次函数讲解(比较详细) 定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 x是自变量,y是x的函数 二次函数的三种表达式 ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2) 以上3种形式可进行如下转化: ①一般式和顶点式的关系 对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式) 二次函数的图像 在平面直角坐标系中作出二次函数y=x^2的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。 抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a ) 当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。 _______ Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0) 7.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax^2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b^2)/4a); ⑷Δ=b^2-4ac, Δ>0,图象与x轴交于两点: ([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0);

二次函数解析式的8种求法

二次函数解析式的8种求法 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变. 例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.

求二次函数解析式的几种方法

沁乐教育沁心学习乐在其中 2015年秋季九年级数学辅导资料第二讲函数图像性质及应用 学校:姓名:

二次函数的图象与基本性质 (一)、知识点回顾 【知识点一:二次函数的基本性质】 【知识点二:抛物线的图像与a、b、c关系】 (1)a决定抛物线的开口方向:a>0,开口向________ ;a<0,开口向________ (2)c决定抛物线与________的位置:c>0,图像与y轴的交点在___________;

c=0,图像与y 轴的交点在___________;c<0,图像与y 轴的交点在___________; (3)a ,b 决定抛物线对称轴的位置,我们总结简称为:___________; (4)△=b 2-4ac 决定抛物线与________交点情况: △=b 2-4ac ?? ? ??<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000 【知识点三:二次函数的平移】 设0,0>>n m ,将二次函数2 ax y =向右平移m 个单位得到___________;向左平移m 个 单位得到___________;向上平移n 个单位得到___________;向下平移n 个单位得到___________。简单总结为___________,___________。 (注意:要用以上方法对二次函数图象进行平移,要先化成顶点式再操作) 【知识点四:二次函数与一元二次方程的关系】 二次函数)0(2 ≠++=a c bx ax y ,当0=y 时,即变为一元二次方程 )0(02≠=++a c bx ax ,从图象上来说,二次函数)0(2≠++=a c bx ax y 的图象与x 轴的 交点的横坐标x 的值就是方程)0(02 ≠=++a c bx ax 的根。 【知识点五:二次函数解析式的求法】 (1) 知抛物线三点,可以选用一般式:c bx ax y ++=2,把三点代入表达式列三元一次 方程组求解; (2) 知抛物线顶点或对称轴、最大(小)值可选用顶点式:k h x a y +-=2 )(;其中抛 物线顶点是),(k h ; (3) 知抛物线与x 轴的交点坐标为)0,(),0,(21x x 可选用交点式:

初中二次函数知识点详解及助记口诀

二次函数知识点详解(最新原创助记口诀) 知识点一、平面直角坐标系 1,平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x轴和y轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限 点P(x,y)在第二象限 点P(x,y)在第三象限 点P(x,y)在第四象限 2、坐标轴上的点的特征 点P(x,y)在x轴上,x为任意实数 点P(x,y)在y轴上,y为任意实数 点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上x与y相等 点P(x,y)在第二、四象限夹角平分线上x与y互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征 点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数 点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数 点P与点p’关于原点对称横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x轴的距离等于 (2)点P(x,y)到y轴的距离等于 (3)点P(x,y)到原点的距离等于 知识点三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四,正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。 特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。 2、一次函数的图像 所有一次函数的图像都是一条直线

二次函数解析式的确定教案

二次函数解析式的确定教案 0.3二次函数解析式的确定 一.知识要点 若已知二次函数的图象上任意三点坐标,则用一般式求 解析式。 若已知二次函数图象的顶点坐标,则应用顶点式,其中为顶点坐标。 若已知二次函数图象与x轴的两交点坐标,则应用交点式,其中为抛物线与x轴交点的横坐标 二.重点、难点: 重点:求二次函数的函数关系式 难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。 三.教学建议: 求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。 典型例题 例1.已知某二次函数的图象经过点A,B,c三点,求其函数关系式。 分析:设,其图象经过点c,可得,再由另外两点建立

关于的二元一次方程组,解方程组求出a、b的值即可。 解:设所求二次函数的解析式为 因为图象过点c,「? 又因为图象经过点A, B,故可得到: ???所求二次函数的解析式为 说明:当已知二次函数的图象经过三点时,可设其关系式为,然后确定a、b、c的值即得,本题由c可先求出c的值,这样由另两个点列出二元一次方程组,可使解题过程简便。 例2.已知二次函数的图象的顶点为,且经过点 求该二次函数的函数关系式。 分析:由已知顶点为,故可设,再由点确定a的值即可解:,则 ???图象过点, 即: 说明:如果题目已知二次函数图象的顶点坐标,一般设,再根据其他条件确定a的值。本题虽然已知条件中已设,但我们可以不用这种形式而另设这种形式。因为在这种形式中,我们必须求a、b、c的值,而在这种形式中,在顶点已知的条件下,只需确定一个字母a的值,显然这种形式更能使我们快捷地求其函数关系式。

二次函数表达式三种形式练习题

1.把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为() A.B.C.D. 3.与y=2(x﹣1)2+3形状相同的抛物线为()A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3 6.顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 12.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣ 13.如果一条抛物线经过平移后与抛物线y=﹣x2+2重合,且顶点坐标为(4,﹣2),则它 的解析式为. 14.二次函数的图象如图所示,则其解析式为. 15.若函数y=(m2﹣4)x4+(m﹣2)x2的图象是顶点在原点,对称轴是y轴的抛物线,则 m=. 16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x轴的距离为2, 则该二次函数的解析式为. 17.如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0), 那么它对应的函数解析式是. 18.二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(0,﹣3)、C(4,5)三点,求出 抛物线解析式. 19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为. 20.如图,一个二次函数的图象经过点A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为 (4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是. 21.坐标平面内向上的抛物线y=a(x+2)(x﹣8)与x轴交于A、B两点,与y轴交于C点,若 ∠ACB=90°,则a的值是.

相关文档
最新文档