空间中线线角,线面角,面面角成法原理与求法思路教学资料

空间中线线角,线面角,面面角成法原理与求法思路教学资料
空间中线线角,线面角,面面角成法原理与求法思路教学资料

空间中线线角,线面角,面面角成法原理与求

法思路

D B A C α 空间中的夹角

福建屏南一中 李家有 QQ52331550

空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

1、异面直线所成的角

(1)异面直线所成的角的范围是2

,0(π。求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。

具体步骤如下:

①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;

②证明作出的角即为所求的角;

③利用解三角形来求角。简称为“作,证,求”

2、线面夹角

直线与平面所成的角的范围是2

,0[π。求直线和平面所成的角用的是射影转化法。 具体步骤如下:(若线面平行,线在面内,线面垂直,则不

用此法,因为角度不用问你也知道)

①找过斜线上一点与平面垂直的直线;

②连结垂足和斜足,得出斜线在平面的射影,确定出所求的

角;

③把该角置于三角形中计算。

也是简称为“作,证,求”

注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角,则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。在右图的解释为

BAD CAD ∠>∠)

2.1确定点的射影位置有以下几种方法:

①斜线上任意一点在平面上的射影必在斜线在平面的射影上;

②如果一个角所在的平面外一点到角的两

边距离相等,那么这一点在平面上的射影在这

个角的平分线上;

已知:如图,BAC ∠在一个平面α内,

,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到

角两边的距离相等)过P 作PO α⊥(说明点

O 为P 点在面α内的射影)

求证:OAN OAM ∠∠=

(OAN OAM ∠∠=,所以AO 为BAC ∠的角平分线,所以点O 会在BAC ∠的角平分线上)

证明:PA =PA ,PN =PM ,90PNA PMA ∠∠?==

PNA PMA ∴???(斜边直角边定理)

AN AM ∴= ①

(PO NO MO PN PM α⊥??=??

斜线长相等推射影长相等)= O AN AM AO AO AMO ANO NAO MAO OM N ???????∠∠???

==== 所以,点P 在面的射影为BAC ∠的角平分线上。

③如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;

已知:如图,BAC ∠在一个平面α内

PAN PAM ∠∠=(斜线AP 与BAC ∠的两边

AB AC ,所成角相等)

PO α⊥

求证:OAM OAN ∠∠=(说明点O 在角MAC 的角

平分线上。)

证明:在AB 上取点M ,在AC 上取点N ,使

AN AM =(这步是关键,为我们自已所作的辅助线点,

线)

A A N

PAN PAM PN PM ???????∠∠?M =AP =AP =PAN =PAM

(PO NO MO PN PM α⊥??=??

斜线长相等推射影长相等)= O AN AM AO AO AMO ANO NAO MAO OM N ???????∠∠???

====,所以,点P 在面的射影为BAC ∠的角平分线上。

④两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;(这是两面垂直的性质)

⑤利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:

a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;

已知:如图,三棱锥P -ABC 中,PA =PB =PC ,

PO ABC ⊥面

求证:O 点为ABC ?的外心(即证OA =OB =OC )

(注:外心为三角形的外接圆的圆心,也是三边中

垂线的交点)

线面角的求法总结

线面角的求法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι

其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1 C 1 D 1 H 4 C 1 2 3 B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cos θ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角, B α O A C 图3

向量法求空间角(高二数学-立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形, DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -中,O 为底面正方形的中心,侧棱与底面所成的角的正切值为26 . (1)求侧面与底面所成的二面角的大小; D B A

(2)若E是的中点,求异面直线与所成角的正切值; (3)问在棱上是否存在一点F,使⊥侧面,若存在,试确定点F的位置;若不存在,说明理由. 3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面 角的大小.

4.(本小题满分12分)如图,在四棱锥ABCD P-中,PD⊥底面ABCD,且底面ABCD为正方形,G , = =分别为 ,2 AD, F E PD ,的中点. PC, PD CB (1)求证:// AP平面EFG; (2)求平面GEF和平面DEF的夹角.

5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小.

线面所成角的求法

★线面所成角的求法:[。勺 1?作图一一证明一一计算 求角的关键在于找出平面的垂线及斜线的射影。一般地通过斜线上某个特殊点 作出平面的垂线来找角。角的计算一般是把已知条件归结到同一个或归结到几个有 关的三角形中,从而把空间的计算转变为平面图形内的解直角三角形或斜三角形的 边长相等,则AB i 与侧面ACC i A i 所成角的正弦值等于 A 亞 B 血 C 边 A. 4 B. 4 C. 2 4.如图,在长方体 ABCD — A i B i C i D i 中,AB = BC = 2, 7 僅― A a 问题。 A i D

n 与BC i所成的角为2,则BC i与平面BB I D I D所成角的正弦值为()代£B? C.^5 D¥ 5..正四棱锥S-ABCD中,0为顶点在底面上的射影,P为侧棱SD的中点,且SO =0D,则直线BC与平面PAC所成的角是 _____________ . 6. 如图,已知点P在正万体ABC B A B‘ C D的对角线BD上,/ PDA F60° . (1)求DP与CC所成角的大小; ⑵求DP与平面AA D D所成角的大小. 1 7. 已知三棱锥P-ABC中,PA丄平面ABC, AB丄AC,PA= AC= qAB, N为 AB上一点,AB = 4AN,M,S分别为PB、BC的中点. “ (1)证明:CM丄SN; ⑵求SN与平面CMN所成角的大小. ' ; 8 如图,在五棱锥P-ABCDE中,PA丄平面ABCDE,AB - // CD, AC// ED,AE // BC,/ ABC = 45°, AB = 2迈,BC = 2AE = 4,三角形FAB 是等腰三角形. (1)求证:平面PCD丄平面PAC; ⑵求直线PB与平面PCD所成角的大小; (3)求四棱锥P-ACDE的体积.

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法 利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形” 的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数 方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课 程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1使学生会求平面的法向量; 2?使学生学会求二面角的平面角的向量方法; 3. 使学生能够应用向量方法解决一些简单的立体几何问题; 4. 使学生的分析与推理能力和空间想象能力得到提高 教学重点 求平面的法向量; 求解二面角的平面角的向量法 教学难点 求解二面角的平面角的向量法 教学过程 I、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:[0,])

2、 法向量的方向: 一进一出,二面角等于法向量夹角;同进同出,二面 角等于法向量夹角的补角 . 3、 用空间向量解决立体几何问题的“三步曲” : (1) 建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2) 通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (进行 向量运算) (3) 把向量的运算结果“翻译”成相应的几何意义。 (回到图形) n 、典例分析与练习 例1、如图,ABCD 是一直角梯形, ABC 90 , SA 求面SCD 与面SBA 所成二面角的余弦值? 分析 分别以BA, AD,AS 所在直线为x,y,z 轴, 建立空间直角坐标系,求出平面 SCD 的法向量 仁, 平面SBA 法向量n 2,利用n i , n 2夹角 cos cos n 1, n 2 结论: 或 ——■ cos cos 门1,门2 cos cos n j , n 2 统一为: n 1 n 2 |n 1 n 2 1 面 ABCD , SA AB BC 1, AD -, 2

考点二 用空间向量求线面角

考点二 用空间向量求线面角 【例2】 (2018·全国Ⅱ卷)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. (1)证明 因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB ,因为AB =BC =22AC , 所以AB 2+BC 2=AC 2, 所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12 AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB . 由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC . (2)解 如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O -xyz . 由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面P AC 的一个法向量OB →=(2,0,0). 设M (a ,2-a ,0)(0

设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得 ? ??2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2 . 由已知可得|cos 〈OB →,n 〉|=32 , 所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去),a =43, 所以n =? ????-833,433,-43. 又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34 . 所以PC 与平面P AM 所成角的正弦值为34. 规律方法 利用向量法求线面角的方法: (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角. 【训练2】 (2019·郑州测试)在如图所示的多面体中,四边形ABCD 是平行四边 形,四边形BDEF 是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ; (2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.

线面角的求法总结

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ ,则sin θ =h /AB=4/5

求线面角的三种常见思路方法

求线面角的三种常见思路方法 舒云水 本文以 2009年湖南卷理 18 题为例,介绍求线面角的三种常见思路方法,并对这三种方法作比较分析﹒ 如图 1,在正三棱柱ABC A1B1C1中,AB 2AA1,点 D是A1B1的中点,点 E 在A1C1上,且DE⊥ AE. (I)证明:平面ADE 平面ACC1A1 ; ( II )求直线 AD和平面ABC1所成角的正弦值. (Ⅰ)证明略.下面主要谈(Ⅱ)小题的解法﹒思路 1:直接作出线面角求解﹒ 分析:因为本题几何图形是特殊的几何体——正三棱柱,点 D 在特殊位置上——线段A1B1的中点,所以本题比较容易作出线面角﹒如图 2,取AB的中点F ,连结DF ,DC1 , C1F ,则面DFC1 面ABC1,过D作DH C1F于H ,则DH 面ABC1 ,连结AH,则HAD是AD和平面ABC1 所成的角﹒

解法 1 如图 2,设 F 是 AB 的中点,连结 DF , DC 1 , C 1F .由正 三棱柱 ABC A 1B 1C 1的性质及 D 是A 1B 1的中点知, A 1B 1 ⊥ C 1D ,A 1B 1⊥ DF . 又C 1D DF D ,所以 A 1B 1 ⊥平面C 1DF . 而 AB ∥ A 1B 1, 所以 AB⊥平面C 1DF .又 AB 平面ABC 1 ,故 平面 ABC 1 ⊥平面C 1DF . 过点 D 作DH 垂直C 1F 于点 H , 则 DH ⊥ 平面 ABC 1 . 连结 AH ,则 HAD 是直线 AD 和平面 ABC 1 所成的角. 由已知 AB 2AA 1,不妨设 AA 1 2,则 AB 2,DF 2, DC 1 3, 所以 sin HAD D A H D 15 思路 2:用等体积法求出点 D 到面 ABC 1的距离h ,A h D 为所求线 面 C 1F 5, AD AA 12 A 1D 2 3, DF ·DC 1 2 3 30 DH C 1F 55 即直线 AD 和平面 ABC 1所成角的正弦值为 10 .

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

《描点定位画图》教案教学设计及反思

《描点定位画图》教案教学设计及反思 这是一篇由网络搜集整理的关于《描点定位画图》教案教学设计及反思的文档,希望对你能有帮助。 1、认识坐标图,理解坐标轴和坐标的概念。 2、能正确标出任一点的坐标。 3、学习定位作图命令,并能用描点定位法画出较复杂的图形。 4、培养学生初步的平面解析几何思维能力。 教学重、难点: 1、能正确标出任一点的坐标。 2、学习定位作图命令,并能用描点定位法画出较复杂的图形。 教学方法: 教学法、演示法、练习法、讨论法 教具、学具: 电脑、演示图案、每个学生一张制定好的坐标纸 教学过程: 一、复习导入 1、引导学生复习前面学过的内容,画正三角形,画正五边形。主要是让学生计算小海龟在作图时的转向。 2、复习小海龟转向角度的计算。 二、新授 1、我们有一句祝福语叫“一帆风顺”,主要的赠送物品就是一条小船。当你

把你创作的作品赠送给朋友时,不但增加了你们的友谊,还让朋友分享到你的成果,这是一件多么有意义的事啊! 今天,我们大家一起来制作帆船。 2、观察教材53页图10.1,想一想,你准备怎么画? 分析:这是一些看似不规则的图形组合的。 给学生一点时间,让他们随便的画,作一种漫无目的的尝试,感觉到所画的线总是达不到自已希望的效果,而且角度也不好计算,步数(线长)也不能确定,在这种情况下,一定要思考用什么方法来解决。 3、认识坐标图 同学们都观察了以上的“帆船”图吧,也尝试节画图,那么你们觉得画这幅图有哪些困难呢? 转向角度不知道是多少,前进或后退的步数不知道是多少。这就需要要同学们去计算了。 我们今天就来学习一种新的画图方法,坐标作图。 先认识一下坐标图(教材54图10.2): (1)分组观察,讨论。说说你对坐标图的理解。教师提问,学生回答。 (2)讲解坐标图: 坐标图上的两条有箭头的粗线就是坐标轴,成十字交叉,交点用O表示,横向的一条为X坐标轴,纵向的一条为Y坐标轴。 组成坐标图的网络线(水平线和垂直线)之间的距离是相等的。 以O为起点,就是0,向上为正数,向下为负数;向右为正数,向左为负数。

用向量法求直线与平面所成的角教案

用向量法求直线与平面所 成的角教案 Prepared on 24 November 2020

第二讲:立体几何中的向量方法 ——利用空间向量求直线与平面所成的角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1.使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2.使学生能够应用向量方法解决一些简单的立体几何问题; 3.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法.

教学难点 求解直线与平面所成的角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾有关知识: 1、直线与平面所成的角:(范围:]2,0[π θ∈) 思考:设平面α的法向量为n ,则>

《用向量法求异面直线所成的角》教案

第一讲:立体几何中的向量方法 ——利用空间向量求异面直线所成的角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对线线角的求法进行总结。 教学目标 1.使学生学会求异面直线所成的角的向量方法; 2.使学生能够应用向量方法解决一些简单的立体几何问题; 3.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求解异面直线所成的角的向量法. 教学难点 求解异面直线所成的角的向量法. 教学过程

Ⅰ、复习回顾 一、回顾有关知识: 1、两异直线所成的角:(范围:) (1)定义:过空间任意一点o分别作异面直线a与b的平行线a′与b′,那么直线a′与b′所成的锐角或直角,叫做异面直线a与b 所成的角. (2)用向量法求异面直线所成角,设两异面直线a、b 的方向向量分别为和, 问题1:当与的夹角不大于90°时,异面直线a、b 所成 的角与和的夹角的关系? 问题2:与的夹角大于90°时,,异面直线a、b 所成的角与和的夹角的关系? 两向量数量积的定义: a b O

线面角及二面角的求法

第9节线面角及二面角的求法 【基础知识】 求线面角、二面角的常用方法: (1) 线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解. (2) 二面角的大小求法,二面角的大小用它的平面角来度量. :] 【规律技巧】 平面角的作法常见的有①定义法;②垂面法?注意利用等腰、等边三角形的性质. 【典例讲解】 【例1】如图,在四棱锥 P-ABCD中,FA丄底面ABCD , AB⊥ AD , AC⊥ CD, ∠ ABC =60 ° , PA = AB = BC, E 是 PC 的中点. P (1)求PB和平面PAD所成的角的大小; ⑵证明:AE丄平面PCD ; ⑶求二面角 A — PD — C的正弦值. (1)解在四棱锥P — ABCD中, 因FA丄底面 ABCD , AB?平面 ABCD , 故PA⊥ AB.又AB⊥ AD , FA ∩ AD = A, 从而AB丄平面PAD, 故PB在平面PAD内的射影为FA, 从而∠ APB为PB和平面PAD所成的角. 在Rt△ PAB 中,AB= FA,故∠ APB = 45° 所以PB和平面PAD所成的角的大小为 45 ⑵证明在四棱锥P— ABCD中, 因FA丄底面 ABCD, CD?平面ABCD, 故CD丄FA.由条件 CD丄AC , PA ∩ AC= A , ??? CD丄平面PAC. 又 AE?平面 FAC,??? AE丄CD.

由FA= AB = BC,∠ ABC = 60° ,可得 AC = PA. ??? E 是 PC 的中点,???AE⊥ PC. 又PC∩ CD = C,综上得AE⊥平面PCD. 【变式探究】如图所示,在四棱锥P — ABCD中,底面ABCD是正方形,侧棱 PD丄底 面ABCD , PD = DC.E是PC的中点,作 EF丄PB交PB于点F. ⑴证明PA//平面EDB ; ⑵证明PB⊥平面EFD ; (3) 求二面角 C — PB— D的大小. ⑴证明如图所示,连接 AC, AC交BD于0,连接EO. ???底面ABCD是正方形, ?点0是AC的中点. 在厶PAC中,EO是中位线, ? PA // E0. 而E0?平面EDB且PA?平面EDB , ? PA //平面 EDB. 【针对训练】 1.如图,四棱锥 P — ABCD中,底面 ABCD为菱形,PA丄底面ABCD , AC = 2,2, FA =2, E 是PC 上的一点,PE= 2EC. (1)证明:PC⊥平面BED ; ⑵设二面角A — PB-C为90°,求PD与平面PBC所成角的大小.

《用向量法求直线与平面所成的角》教案

第二讲:立体几何中的向量方法——利用空间向量求直线与平面所成的 角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合 推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般 规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1. 使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2. 使学生能够应用向量方法解决一些简单的立体几何问题; 3. 使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法. 教学难点 求解直线与平面所成的角的向量法. 教学过程 I、复习回顾 一、回顾有关知识: 1

1、直线与平面所成的角:(范围:二? [0,—]) 2 思考:设平面:的法向量为n,则::n,BA .与二的关系? JT ■■二日=----- < n, BA > 2 (图 ) 2

线面角的三种求法

线面角的三种求法 河北 王学会 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂

线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1C 1D 1 H 4 C B 12 3B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cosθ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的 一条直线,其中θ为OA 与OC 所成的角, B αO A C 图3 θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cosθ2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理) 例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC 所成

《用向量法求直线与平面所成的角》教案

第二讲:立体几何中的向量方法 ——利用空间向量求直线与平面所成的角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1.使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2.使学生能够应用向量方法解决一些简单的立体几何问题; 3.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法. 教学难点 求解直线与平面所成的角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾有关知识: 1、直线与平面所成的角:(范围:]2 , 0[π θ∈) 思考:设平面α的法向量为,则><,与θ的关系? A B θ αO

基于Matlab的空间描点机器人建模与仿真报告

课程设计 课程名称机器人学 题目名称空间描点机器人建模仿真学生学院 专业班级 学号 学生姓名 指导教师

目录 1.课程设计要求 (1) 2.空间描点机器人的设计 (2) 2.1机器人构型及坐标 (2) 2.2D-H参数表 (4) 3.正运动学 (5) 3.1齐次变换矩阵 (5) 3.2 空间描点机器人工作空间 (6) 4.几何法求逆解 (7) 5.程序流程图 (8) 6.总结分析 (9) 7.Matlab程序附录 (10) 7.1 Mov_6DOF_Rob_Lnya.m (10) 7.2 DHfk6Dof_Lnya.m (12) 7.3 IK_6DOF_Rob_Lnya.m (13) 7.4 Build_6DOFRobot_Lnya.m (14) 7.5 Erzhihua.m (14) 7.6 draw_Workplace.m (15) 7.7 Matrix_DH_Ln.m (16) 7.8 Connect3D.m (17)

1. 课程设计要求 一,按照附件模板填写,要求有封面和目录,除签名处不能有手写。二,主要内容包括下面几个部分, 1,设计一款六自由度机器人,要求2,3,4,5关节中有一个是滑动关节,其余关节应为转动关节。试构想该机器人的功能,并根据功能设定机器人的介绍参数(杆件长度及关节极限) 2,建立机器人的正运动学模型,进行Matlab 运动仿真。(分析机器人的工作空间,制作机器人各个运动的动画。) 注意事项: 1)要求画出机器人的关节坐标系,列出DH 参数表,以及各个关节间的齐次变换矩阵。 2)Matlab仿真应画出工作空间的立体图和剖面图。采用机器人产品的同学应与实际说明书的工作空间做对比。自行设计的同学要做简单的分析讨论。 3)直接采用例程里面的三自由度机器人该部分得0 分。 3,实现逆运动学轨迹规划 注意事项: 1)这里特指机器人末端的轨迹规划,不是关节空间的轨迹规划。2)要实现控制机器人末端在空间中完成某种轨迹。(如直线,圆弧,心型,写字等) 3)可以采用求解逆运动的方程或者是利用微分运动。 4)写出详细的推导过程(公式)。 5)要求有仿真截图及动画。 6)只能使用matlab 及本课程提供的例程,不能使用工具箱。 7)仅仅使用3自由度例程的同学本部分分数会很低 4,自由发挥项(完成这一部分的同学才能够得到90分以上) 1)机器人完整逆解的求解方式(数值解); 2)寻找奇异点,分析奇异位型。 5,Matlab程序作为附录应添加在课程设计报告书的最后面。要求在第一页附上程序流程图,注明函数调用过程,此外,程序要排好版。

§3.2.2立体几何中的向量方法(4)及详解——向量法求线线角与线面角

§立体几何中的向量方法(4) 向量法求线线角与线面角 一、学习目标 1.理解直线与平面所成角的概念. 2.掌握利用向量方法解决线线、线面 、面面的夹角的求法. 二、问题导学 问题1:什么叫异面直线所成的角它的范围是什么怎样用定义法求它的大小 问题2:怎样通过向量的运算来求异面直线所成的角 设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、l 2所成的角为θ, 则〈a ,b 〉与θ ,cos θ= 。 问题3:用向量的数量积可以求异面直线所成的角,能否求线面角 如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量, n 为平面α的法向量,φ为l 与α所成的角,θ=〈a ,n 〉, 则sin φ= 。 三、例题探究 例1.如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D 的棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角. 变式:在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的 班别: _____________ 学号: _____________ 高二理科数学 导学案

中点,点P在A1B1上,则直线PQ与直线AM所成的角等于 ( ) A.30° B.45° C.60° D.90° 例2.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°. (1)证明:AB⊥A1C; (2)若平面ABC⊥平面AA1B1B,AB=CB=2, 求直线A1C与平面BB1C1C所成角的正弦值. 变式:如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.求BD与平面ADMN所成的角θ. 四、练一练(时间:5分钟) 1. 1.若平面α的法向量为μ,直线l的方向向量为v, 直线l与平面α的夹角为θ,则下列关系式成立的是 ( ) A.cosθ=μ·v |μ||v| B.cosθ= |μ·v| |μ||υ| C.sinθ= μ·v |μ||v| D.sinθ= |μ·v| |μ||v|

利用空间向量求线面夹角

利用空间向量求线面夹角 最新考纲 1、能用向量方法解决直线与平面的夹角的计算问题; 2、了解向量方法在研究立体几何问题中的应用、 教学目标: 1、能用向量方法解决线面夹角的计算问题. 2、通过对例题的探究与解决的过程提高学生的逻辑推理能力、运算求解能力,培养学生规范做答的习惯。 3、通过向量方法在研究立体几何问题中的应用,发展学生的数学抽象、逻辑推理、数学运算素养. 教学重点: 能用向量方法解决线面夹角的计算问题 教学难点: 应用向量方法正确求解线面夹角 教学方法: 探究式、启发式 教学过程: 一、课前测试: 1、已知向量m,n分别就是直线l与平面α的方向向量与法向量,若cos 〈m,n〉=-1 2 ,则l与α所成的角为 2、在正方体ABCD-A1B1C1D1中,BC1与平面BB1D1D所成角的正弦值为 二、知识梳理 直线与平面所成的角 (1)定义:一条斜线与它在平面上的射影所成的角叫作这条直线与这个平面所成的角。若一条直线垂直于平面,则它们所成的角就是直角;若一条直线与平面平行或在平面内,则它们所成的角就是0°的角、 (2)范围:

(3)设直线l 的方向向量为a,平面α的法向量为u,直线l 与平面α所成的角为θ,则sin θ= = l α [微点提醒] 线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值 的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|,不要忘记θ∈????? ???0π2的取值范围、 三.考点强化 用空间向量求线面角 例题:如图,四棱锥P —ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD 、 (Ⅰ)证明:PA ⊥BD; (Ⅱ)若PD=AD,求直线AP 与平面PBC 所成角的正弦值。 四.变式练习:(1)求直线AP 与平面PDB 所成的角; (2)求直线BC 与平面PAB 所成角的正弦值。 【规律方法】求直线与平面所成的角,大致有两种基本方法: ①传统立体几何的综合推理法:通过射影转化法作出直线与平面所成的线面角,然后在直角三角形中求角的大小、找射影的基本方法就是过直线上一点作平面的垂线,连接垂足与斜足得到直线在平面内的射影;有时也可通过找到经过斜线且垂直于已知平面的垂面来确定斜线在平面内的射影,此时平面与垂面的交线即为射影、 ②空间向量的坐标法:建系并确定点及向量的坐标,然后利用向量的夹角公式通过坐标运算求得直线与平面所成的角、 五.课堂小结 求直线与平面所成的角,大致有两种基本方法: A B C θ

定义法求线面角(人教A版)

定义法求线面角(人教A版) 一、单选题(共10道,每道10分) 1.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是BC1的中点,则直线DE与平面ABCD 所成角的正切值为( ) A. B. C. D. 2.如图,在正方体ABCD-A1B1C1D1中,直线A1B与平面A1B1CD所成角的余弦值是( ) A. B. C. D. 3.如图,已知△ABS是等边三角形,四边形ABCD是正方形,平面ABS⊥平面ABCD, 则直线SC与平面ABCD所成角的余弦值为( )

A. B. C. D. 4.如图,在正三棱柱ABC-A1B1C1中,侧棱长为,底面三角形的边长为1,则直线BC1与平面ACC1A1所成角的正切值是( ) A. B. C. D. 5.如图,在三棱锥P-ABC中,PA=PB=PC=BC,且∠BAC=90°,则直线PA与底面ABC所成的角为( )

A.30° B.45° C.60° D.90° 6.如图,在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值为( ) A. B. C. D. 7.如图,在四棱锥A-BCDE中,AC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,则直线AE与平面ABC所成角的正切值为( )

A. B. C. D. 8.如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点, 则直线AD与平面B1DC所成角的正弦值为( ) A. B. C. D. 9.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,若M,N分别是PC,PB的中点,则CD与平面ADMN所成角的正弦值为( ) A. B. C. D.

相关文档
最新文档