水化学类型表示方法

水化学类型表示方法
水化学类型表示方法

老:水质分析结果用各种形式的指标值及化学表达式来表示:

1、离子含量指标

溶解于地下水中的盐类,以各种阴、阳离子形式存在,其含量一般以mmol/L (毫摩尔/升)、mg/L(毫克/升)、me/L(毫克当量/升)表示。海水中的主要离子以单位ml/L(摩尔/升)、g/L(克/升)表示。超微量元素的离子以,其单位以mg/L(毫克/升)表示。

2、分子含量指标

溶解于地下水的气体和胶体物质,如CO2、SiO2,其含量一般用单位mmol/L、mg/L表示。

3、综合指标

氢离子浓度(pH值)、酸碱度、硬度、矿化度四项指标,集中地表示了地下水的化学性质。

⑴ pH值:pH=﹣㏒[H+], pH值反映了地下水的酸碱性,由酸、碱和盐的水解因素所决定。 pH值与电极电位存在一定的关系,影响地下水化学元素的迁移强度,是进行水化学平衡计算和审核水质分析结果的重要参数。

⑵酸度和碱度:酸度是指强碱滴定水样中的酸至一定pH值的碱量,地下水中酸度的形成主要是未结合的CO2、无机酸、强酸弱碱盐及有机酸。碱度是指强酸滴定水样中的碱至一定pH值的酸量,地下水碱度的形成主要是氢氧化物、硫化物、氨、硝酸盐、无机和有机弱酸盐以及有机碱。酸碱度一般表示单位有mmol/L、me/L表示。

⑶硬度:水中硬度取决于水中钙、镁和其它金属离子(碱金属除外)的含量。

总硬度:地下水中钙镁的重碳酸盐、氯化物、硫酸盐和硝酸盐的总含量。

暂时硬度(碳酸盐硬度):水煮沸后呈碳酸盐形态的析出量。

永久硬度(非碳酸盐硬度):水煮沸后,留于水中的钙盐和镁盐的含量。 负硬度(钠钾硬度):地下水中碱金属钾钠的碳酸盐、重碳酸盐和氢氧化物的含量。

总硬度=暂时硬度+永久硬度=碳酸盐硬度+非碳酸盐硬度 负硬度(钠钾硬度)=总碱度-总硬度(总硬度>总碱度) 硬度一般以单位mmol/L 、mg/L 、me/L 、H°(德国度)表示.

⑷矿化度:地下水含离子、分子及化合物的总量称为矿化度,或称总矿化度。矿化度包括了全部的溶解组分和胶体物质,但不包括游离气体。通常以可滤性蒸发残渣(溶解性固体)来表示。也可按水分析所得的全部阴阳离子含量的总和(计算时HCO3含量只取半数)表示理论上的可滤性蒸发残渣量。矿化度一般以单位g/L 、mg/L 表示。

⑸分子式(курлов):按阴阳离子毫克当量百分数表示水化学类型,其表达式如下:

微量元素(g/L)气体成分(g/L)矿化度(g/L)?者列入)

大于阳离子(者列入)

大于阴离子(10%m 10%e me ·温

度(℃)

“毫克当量百分数”是一种离子毫克当量百分浓度的表示方法,即 离子毫克当量百分数(%)=

%100 总数

阴(阳)离子毫克当量该离子毫克当量数

以离子含量(me/L%)>25%作为水化学类型定名界限值。

1、根据水质分析资料,可以确定水化学类型:按离子含量>25%者进行划分,阳离子在前,阴离子在后。

2、水化学式(库尔洛夫式)是用毫克当量%表示的,水化学式中含量是由大到小排列。大于10%的就需要列在其中,大于25%参与分类。前面是微量元素、气体成分、矿化度,后面是温度。现在一般不用这种分类了,因为不再用当量表示含量。

老水质分析结果表示方法:

1、以离子毫克(或克)表示:即表示一升水中含某离子毫克(或克)数,可表示该离子的绝对含量。

2、以百万分含量(ppm)表示:相当于1000克水中含某离子的毫克数。当水的比重为一时,其值与每升水中含离子的毫克数相同。

3、以离子毫克当量数表示:及以一升水中含离子毫克当量数表示水中化学成分。这种方法可以反映水的化学性质,检查水质分析结果的正确性。

一升水中某离子的毫克当量数=

该离子的当量数

一升水中该离子的毫克

式中:

离子的当量

1称为换算系数

各种离子的换算系数值见表

4、以离子毫克当量百分数表示:此法可以获得水中各种离子含量百分比的概念。通常将一升水中阴、阳离子毫克当量总数各作为100%,按阴、阳离子分别计算。

某阴(或阳)离子毫克当量百分数(%)=

%100)( 离子毫克当量总数

或阳阴该离子毫克当量数

4、以分子式表示:单个水样的化学特性可按如下形式的分子式(库尔洛夫式)表示

微量元素含量(克/升)气体含量(克/升)总矿化度(克/

升)水温量百分数)

各阳离子含量(毫克当量百分数)各阴离子含量(毫克当(℃)

式中阴、阳离子均依含量递减次序排列(凡是大于10%的均参与排列),各种成分含量一律标在该成分符号的右下角;各元素的原子数均移至右上角。例如:

H 2

SiO

3

0.1

H 2

S 0.012CO 2

0.019M2.509.1417.2112,5912

4

24.29301.56a l Na Mg C C SO HCO T13℃

离子的每升毫克含量换算为每升毫克当量的换算系数表

例如:40.08毫克的Ca 2+相当于

04

.2008

.40或40.08×0.04990=2毫克当量的Ca ;

144.09毫克的SO 42-相当于

03

.4809

.144或144.09×0.02082=3毫克当量的SO 4

注:一般分析中钾、钠离子的含量常常不进行直接测定,而是以钾、钠离子含量的总和表示之。由于一般水中钾离子含量往往比钠离子含量小得多,故在用差减法求得钾钠离子毫克当量/升后乘以钠的当量(22.9898)或23即得钾钠的毫克/升数

化学分析用各种溶液的浓度表示方法和标签内容格式

化学分析用各种溶液的浓度表示方法和标签内容格式 溶液浓度是指在一定质量或一定体积的溶液中所含溶质的量.正确表示各种溶液浓度及正确书写标签内容是搞好检测工作的基本规范要求之一.国际标准化组织ISO,国际理论化学与应用化学联合会IUPAC和我国国家标准GB都作出相关规定.现结合日常工作实践,就化学分析用各种溶液的浓度表示方法和标签内容格式作一介绍,以满足实验室认可对化学分析用各种溶液的浓度表示方法和标签内容书写格式的要求. 1 标准滴定溶液 standard volumetric solution 1.1 定义 已知准确浓度的用于滴定分析用的溶液. 1.2 浓度表示方法 1.2.1 物质的量浓度 a. 定义:单位体积中所含溶质B的物质的量. b. 物质的量浓度符号:cB. c. 物质的量浓度单位:计量单位为"mol/m3"及其倍数,实验室中常用的单位是"mol/L"或 1mol/dm3. d. 说明:物质的量的SI基本单位是摩尔 (单位符号为"mol"),其定义如下:摩尔是一系统的物质的量,该系统中所包含的基本单元数与0.012kg碳-12数目相等。在使用摩尔时,基本单元应予指明,可以是原子,分子,离子,电子及其他粒子,或是这些粒子的特定组合.因此,在使用物质的量浓度时也必须指明基本单元. e. 实例 c(NaOH)=0.1015mol/L氢氧化钠溶液,小括号内的NaOH是指溶液中溶质的基本单元,c(NaOH)是表示基本单元为NaOH的物质的量浓度.等号右边的0.1015mol/L表示物质的量浓度数数值为0.1015摩尔每升,即每升含氢氧化钠1×氢氧化钠分子量×0.1015克. c(1/2H2SO4)=0.2042mol/L硫酸溶液,表示基本单元为1/2H2SO4的物质的量浓度为0.2042摩尔每升.即每升含硫酸1/2×硫酸分子量×0.2042克. c(1/5KMnO4)=0.1000mol/L高锰酸钾溶液,表示基本单元为1/5KMnO4的物质的量浓度为 0.1000摩尔每升.即每升含高锰酸钾1/5×高锰酸钾分子量×0.1000克. c(1/6K2Cr2O7)=1.0042mol/L重铬酸钾溶液,表示基本单元为1/6 K2Cr2O7的物质的量浓度为1.0042摩尔每升.即每升含重铬酸钾1/6×重铬酸钾分子量×1.0042克. c(1/2Ca2+)=1.0035mol/L钙阳离子溶液,表示基本单元为1/2 Ca2+的物质的量浓度为1.0035摩尔每升.即每升含钙阳离子1/2×钙原子量×1.0035克. 1.2.2 质量浓度 a. 质量浓度定义:作为溶质的物质的质量除以混合物(即溶液)体积. b. 质量浓度符号:ρB B代表作为溶质的物质. c. 质量浓度单位:计量单位为"kg/m3","kg/L"(1kg/L=103kg/ m3=1kg/d 实验室常用"g/L","mg/L","mg/mL","μg/mL"等. d. 质量浓度表示法实例: ρB表示法: ρ(Na2CO3)=0.5021mg/mL碳酸钠标准滴定溶液,表示碳酸钠标准滴定溶液的质量浓度为 0.5021毫克每毫升.

水化学分析资料整理(完成)

水化学分析资料整理 一、学习目的 熟悉水化学分析资料整理的基本方法。 二、各种离子浓度单位的换算 1、离子的毫克当量浓度(meq/L) 离子的毫克浓度(mg/L) 离子毫克当量浓度(meq/L) = 离子的毫克当量 2、离子的毫克当量百分数浓度(meq%) 该离子毫克当量浓度(meq/L) 某阴(阳)离子毫克当量百分数(meq%) = ×100% 阴(阳)离子毫克当量浓度总和 3、离子的毫摩尔浓度(mmol/L) 离子的毫克浓度(mg/L) 离子的毫摩尔浓度(mmol/L) = 离子的毫摩尔质量(mg/mmol) 4、离子的毫摩尔百分数浓度(mmol%) 该离子毫摩尔浓度(mmol/L) 某阴(阳)离子毫摩尔百分数浓度(mmol%) = 100% 阴(阳)离子毫摩尔浓度总和 5、离子的毫克当量百分数浓度与离子的毫摩尔百分数浓度的换算 X-(+) meq ×X-(+)meq/L X-(+) mmol% = ×100% X-(+) m mol × ∑X i-(+)mmol/L X-(+) mmol × X-(+)mmol/L X-(+) meq% = ×100% X-(+)meq × ∑ X i-(+)meq/L 式中:X-(+)为某种阴(阳)离子。ΣX-i(+)为阴(阳)离子总和。 三、水化学分析结果误差检验 根据水中各成分化合当量相等原理, 水中阴、阳离子当量总数应当相等。因此, 由下面式子就可检验水分析结果的可靠程度: ∑k —∑a e = ×100% ∑k + ∑a 式中:e 为分析误差值;

∑k 为阴离子总含量(meq%); ∑a 为阳离子总含量(meq%)。 一般全分析的允许误差<2%, 简分析<5%, 否则结果不能采用。 四、水的硬度 1、总硬度(H) 为水中钙、镁离子含量的总和。可由德国度(Ho)或mg/L表示: H = [ Ca2+ ] + [ Mg2+ ] 2、暂时硬度 根据钙、镁离子与重碳酸根离子的当量关系可知: (1)、当r(Ca2+ + Mg2+) ≤ rHCO3-时, 暂时硬度等于总硬度。 (2)、当r(Ca2+ + Mg2+) > rHCO3-时, 暂时硬度等于重碳酸根浓度, 即rHCO3-。 3、永久硬度 永久硬度= 总硬度—暂时硬度 五、水化学成分的库尔洛夫式表示方法 库尔洛夫式是以类似数学分式的形式来表示地下水化学成分。其方法为: 1、将阴、阳离子分别标示在横线上、下, 按毫克当量百分数自大而小的顺序排列, 小于10%的离子不予标示。 2、横线前依次标示气体成分、特殊成分及矿化度(用M表示), 单位均为g/L。 3、横线后以字母t为代号, 表示水温, 单位为℃。 4、式中各成分含量一律标于该成分符号的右下角, 原子数则移至右上角。即: 阴离子成分原子数毫克当量百分数 气体成分 含量特殊成分 含量 M 含量 t 水温℃ 阳离子成分 毫克当量百分数 六、舒卡列夫的水化学类型分类 1、根据水中各阴、阳离子含量, 将大于25%毫克当量百分数的离子参加分类命名。阴离子在前, 阳离子在后, 含量大的在前, 含量小的在后, 中间用短横线相连来对地下水化学类型进行命名。共分49种类型, 每型用一个阿拉伯数字表示。 2、根据矿化度大小, 将地下水分为四组:A组为矿化度<1.5g/L; B组为1.5—10g/L; C组为10—40g/L; D组为>40g/L。 3、各水型的代号在前, 矿化度划分的组在后, 中间用一短横线相连。

水的化学与微生物基础知识

水的化学与微生物基础知识 1. 物理和化学性质 A.色 水本身是无色的,只有在水层很深时才显示出深蓝色,但当其受到污染时会有颜色。 B.悬浮物与浊度 水中的悬浮物是各种水处理工艺中都需要监督的项目,否则会影响水处理设备的正常运行。测定悬浮物较易的方法是测定浊度,浊度的大小除了与水中的悬浮固体有关外,还指示水中胶体,它实质上是这两类物质的综合指标。 C.溶解固形物 溶解固形物是指水中除溶解气体外各种溶解物的总量。它是一种理论上的指标。 E.含盐量 含盐量表示水中含有溶解盐类的总和,有两种表示法:其一是摩尔表示法,即将水中各种阳离子(或各种阴离子)均按带一个电荷的离子为基本单元,计算其含量( mmol/L),然后将它们全部相加;其二是重量表示法,即将水中各种阴、阳离子的含量换算成mg/L.然后全部相加。 F.矿物残渣 矿物残渣是表示水中溶有矿物质的总量。含盐量和矿物残渣量两种指标都是根据水全分析结果进行计算的,不易用于运行监督,因为全分析是繁重的工作,费时又费力。 ● 蒸发残渣 这是指将过滤过的水样在一定条件下蒸干所得的残渣量。它与水中溶解固形物相似,但不完全相等,因为在测试条件下( 105~110℃).有许多物质的湿分和结晶水不能除尽,某些有机物会发生氧化。在蒸发残渣中,水中原有的碳酸氢盐都转变成了碳酸盐。 ●灼烧残渣 这表示蒸发残渣在8000℃时灼烧所得到的残渣量。蒸发残渣量和灼烧残渣量之差称为灼烧碱量,它大致的表示有机物量。 G.电导率 衡量水中含盐量最简便和迅速的方法是测定水的电导率,因为组成天然水含盐量的主要物质为离子,而离子具有导电性能,所以,水溶液的导电率可以间接的表示出溶解盐的含量。水本身的电导率非常小,所以只要水中含有少量杂质离子,它的电导率便可反映水中杂质离子的多少。一般情况下水的电导率越大,其含盐量也就越大,但仅靠电导率不能计算含盐量,因为水电导率的大小除了与水中离子含量有关系,还决定于离子的本质。电导是电阻的倒数,电导率是指一定

地层水分类

NaHCO3一般属于开放型地层水;Cacl2型一般属于封闭型地层水。 复杂断块油田内部,平面上或不同地层可能具有不同的水型,具有不同的地质意义。 油田水的分类必须解决的实质性问题应包括:①油田水化学标志及其与非油田水的区别;②不同类型油田水的特征及区别。自1911年美国帕斯梅尔提出第一个油田水分类方案至今,对油田水分类方案虽然作过多次修改和补充,但基本上都是以Na+、Mg2+、Ca2+和Cl-、SO42-、HCO3-的含量及其组合关系作为分类基础。在各分类方案中,以苏林(B.A.ЩУЛИН)分类较为简明,也为国内外广泛采用,现在国内各个油田基本采用苏林分类。 苏林认为,天然水就其形成环境而言,主要是大陆水和海水两大类。大陆水含盐度低(一般小于500mg/l),其化学组成具有HCO3->SO42->Cl-,Ca2+>Na+<Mg2+的相互关系,且Na+>Cl-,Na+/Cl-(当量比)>1。海水的含盐度较高(一般约为35,000mg/l),其化学组成具有Cl->SO42->HCO3-,Na+>Mg2+<Ca2+,且Cl->Na+,Na+/Cl-(当量比)<1的特点。大陆淡水中以重碳酸钙占优势,并含有硫酸钠;而海水中不存在硫酸钠。

苏林就是根据上述认识,以Na+/Cl-、(Na+-Cl-)/SO42-和(Cl--Na+)/Mg2+这三个成因系数,将天然水划分成四个基本类型。 裸露的地质构造中的地下水可能属于硫酸钠型,与地表大气降水隔绝的封闭水则多属于氯化钙型,两者之间的过渡带为氯化镁型。在油气田地层剖面的上部地层水以重碳酸钠型为主;随着埋藏加深,过渡为氯化镁型;最后成为氯化钙型。有时重碳酸钠型直接被氯化钙型所替代,缺少过渡型。油田水的水化学类型以氯化钙型为主,重碳酸钠型次之,硫酸钠型和氯化镁型较为罕见。 苏林分类存在的问题在于:①把地下水的成因完全看成是地表水渗入形成的,没有考虑其它成因水的加入,还有自然界经常发生的水的混合作用以及由此而产生的水中成分的多种分异和组合;②将本来具有成因联系作为一个整体的大量无机组分,简化成仅是天然水盐类成分的分类,过于简单;③忽略了水中气体成分及微量元素等一些具有标型性质的组分,同时缺少作为区分油田水与非油田水的特征参数。随着油气勘探的进展和对油田水地球化

水化学类型表示方法

水化学类型表示方法. 老:水质分析结果用各种形式的指标值及化学表达式来表示:1、离子含量指标

溶解于地下水中的盐类,以各种阴、阳离子形式存在,其含量一般以mmol/L (毫摩尔/升)、mg/L(毫克/升)、me/L(毫克当量/升)表示。海水中的主要离子以单位ml/L(摩尔/升)、g/L(克/升)表示。超微量元素的离子以,其单位以mg/L(毫克/升)表示。 2、分子含量指标 溶解于地下水的气体和胶体物质,如CO、SiO,其含量一般用单位

mmol/L、22mg/L表示。 3、综合指标 氢离子浓度(pH值)、酸碱度、硬度、矿化度四项指标,集中地表示了地下水的化学性质。 +],[HpH=﹣㏒pH值反映了地下水的酸碱性,由酸、碱和盐的水pH ⑴值:解因素所决定。pH值与电极电位存在一定的关系,影响地下水化学元素的迁移强度,是进行水化学平衡计算和审核水质分析结果的重要参数。 ⑵酸度和碱度:酸度是指强碱滴定水样中的酸至一定pH值的碱量,地下水中酸度的形成主要是未结合的CO2、无机酸、强酸弱碱盐及有机酸。碱度是指强酸滴定水样中的碱至一定pH值的酸量,地下水碱度的形成主要是氢氧化物、硫化物、氨、硝酸盐、无机和有机弱酸盐以及有机碱。酸碱度一般表示单位有mmol/L、me/L表示。 硬度:水中硬度取决于水中钙、镁和其它金属离子(碱金属除外)的含⑶. 量。总硬度:地下水中钙镁的重碳酸盐、氯化物、硫酸盐和硝酸盐的总含量。:水煮沸后呈碳酸盐形态的析出量。暂时硬度(碳酸盐

硬度) :水煮沸后,留于水中的钙盐和镁盐的含量。永久硬度(非碳酸盐硬度):地下水中碱金属钾钠的碳酸盐、重碳酸盐和氢氧化物负硬度(钠钾硬度)的含量。碳酸盐硬度+非碳酸盐硬度=总硬度暂时硬度+永久硬度= 负硬度(钠钾硬度)=总碱度-总硬度(总硬度>总碱度). H°(德国度)表示mg/Lmmol/L、、me/L、硬度一般以单位矿化度:地下水含离子、分子及化合物的总量称为矿化度,或称总矿化⑷度。

天然水及其分类

天然水及其分类 一、水源 水是地面上分布最广的物质,几乎占据着地球表面的四分之三,构成了海洋、江河、湖泊以及积雪和冰川,此外,地层中还存在着大量的地下水,大气中也存在着相当数量的水蒸气。地面水主要来自雨水,地下水主要来自地面水,而雨水又来自地面水和地下水的蒸发。因此,水在自然界中是不断循环的。 水分子(H2O)是由两个氢原子和一个氧原子组成,可是大自然中很纯的水是没有的,因为水是一种溶解能力很强的溶剂,能溶解大气中、地表面和地下岩层里的许多物质,此外还有一些不溶于水的物质和水混合在一起。 水是工业部门不可缺少的物质,由于工业部门的不同,对水的质量的要求也不同,在火力发电厂中,由于对水的质量要求很高,因此对水需要净化处理。 电厂用水的水源主要有两种,一种是地表水,另一种是地下水。 地表水是指流动或静止在陆地表面的水,主要是指江河、湖泊和水库水。海水虽然属于地表水,但由于其特殊的水质,另作介绍。 天然水中的杂质 要有氧和二氧化碳天然水中的杂质是多种多样的,这些杂质按照其颗粒大小可分为悬浮物、胶体和溶解物质三大类。 悬浮物:颗粒直径约在10-4毫米以上的微粒,这类物质在水中是不稳定的,很容易除去。水发生浑浊现象,都是由此类物质造成的。 胶体:颗粒直径约在10-6---10-4毫米之间的微粒,是许多分子和离子的集合体,有明显的表面活性,常常因吸附大量离子而带电,不易下沉。 溶解物质:颗粒直径约在10-6毫米以上的微粒,大都为离子和一些溶解气体。呈离子状态的杂质主要有阳离子(钠离子Na+、钾离子K+、钙离子Ca2+、镁离子Mg2+),阴离子(氯离子CI -、硫酸根SO42-、碳酸氢根HCO3-);溶解气体主。 水质指标 二、水中的溶解物质 悬浮物的表示方法:悬浮物的量可以用重量方法来测定(将水中悬浮物过滤、烘干后称量),通常用透明度或浑浊度(浊度)来代替。 溶解盐类的表示方法: 1.含盐量:表示水中所含盐类的总和。 2.蒸发残渣:表示水中不挥发物质的量。 3.灼烧残渣:将蒸发残渣在800℃时灼烧而得。 4.电导率:表示水导电能力大小的指标。 5.硬度的表示方法:硬度是用来表示水中某些容易形成垢类以及洗涤时容易消耗肥皂得一类物质。对于天然水来说,主要指钙、镁离子。硬度按照水中存在得阴离子情况。划分为碳酸盐硬度和非碳酸盐硬度两类。 6.碱度和酸度:碱度表示水中含OH -、CO32-、HCO3-量以及其它一些弱酸盐类量得总和。碱度表示方法可分为甲基橙碱度和酚酞碱度两种。酸度表示水中能与强酸起中和作用的物质的量。 有机物的表示方法:通常用耗氧量来表示。

第九章 各类天然水体的水化学概况

第九章各类天然水体的水化学概况 天然水在自然界中的分布和循环,构成地球的水圈,水圈为地球表面和接近地球表面的各类水的总称。天然水的总水量近14亿km3, 地球表面积的三分之二被其所覆盖。天然水在流动与循环过程中接受了周围环境的各种杂质,形成不同水系。按天然水形成、形态与性质的特点,可划分为河水、湖(库)水、地下水、大气降水(雨水、雾、雪、霜、雹等)及海水五大类。各类天然水均具有各自的特点,即使同类水体,其水质状况也不尽相同。这是由于水体所处的环境条件,如气象、气候、地理、地质、人类生产与生活用水和排废、各种生物的生命代谢活动等均会影响水质。本章将简要叙述各种类型天然水体的水化学概况及相关概念。 第二节河水 一、河流水化学基本特点 河流是大气降水径流和出露地面的地下水径流在地表线性凹地汇集而成的水体,河流是自然界水分循环的组成部分及水量平衡的组成要素。其具有集水流域面积广、敞开、流动等特点。河流水质与土壤、岩石、植被、气候及河水的补充水源等状况有关,和人类活动有关,特别是与水中生物生命代谢活动直接相关。河流是水圈中最为活跃的部分,由于其流动所涉及的面积较为广阔,流动过程中接触的环境较复杂,且多样性,故河水化学组成具多样性和易变性的特点,不同地区河流与同一河流的不同季节、不同河段,其河水化学成分都可能有较大差异。通常河流的水化学有以下基本特点: 1、溶解有丰富的气体 因河水处于运动状态,与空气接触充分,溶有空气中的各种气体,溶解氧气和氮气较丰富,含量近为饱和。未污染河流中生物不多,溶解氧等气体的含量主要受温度和气压影响。 夏季大型水库溢洪放水时,放出大量温度低且为溶解气体所饱和了的库水,这些水在大坝以下河道中如温度迅速上升,可能造成水中溶解气体过饱和。 2、河水化学组成与含盐量 (1)主要离子世界各地河水所含主要离子种类相同,阳离子为:Ca2+、Mg2+、Na+、、K+,阴离子为:HCO3- CO32-、SO42-、Cl-,即通常所说八大离子。世界河水平均化学组成、我国及世界部分河流主要离子含量和分别列于表9-3、9-4与9-5。多数河流主要离子中以HCO3-和Ca2+含量最高,水质属碳酸盐类钙组。在含盐量较高河水中,水质类型可能与前者不同,存有硫酸盐类或氯化物类钠组类型水质。较多河水中主要离子含量大小基本具有以下顺序:阳离子:[Ca2+]>[Na++K-]> [Mg2+],阴离子:[HCO3-+CO32-]> [SO42-]> [Cl-] 东南沿海各河流,水质类型主要以重碳酸盐类钙组或钠组为主,但是主要离子比例关系

水与化学方程式

1、“超临界水”因具有许多优良特质而被科学家追捧,它是指当气压和温度达到一定值时,水的液态和气态完全交融在一起的流体。下面有关“超临界水”的说法正确的是 A .它是混合物 B .它是一种不同于水的物质 C .它的分子之间有间隔 D .它的一个分子由4个氢原子和2个氧原子构成 2、检验氢气纯度时,判断氢气较纯的现象是 A .听到尖锐的爆鸣声 B .听到轻微的爆鸣声 C .未听到声音 D .试管炸裂 3、化学让水更洁净 ①生活污水截流处理过程如图4所示,其中采用的净水方法有____________(写出一种)。 ②图5是从海水中获取淡水的一种装置,请从能源角度指出其优点:________________________________。 ③检验上述所获取的水是否为硬水,常用试剂是_________。 4、题17图”是某同学所画的自制简易净水器示意图。 (1)制作材料:见图标注,则a 是 ,b 是 。 (2)使用说明:使用一段时间后,有关物质吸附杂质已达饱和。这时 清洗后可以继续使用的是纱布、石英砂和 ,需要更换的是膨松棉和 。 5、下列四种物质的俗名均得名与它们的产地,其主要成分有一种与其他三种物质的类别不同的是( ) 6、市场上有“加碘食盐”、“高钙牛奶”、“含氟牙裔”等商品,这里的“碘、钙、氟”指的是 A. 单质 B. 元素 C. 分子 D. 原子 7、元素周期表中,同周期元素的结构和性质呈现一定的规律性变化。下表列出的是第三周A .⑤处的最高正价是+6,最低负价是-2

B.③处的数值介于1.10—1.43之间 C.第三周期元素(Na—Cl)的最高正价数等于其原子的最外层电子数 D.元素①的原子序数是13,①和②形成的化合物的化学式为AlS 8、液化石油气是经加压后压缩到钢瓶中的,瓶内压强是大气压强的7-8倍。液化石油气的主要成分是丙烷、丁烷、丙烯和丁烯等。下列有关丁烷的叙述正确的是()A.丁烷中碳、氢元素的个数比为2:5 B.丁烷分子中氢元素的质量分数最大 C.丁烷是由碳、氢原子构成的有机物 D.在通常状况下,丁烷是气体 9、(宜宾)元素X、Y、Z、M是初中常见的四种元素。有关信息如下表: (1)M元素的名称是。 (2)Y形成的天然存在的最硬的物质是,此物质不属于(填“有机物”或“无机物”) (3)由X、Y两种元素组成的最简单的有机物是(填化学式),该有机物中X元素的质量分数为。 (4)由Y、Z两种元素组成的能用于人工降雨的固体物质是。(5)由Z、M 两种元素按原子个数比1︰1组成的化合物,俗称,写出它与水反应的化学方程式。 10、下图为汽车尾气净化装置中发生反应的微观示意图,有关叙述错误 ..的是 A.该反应是置换反应B.图中单质的化学式为N2 C.反应后分子总数减少D.该装置可净化汽车尾气 11、在一密闭容器中加入甲、乙、丙、丁四种物质,在下定条件下发生化学反应,测得反应前及t1、t2时各物质质量如右图所示。下列说法中不正确的是() A.该反应为化合反应 B.丙可能为该反应的催化剂 C.该反应中,乙、丁的质量变化之比为7:5 D.该反应中,甲、乙的质量变化之比为1:4 12、右图为某化学反应的微观示意图,图中“●”表示硫原子,“○”表示氧原子。下列说 法中错误 ..的是 A.甲是SO 2 B.该反应属于化合反应 C.反应前后,分子、原子种类均不变 D.反应中,甲、乙、丙三种物质的分子个 数比为2:1:2

溶液组成的表示方法

溶液组成的表示方法 第二节 教学目的: 了解溶液组成的含义。 掌握用溶质的质量分数表示溶液组成的方法和部分有关计算。 重点难点: 重点:溶质质量分数的表示方法及关系式的含义。 难点:溶液组成的含义。 教学过程: [引言]在本章已学习了溶液的特征、组成、分类、物质的溶解度等知识,对溶液有了一定的认识。 日常生活和工农业生产中,常碰到溶液的“浓”或“稀”的问题。例如,使用农药时,太浓了可能伤害农作物,太稀了则达不到杀虫效果。这就要求了解溶液中溶质的确切数量,以便掌握。 提出课题,溶液的“组成”究竟是什么含义呢?这是本课时要解决的一个重要课题。 一、溶液的组成 [说明]在实际应用中,简单的“浓溶液”、“稀溶液”的粗略划分,已经不能满足需要。很多情况下需要准确地知

道溶液中溶质的含量。例如,在一定数量的农药中究竟含多少溶质才能既满足杀虫的要求,既节约农药并且又不伤害作物。这就产生了从量的方面研究溶液的需要。 [指导阅读]指导学生阅读教材中有关溶液组成的意义的内容。 要求学生理解:溶液的“浓”或“稀”是由溶质和溶液的量共同决定的。 当溶液中溶质的量和溶液的量都确定了,溶液的组成也就被确定下来了。 例如:已知50g氯化钠溶液里含2gNacl和50g氯化钠溶液里含4gNacl,我们就能确切知道后一种溶液的溶质比前一种溶液的溶质多一倍。 [引导讨论] 就上述例子展开讨论:由于溶液是由溶质和溶剂组成的,所以当溶质或溶剂的量有所变化时,会有以下情况:如果溶质量增大,溶剂量不变。则溶液量会增大,溶液会变浓。 如果溶质量减少,溶剂量不变。则溶液量会减少,溶液会变稀。 如果溶质量不变,溶剂量增加,则溶液量会增加,溶液会变稀。 如果溶质量不变,溶剂量减少,则溶液量会减少,溶液

水化学类型表示方法

老:水质分析结果用各种形式的指标值及化学表达式来表示: 1、离子含量指标 溶解于地下水中的盐类,以各种阴、阳离子形式存在,其含量一般以mmol/L (毫摩尔/升)、mg/L(毫克/升)、me/L(毫克当量/升)表示。海水中的主要离子以单位ml/L(摩尔/升)、g/L(克/升)表示。超微量元素的离子以,其单位以mg/L(毫克/升)表示。 2、分子含量指标 溶解于地下水的气体和胶体物质,如CO2、SiO2,其含量一般用单位mmol/L、mg/L表示。 3、综合指标 氢离子浓度(pH值)、酸碱度、硬度、矿化度四项指标,集中地表示了地下水的化学性质。 ⑴pH值:pH=﹣㏒[H+],pH值反映了地下水的酸碱性,由酸、碱和盐的水解因素所决定。pH值与电极电位存在一定的关系,影响地下水化学元素的迁移强度,是进行水化学平衡计算和审核水质分析结果的重要参数。 ⑵酸度和碱度:酸度是指强碱滴定水样中的酸至一定pH值的碱量,地下水中酸度的形成主要是未结合的CO2、无机酸、强酸弱碱盐及有机酸。碱度是指强酸滴定水样中的碱至一定pH值的酸量,地下水碱度的形成主要是氢氧化物、硫化物、氨、硝酸盐、无机和有机弱酸盐以及有机碱。酸碱度一般表示单位有mmol/L、me/L表示。 ⑶硬度:水中硬度取决于水中钙、镁和其它金属离子(碱金属除外)的含量。 总硬度:地下水中钙镁的重碳酸盐、氯化物、硫酸盐和硝酸盐的总含量。

暂时硬度(碳酸盐硬度):水煮沸后呈碳酸盐形态的析出量。 永久硬度(非碳酸盐硬度):水煮沸后,留于水中的钙盐和镁盐的含量。 负硬度(钠钾硬度):地下水中碱金属钾钠的碳酸盐、重碳酸盐和氢氧化物的含量。 总硬度=暂时硬度+永久硬度=碳酸盐硬度+非碳酸盐硬度 负硬度(钠钾硬度)=总碱度-总硬度(总硬度>总碱度) 硬度一般以单位mmol/L 、mg/L 、me/L 、H°(德国度)表示. ⑷矿化度:地下水含离子、分子及化合物的总量称为矿化度,或称总矿化度。矿化度包括了全部的溶解组分和胶体物质,但不包括游离气体。通常以可滤性蒸发残渣(溶解性固体)来表示。也可按水分析所得的全部阴阳离子含量的总和(计算时HCO3含量只取半数)表示理论上的可滤性蒸发残渣量。矿化度一般以单位g/L 、mg/L 表示。 ⑸分子式(курлов):按阴阳离子毫克当量百分数表示水化学类型,其表达式如下: 微量元素(g/L)气体成分(g/L)矿化度(g/L)?者列入) 大于阳离子(者列入) 大于阴离子( 10%m 10%e me ·温度(℃) “毫克当量百分数”是一种离子毫克当量百分浓度的表示方法,即 离子毫克当量百分数(%)= % 100 总数 阴(阳)离子毫克当量 该离子毫克当量数。 以离子含量(me/L%)>25%作为水化学类型定名界限值。 1、根据水质分析资料,可以确定水化学类型:按离子含量>25%者进行划分,阳离子在前,阴离子在后。 2、水化学式(库尔洛夫式)是用毫克当量%表示的,水化学式中含量是由大到

水化学复习题(DOC)

水化学复习题 一、填空 (25 分,每个填空1分) 1、天然淡水中含有的主要阳离子有钙、镁、钠、钾。 2、某水中的优势阴离子为SO 42- ,优势阳离子为Ca2+,不含CO 3 2-或HCO 3 -离子, 该类型水用符号表示为S Ca IV。 3、按照阿列金分类法,海水一般是 III 型水,淡水一般是 II 型水。 4、海水盐度为24.7‰ 时,最大密度时的温度等于冰点温度。 5、天然水的盐度增大会使蒸汽压下降,渗透压增大。 6、在陆地水水质调查中,K+与Na+含量的测定方法是计算阴离子量与Ca2+、Mg2+总量之差。 7、海水总碱度可简化为 ALK = C HCO3- + C1/2CO32- + C H2BO3-。 8、水中氧气的来源主要是水生植物光合作用,水中氧气的消耗主要是水中微型生物耗氧(水呼吸)。 9、贫营养型湖泊,夏季形成温跃层,上层水温高、氧气溶解度低,下层水温低、氧气溶解度高。 10、淡水中,pH =8.3 时,HCO 3-最多; pH >10.4时, CO 3 2-占优势。随着海 水氯度和温度增大,二氧化碳系统各分量与pH的关系曲线向左移动。 11、水的溶氧升高,硫化氢的毒性减小;pH升高,硫化氢的毒性减小。 12、水中加入1mol/L的碳酸钠后,水体的碳酸总量增大 1 mol/L,碱度增大 2 mol/L。 13、若米氏常数K M 平均为1 umol/L ,则有效磷浓度应不低于 3umol/L 的范围。 14、一般情况下,若天然水或养殖用水中的氧化还原电位为 0.4V 左右时,可认为该水体处于良好的氧化状态。 1、淡水中的主要阴离子成分有HCO3-, CO3 2-, SO42-, Cl-。 2、某水中的优势阴离子为Cl - ,优势阳离子为Mg2+, [CO 32- ] = 0,[HCO 3 - ] = 0,该类型水用符号表示为Cl Mg IV。 3、海水盐度为24.7‰时,最大密度时的温度等于冰点温度。

水化学分析资料

实习III 水化学分析资料整理 一、实习目的 熟悉水化学分析资料整理的基本方法。 二、各种离子浓度单位的换算 1.离子的毫克当量浓度(meq/L) 离子的毫克当量百分数浓度(meq%) 2.离子的毫摩尔浓度(mmol/L) mEq/L=(mg/L)×原子价/化学结构式量 mg/L=(mEq/L)×化学结构式量/原子价 mg/L=mmol/l×化学结构式量 所以mEq/L=mmol/L×原子价 (注:化学结构式量=原子量或分子量) 3.离子的毫摩尔百分数浓度(mmol%) 4.离子的毫克当量百分数浓度与离子的毫摩尔百分数浓度的换算 (+)为阴(阳)离子总和。 式中:X-(+)为某种阴(阳)离子。ΣX- i 三、水化学分析结果误差检验 根据水中各成分化合当量相等原理, 水中阴、阳离子当量总数应当相等。因此, 由下面式子就可检验水分析结果的可靠程度: ×100%

式中:e 为分析误差值; ∑k 为阴离子总含量(meq%); ∑a 为阳离子总含量(meq%)。 一般全分析的允许误差<2%, 简分析<5%, 否则结果不能采用。 四、水的硬度 1.总硬度(H) 为水中钙、镁离子含量的总和。可由德国度(Ho)或mg/L表示: H = [ Ca2+ ] + [ Mg2+ ] 2.暂时硬度 根据钙、镁离子与重碳酸根离子的当量关系可知: (1)当r(Ca2+ + Mg2+) ≤ rHCO 3 -时, 暂时硬度等于总硬度。 (2)当r(Ca2+ + Mg2+) > rHCO 3-时, 暂时硬度等于重碳酸根浓度, 即rHCO 3 -。 3.永久硬度 永久硬度 = 总硬度—暂时硬度 五、水化学成分的库尔洛夫式表示方法 库尔洛夫式是以类似数学分式的形式来表示地下水化学成分。其方法为:1.将阴、阳离子分别标示在横线上、下, 按毫克当量百分数自大而小的顺序排列, 小于10%的离子不予标示。 2.横线前依次标示气体成分、特殊成分及矿化度(用M表示), 单位均为g/L。 3.横线后以字母t为代号, 表示水温, 单位为℃。 4.式中各成分含量一律标于该成分符号的右下角, 原子数则移至右上角。即: t 水温℃ 六、舒卡列夫的水化学类型分类 1.根据水中各阴、阳离子含量, 将大于25%毫克当量百分数的离子参加分类命名。阴离子在前, 阳离子在后, 含量大的在前, 含量小的在后, 中间用短横线相连来对地下水化学类型进行命名。共分49种类型, 每型用一个阿拉伯数字表示。

水环境化学复习,第一二章

绪论: 水质系:水及其中溶存的物质构成的体系构成水质系 1、 天然水质系的构成: ⑴天然水的主要成分极其复杂性:①物质种类繁多且含量悬殊。②溶解物质分散程度复杂。③存在各种生物。 ⑵天然水的化学成分的形成:①大气淋溶②从岩石土壤中的淋溶③生物作用④次级反应与交换吸收作用⑤工业废水、生活污水和农业退水 2、水环境化学:是研究天然水体化学物质的来源、存在形态、迁移转化、生态效应及污染水体治理的一门科学。 3、水环境化学课程内容::①水环境化学成分的动态规律②水质控制方法③水质化验技术 第一章:天然水的主要理化性质 1、哪些可以反应天然水含盐量的参数?特点是? 常有离子总量、矿化度、盐度、氯度 ① 离子总量:指天然水的各种离子的含量之和。常用mg/L 或mmol/L 或g/kg 、mmol/kg 单位表示 ② 矿化度:矿化度是水中所含无机矿物成份的总量。本书指用过氧化氢氧化后蒸发,在105~ 110℃干燥剩余的残渣,然后称重,即用蒸干称重法得到的无机矿物成分的总量。在蒸发过程中往往有损失,所以矿化度<水中的离子总量。 ③ 氯度:海水样品的氯度相当于沉淀海水样品中全部卤族元素所需纯标准银的质量与改海 水样品质量之比的0.3285234倍,用10-3 作单位,Cl 符号表示。 ④ 海水的盐度:当海水中的溴和碘被相当量的氯所取代、碳酸盐全部转化成氧化物、有机 物完全氧化时,海水中所含固体质量与海水的质量之比,以10-3 作单位,用S ‰(千分号)表示。S ‰=0.030+1.80655Cl ‰(盐度和氯度的关系) 离子总量〉矿化度〉盐度 其他如海水的折光率,海水的密度等这些都与海水含盐量密切相关。 离子总量、矿化度概念较多用来反映内陆水的含盐量;盐度、氯度则是反映海水含盐量的参数。 2、天然水的化学分类方法 ⑴按照矿化度的分类方法 淡水 矿化度<1g/L (1g/L 是基于人的味觉,当大于1g/L 时,人感觉咸味) 微咸水 1-25g/L ( 25g/L 是微咸水和海水的分界线) 具海水盐度的水 25-50g/L 盐水 >50g/L ⑵按主要离子成分的分类——阿列金分类法(要知道用符号表分类) ① 含阴离子最多的分为三类:P23 搞清类,组,型 A 将HCO 3-和1/2CO 32- 才,统称为碳酸盐类,用符号C 表示 : b 1/2SO 42-为一类,为硫酸盐类,用符号S 表示; c Cl -为一类,称氯化物类,用符号Cl 表示 ② 含阳离子最多分为三组:Ca-钙组、Mg-镁组、Na ,K-钠组 {} {}3 3 10103285234.0--=Ag W Cl

初三化学水的组成经典试题

初三化学:自然界中的水经典试题 一、选择题 1. (10安徽)在一定环境中,常温常压下的水可以瞬间结成冰,俗称”热冰”。下列说法正确的是 A.”热冰”是纯净物B.“热冰”在任何条件下都不会熔化 C.“热冰”与水的化学性质不同D.结成“热冰”后,分子停止运动2.(10滨州)下列叙述错误的是 A.分子、原子和离子都能直接构成物质 B.原子中原子核与核外电子的电量相等,电性相反,因而原子不显电性 C.决定原子质量大小的主要是质子和电子 D.原子如果得到或失去电子就变成离子 3.(10滨州)已知有两种物质在光照条件下能发生化学反应,其微观示意图如下: (说明:一种小球代表一种原子) 则下列说法正确的是 A.图示中的反应物都是单质B.图示中共有四种分子 C.该反应属于置换反应D.该图示不符后质量守恒定律 4.(10重庆)西南大旱提醒我们节约每一滴水,下列关于水的说法中不正确的是A.水体污染与人类活动无关B.自然界的水都不是纯净的水 C.水分子保持水的化学性质D.地球上可以利用的淡水资源有限 5.(10金华)逻辑推理是化学学习常用的思维方法,下列推理正确的 ...是 A.水能灭火,所以电脑一旦失火应立即用水浇灭 B.原子在化学变化中不能再分,则分子在化学变化中也不能再分 C.点燃H2与O2混合气体可能爆炸,则点燃煤气(CO)与O2的混合气体也可能爆炸D.氧化物都含有氧元素,所以含有氧元素的化合物都是氧化物 6.(10兰州)2010年4月,我国西南地区遭遇历史罕见的特大旱灾,造成数以万计的人畜饮水困难。 因此,我们要增强节约用水的意识。下列做法与节约用水无关的是 A.用淘米水浇花B.开发利用地下水 C.使用节水龙头D.用喷灌、滴灌方法给农作物浇水7.(10兰州)水被称为“生命之源”,双氧水被称为“绿色氧化剂”。下列关于它们的说法中正确的是 A.都含有氢气 B.都含有氢元素C.都含有氢分子 D.都含有2个氢原子

化学教案 溶液组成的表示方法

化学教案-溶液组成的表示方法 教学目标 知识目标: 溶液组成的一种表示方法——溶质的质量分数; 溶液质量、体积、密度、溶质的质量分数之间的计算; 溶液稀释时溶质质量分数的计算。 能力目标: 培养学生分析问题的能力和解题能力。 情感目标: 培养学生严谨求实的科学的学习方法。 教学建议 课堂引入指导 通过讲述生产生活中的事例,引出溶液组成的表示方法。 知识讲解指导 .建议在讲过溶液组成的表示方法后,可介绍配制溶质质量分数一定的溶液的方法。 .可给学生归纳出,在溶质质量分数的计算中,需要用到以下知识: 定义式 溶解度与溶质质量分数的换算式

溶液的质量与体积的换算式 溶液在稀释前后,溶质的质量相等 有关化学方程式的质量分数计算,需用到质量守恒定律 关于溶液组成的表示方法的教材分析 本节在详细介绍了溶液组成的一种表示方法——溶质的 质量分数之后,通过例题教会学生有关溶质质量分数的计算。有关溶质质量分数的计算,可帮助学生加深对有关概念的理解,把有关概念联系起来,进行综合分析,起到使教材各部分内容融会贯通的作用。 教材从学生最熟悉的“咸”、“淡”谈起,直接引出“浓”和“稀”的问题。继而以糖水为例把宏观的“甜”跟微观糖分子的多少联系起来,使“浓”、“稀”形象化。在这个基础上来阐明溶液组成的含义,使感性的认识上升为理性知识,学生易于接受。 在了解溶液组成的含义之后,教材介绍了一种表示溶液组成的方法,接着提出一个关系式,又给出两种组成不同的食盐溶液,用图示的方法,使学生形象地了解它们的不同组成,以加深对关系式的理解。此后,围绕溶质的质量分数的概念,通过五个计算实例,教会学生有关溶质的质量分数的具体计算方法。 教材最后常识性介绍了其他表示溶液组成的方法:如体积分数表示的溶液组成,并指出根据实际需要,溶液组成可

相关文档
最新文档