高等数学第三章微分中值定理与导数的应用

高等数学第三章微分中值定理与导数的应用
高等数学第三章微分中值定理与导数的应用

第三章 微分中值定理与导数的应用

一、选择题

1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( )

是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A (

2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( )

0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 xe y x -=( )

) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞

4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( )

(A)x

x sin )x (f = (B)2)1x ()x (f += (C) 3 2

x )x (f = (D)1x )x (f 2+=

5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值

6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( )

(A) [-1,1] (B) [0,1] (C) [-2,2] (D) ]

5 4

, 5 3[- 7、x 2 e x y -=的凹区间是( )

(A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+,

(D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3

x 3sin3x asinx f (x)π=+

=( ) (A) 1 (B) 2 (C)

3 π

(D) 0

10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( )

]

5 4

, 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (-

-- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( )

的极值必定不是的极值点为必定为曲线的驻点

, 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000

二、填空题 1、__________________e y

82

x

的凸区间是曲线-=.

2、______________ 2 x y x 的极小值点是函数=.

3、的凸区间为曲线

x 3 e y x

+= _____________________ .

4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= .

5、设曲线y =a 23bx x +以点(1,3)为拐点,则数组(a ,b )= .

6、函数1x 3x y 3+-=在区间 [-2,0] 上的最大值为 ,最小值为 .

7、函数 x sin ln y =在 [

6

5 ,

6 ππ] 上的罗尔中值点ξ= . 8、1 x y +=在区间 [ 1,3 ] 的拉格朗日中值点ξ = _______________. 9、______________ 2 x y x 的极小值点是函数=. 10、______________ 2x y x 的极小值点是函数?=。 11、y =x + x 1 - ,-51x ≤≤ 的最小值为 . 12、x x y -= 的单调减区间是 . 13、x arctan x y -= 在且仅在区间______________上单调増. 14、函数f(x)=x +2cosx 在区间 [ 0 ,

2 π

] 上的最大值为 . 15、函数y =3x 4x x 223+-+ 的单调减少区间是 .

16、已知点(1,3)是曲线 23bx ax y += 的拐点,则a= ,b= . 17、的单调递减区间为 e e 2)x (f x x -+= . 三、计算题

1、的极值和单调区间求函数 4x 9x 6x y 23-+-=。

2、求极限 )

1x x

x ln 1(

lim 1

x --→. 3、求函数y =23x 4x x 23+-+的单调区间、凹凸区间、拐点.

4、设常数0k >,试判别函数()ln x

f x x k e

=-+在()0,+∞内零点的个数. 5、求函数 10x 6x 2

3x y 2

3+--= 的单调区间和极值.。 6.)

1 - e 1 x 1

(lim x 0

x -→. 7.[]上的最大值与最小值在求函数 1 , 1 x 45 y --=. 8.求曲线x

x

y ln =

的单调区间和凹凸区间.. 9. 求曲线34223+-+=x x x y 的单调区间和凹凸区间. 10.求函数 x xe y -= 图形的凹凸区间及拐点.

11、的拐点求曲线 3

{ 3

2t

t y t x +==. 12、求函数 4x 9x 6x y 23-+-= 的单调区间、极值、凹凸区间和拐点. 13、[]上的最大值、最小值,在求函数 41 27x 18x 6x 2y 23+--=. 14、的单调性和凹凸性讨论函数 )x (1ln f(x) 2+= 15、讨论函数x

x ln )x (f =

的单调性和凹凸性. 16、 求曲线 )1ln(2x y +=的凹凸区间和拐点.

17. 求函数282

4

+-=x x y 在区间]3,1[-上的最大值与最小值. 18. 求函数 133+-=x x

y 在区间 [-2,0]上的最大值和最小值.

19. 试确定常数a 、b 、c 的值,使曲线 c bx ax x y 23+++= 在x= 2处取到极值,且与直线 3x 3y +-= 相切于点(1 ,0).

四. 综合题(第1-2题每题6分,第3题8分,总计20分)

1.证明:当x )2

,0(π

∈时,(sin )(cos )x x x > .

2、 x 1 ) x 1 x ( ln x 1 0x 22+>+++>时,

当. 3、证明: 2

cot arctan π

=

+x arc x .

4、设 )x ( ? 在 [0,1] 上可导,f(x)=(x -1))x ( ?,求证:存在x 0∈(0,1),使)0( )x ( f 0?=’.

5、 试用拉格朗日中值定理证明:当 0b a >> 时,

b

b

a b a ln a b a -<<- .

6、 证明:当0>x 时,x

x

x +>

+1arctan )1ln(.

7、 x )x 1ln(x

1 x

, 0 x <+<+>时证明:当. 8、证明:当x>0时,有 1+

x 1 x

2 1

+> . 9、证明当x sin 6

x x 0x 3

≤-≥时,.

10、 证明:若 0 x >,则x

1 x

)x 1 (n l +>+ . 11、)1ln(2

1 2

x x x x +<->时,证明:当

12、证明:多项式

13)(3+-=x x x f 在 [ 0,1 ] 内不可能有两个零点.

13、证明当

x 13 x 2 1x ->>时,

. 14、x cos x sin x 2

x 0 >π

<<时证明:当

第三章答案

一、选择

1、A

2、D

3、A

4、D

5、D

6、B

7、A

8、C

9、B 10、A 11、A 二、填空 1、[2,2]-

2、1ln 2x =-

3、()(),33,2-∞-?--

4、2

5、39,22??- ???

6、2,1

7、2

π

8、1+

9、1ln 2-

10、1ln 2

-

11、5-12、1x 4

<

13、-14

14、36

15、)上单调递减,在(3

2

1-

16、2

9,23-

17、

)2ln 2

1

-∞-,( 三、计算题

1、解:令231293(3)(1)0,y x x x x '=-+=--=可得驻点:121,3x x == ……2分 列表可得

函数的单调递增区间为(,1)(3,)-∞+∞,单调递减区间为(1,3) ……5分 极大值为1|0,x y ==极小值3|4x y ==- ……7分

2、解:原式 =1

111ln ln ln 1

lim

lim lim 1(1)ln ln 12ln 1x x x x x x x x x x x x x x x

→→→----===--+-+-

……6分

3、解:令26242(32)(1)0,y x x x x '=+-=-+=可得驻点:122

1,3

x x =-= ……2分 列表可得

函数的单调递增区间为2(,1)(,)3

-∞-+∞,单调递减区间为2

(1,)3- ……4分

又令1220y x ''=+=得31

6

x =-. ……5分

所以凸区间为1(,)6-∞-,凹区间为1(,)6-+∞.拐点为119

(,3)627

-. ……7分

4、解: 11

()f x x e

'=- ……1分

当(0,)x e ∈时,()0f x '>,所以()f x 在[0,]e 上单调增加; ……2分 又()0f e k =>,x 充分接近于0时, ()0f e <, ……3分 故()f x 在(0,)e 内有且仅有一个零点. ……4分 同理, ()f x 在(,)e +∞内也有且仅有一个零点. ……6分

5、解:解23363(2)(1)0,y x x x x '=--=-+=可得驻点:121,2x x =-= ……2分 列表可得

函数的单调递增区间为(,1)(2,)-∞-+∞,单调递减区间为(1,2)- ……5分 极大值为127

|,2

x y =-=极小值2|0x y == ……7分

6、解: 原式=01

lim x x x e x xe x →--- ……2分

=01

lim 1

x x x x e xe e →-+- ……4分

=01

lim 22

x x x x e xe e →=+ ……6分

7、解 : 当x 单调增加时,函数()54g x x =-单调减少,

所以函数()y x 也是单调减少。 ……2分

在区间[1,1]-函数()y x 是单调的减函数。

所以当1x =-时,函数取得最大值max 3y y ==; ……4分 所以当1x =时,函数取得最小值min 1y y ==。 ……6分

8、解 : '2

1ln ,x y x

-=

令'

0y =,于是x e =。 当0x e <<时,'0y >,函数单调增加;

当e x <时,'0y <,函数单调减少。 ……2分 所以函数的单调增区间为:(0,)e ;

函数的单调减区间为:(,)e +∞。 ……4分

而 ''

3

2ln 3,x y x

-=令''

0y =,于是3

2x e =。 ……5分 函数的凸区间为:32(0,)e ;函数的凹区间为:32

(,)e +∞。 ……6分

9、解: 因为

'26242(1)(32)y x x x x =+-=+-,

所以令'0,y = 得到122

1,3x x =-=。 ……2分

函数的单调增区间为: 2

(,1),(,)

3

-∞-+∞;

函数的单调减区间为: 2

(1,)3

-。 ……4分 又由于

''122y x =+,

于是函数的凸区间为:1

(,);6-∞-

函数的凹区间为:1

(,)6

-+∞。 ……6分

10、解:因为:

'''

,

(

2)x x x

y e x e y x e ---=-=-, …

…2分

'''

0,0y y ==,得到:

121, 2y y ==。 所以函数的单调增区间为:(,1)-∞,

函数的单调减区间为:(1,)+∞。 ……4分 函数的凸区间为:(,2)-∞,

函数的凹区间为:(2,)+∞。函数的拐点为:2(2,2)e -。 ……6分

11、解:322224)1(3 ,233t t dx y d t t dx dy -=+= ……3分 令04)

1(3 3

222=-=t

t dx y d 得 1,121=-=t t 从而得曲线的可能拐点为 )4 ,1( )2 ,1(和-,又二阶导数在该两点左右异号。所以 )4 ,1( )2 ,1(和- 为曲线的 拐点 ……6分

12、解: 令.3,1 x ,0)3)(1(39123'212===--=+-=x x x x x y 得 令 .2 ,0126''3==-=x x y 得 ……3 分 列表如下

……7分

13、解: 令 3 ]4,1[10)3)(1(618126'212=?-==-+=--=x x x x x x y (舍去),,得驻点 ……3分 比较函数在端点和驻点处的函数值,得[]上的最大值、最小值,在函数 41 271862 23+--=x x x y 为

32,27max min =-=y y ……6分

14、解: 令0)1()

1(2)('',012)('2222=+-==+=x x x f x x x f , 得1,0,1321==-=x x x , …….3分

15、解: 3

23

12,0ln 3)('',,0ln 1)('e x x

x x f e x x x x f ==+-===-=得得

…….6分

16、解: 2

222)1()

1(2'',12'x x y x x y +-=+=,拐点为 )2ln ,1(),2ln ,1(- ……4分 凹区间为),,1()1,(+∞--∞和 凸区间为(-1,1) ……6分

17

)2)(2(41643-+=-='x x x x x y ……2分

所以,函数在[-1,3]上的驻点为2,0==x x 。 ……3分

当x=0时,y=2,x=2时,y=-14 ……5分

而x=-1时,y=-2, x=3时,y=11 ……7分

所以函数的最大值为11,最小值为-14 ……8分

18、解:由于

)1)(1(3332-+=-='x x x y ……2分

所以,函数在[-2,0]上的驻点为1-=x 。 ……3分

当x=-1时,y=3 ,而x=--2时,y=--1, x=0时,y=1 ……5分

所以函数的最大值为3,最小值为-1 ……6分

19、解:根据已知条件得2

221|(32)|1240 dy |323dx 10x x x dy x ax b a b dx a b a b c ===?=++=++=??

?

=++=-??

+++=?

??

…… 4分

解上面方程组得??

?

??==-=203c b a ……7分

四、综合题

(1)证:令 1

()s i n c o s s i n 22

F x x x x

x x =-=-,(0,)2

x π

显然()F x 在区间(0,)2

π

上连续的,可导的。并且(0)0.F = ……2分

由于

'()1c o s 2F x x

=- , 对于任意的(0,)2

x π

∈,'()0F x >。

所以函数()F x 在区间(0,)2π

上单调增函数。 ……4分

于是对于任意的(0,)2

x π

∈,有

()(0

)0F x F >=, 即为:

s i n c o s x x x > ……6分

(2)证: 令 )0(0)1ln()(',0)0(,1)1ln(1)(222>>++==+-+++=x x x x f f x x x x x f 则

所以 x 1 ) x 1 x ( ln x 1 0x 22+>+++>时,

(3)证: 令 0)(',cot arctan )(=+=x f x arc x x f 则 ……4分 所以 f (x) 恒为常数, 又2

4

4

)1(π

π

π

=

+

=f ,从而2

cot arctan )(π

=

+=x arc x x f ……6分

(4)证: 因为)x ( ? 在 [0,1] 上可导,所以f(x)=(x -1))x ( ?在[0,1]上连续,在(0,1)内可导。…… 4分

根据拉格朗日中值定理,至少存在一点x 0∈(0,1),使)0(0

1)

0()1()('0?=--=f f x f ……8分

(5)证:设x x f ln )(=,则x

x f 1

)(=

' ……1分 对b a ln ln -用拉格朗日中值定理得 ))((ln ln b a f b a -'=-ξ,其中),(a b ∈ξ ……4分 而b

b a b a b a f a b a -<-=-'<-ξξ))((,所以b b

a b a ln a b a -<<- ……6分

(6)证:令x x x x f arctan )1ln()1()(-++= …… 1分

则2

11

1)1ln()(x

x x f +-

++=' 。 …… 3分

因为当0>x 时,0)1ln(11

1)1ln()(2

>+>+-

++='x x

x x f , …… 4分 所以)(x f 在),0(+∞上是严格单调连续递增函数,并且0)0(=f , …… 5分

故当0>x 时,0)(>x f ,即x

x

x +>+1arctan )1ln(。 …… 6分

(7)证:令x

x f x x f +='+=11

)(),1ln()( …… 1分

对1ln )1ln()(-+=x x f 利用柯西中值定理存在

)0x ,(∈ξ使得)11)((1ln )1ln()(-+'=-+=x f x x f ξ …… 3分

即ξ

+=

+1)1ln(x

x …… 4分 又由于)0x ,(∈ξ,x x

x x <+<+ξ

11,所以x x <+<+)1ln(x 1 x

…… 6分

(8)证:令21

()(1)(1)2

f x x x =+-+

()0,(0)2

x

f x x '=>> ……2分

故0x >时,()(0)0f x f >=即21

(1)(1),(0)2

x x x +>+> ……5分

从而1

1 2

x +> ……6分

(9)证:令3

()sin 6

x f x x x =-- 因为22222()1cos 2sin 2()0,(0)22222

x x x x x f x x x '=--=-<-=< ……4分

故0x ≥时,()(0)0f x f ≤=,即3

sin 6

x x x -≤ ……6分

(10)证: 令

()ln(1),(0)1x

F x x x x

=+-

≥+ ……2分 则()F x 在0x ≥的范围中是可导的 ,且 (0)0F =。

'22

11()1(1)(1)

x F x x x x =

-=+++, 对于任意的0x >,有'()0F x >。

所以函数()F x 在0x ≥的范围中是单调上升的。 ……4分

于是,对于任意的0x >,有

()(0)0F x F >=,

即:

ln(1)1x

x x

+>

+。 ……6分

(11)证:令 2

()l n (

1),2

x F x x x =+-+ (1)x ≥ 显然函数()F x 在区间[1,)+∞上连续并且可导。 ……2分 且有:1

(1)ln 202

F =-

>。 而且对于任意的1x >,2

'

1()10,11x F x x x x

=

-+=>++ ……4分 所以对于任意的1x >,

2

()ln(1)(1)02

x F x x x F =+-+>>,

于是原不等式成立。 ……6分

(12)证:假设函数()f x 在区间[0,1]上至少存 在两个不同的零点121

2,()x x x x <。 ……2分

函数()f x 在区间[0,1]上连续,可导。 于是有

12()()0f x f x ==。 ……4分

根据罗尔中值定理,则存在一点12(,)[0,1]x x η∈?,

使得

'2()3(1)0f ηη=-=,

显然这是不可能的。所以假设不成立。 ……6分

(13)证: 令0111)('1 x , 13 2f(x) 22

32>-=-=>+

-=x x x

x x f x x 时则当 ……4分 所以 当x>1 时,f(x)>f(1)=0 , 即有

x 1

3 x 2 1x ->>时,

……6分

(14)证: 令)2

0(02cos 1)(',0)0(,cos sin )(π

<<>-==-=x x x f f x x x x f 则 (3)

所以0)0()(, 2

0 =><

, 即x x x x cos sin 2

0 ><

<时当π

…….6分

高等数学第三章微分中值定理与导数的应用的习题库

第三章 微分中值定理与导数的应用 一、判断题 1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。( ) 2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。 ( ) 3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→- =,则必存在(a,b)ξ∈使'()0f ξ=。( ) 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。( ) 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以至少存在一点()1,1ξ∈-使 '()0f ξ=。 ( ) 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。 ( ) 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。 ( ) 8. arcsin arccos ,[1,1]2 x x x π +=∈-。 ( ) 9. arctan arctan ,(,)2 x x x π += ∈-∞+∞。 ( ) 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。 ( ) 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。 ( ) 12. ' ' 222(2)lim lim 21(21)x x x x x x →→=-- ( ) 13. 22' 0011lim lim()sin sin x x x x e e x x →→--= ( ) 14. 若'()0f x >则()0f x >。 ( ) 15. 若在(,)a b 内()f x ,()g x 都可导,且''()()f x g x >,则在(,)a b 内必有()()f x g x >。( ) 16. 函数()arctan f x x x =-在R 上是严格单调递减函数。 ( ) 17. 因为函数()f x x =在0x =处不可导,所以0x =不是()f x 的极值点。 ( ) 18. 函数()f x x =在0x =的领域内有()(0)f x f ≥,所以()f x 在0x =处取得极小值。( ) 19. 函数sin y x x =-在[0,2]π严格单调增加。 ( ) 20. 函数1x y e x =+-在(,0]-∞严格单调增加。 ( ) 21. 方程32210x x x ++-=在()0,1内只有一个实数根。 ( ) 22. 函数y [0,)+∞严格单调增加。 ( ) 23. 函数y (,0]-∞严格单调减少。 ( ) 24. 若'0()0f x =则0x 必为'0()f x 的极值点。 ( ) 25. 若0x 为()f x 极值点则必有'(0)0f =。 ( )

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

第3章 微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+,这是极限值与函数值(貌似是邻域)之间的关 系 2、=+()o αββαα? ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-=- 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<;一般中间都是两个相同函数的减法,因为这样便于直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞ ∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim ()x x f x → 那么就在0 x 附近展开。如果极限是 lim ()x f x →∞ ,

北大版高等数学第四章微分中值定理与泰勒公式答案习题

习题4.5 x (,3 2 )3 2 (3 2 ,0) 0(0, 3 2 ) 3 2 (3 2 ,+) f0+00+ f拐点拐 点 拐 点x(,0) -∞0(0,1)1(1,2)2(2,) +∞y'0++0 y''++ y 极小值拐点极大值 ()() ()() 2 22222 22 222 32 1.() ()212,()12(2)4 3 642320,0,. 2 x x x x x x x x f x xe f x e x e e x f x e x x xe e x x xe x x - ------- = ''' -=-=--- =-+=-+==± 求函数 的凸凹性区间及拐点. 解= 23 2 1 ,(,). 3 2(2)0,0,2. 220, 1. y x x x y x x x x x y x x =-∈-∞∞ '=-=-== ''=-== 作下列函数的图形: 2.

222223.,(,).2(2)(2)0,0,2;(2)(22)(42)0,2 2. x x x x x x x x y x e x y xe x e e x x e x x x y e x x e x e x x x --------'=∈-∞+∞=-=-=-==''=--+-=-+==± x (,0)-∞ (0,22)- 22- (22,2)- 2 (2,22)+ 22+ (22,)++∞ y ' - + + - - y '' + + - - 0 + y ? 极小值 ? 拐点 ? 极大值 ? 拐点 ? 22231 4.,0. 11 10, 2 1;. y x x x x y x x x y x =+≠-'=-==''=±=

高等数学第2章 导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

第三章微分中值定理导数的应用

第三章微分中值定理导数的应用 教学目的与要求 1掌握并会应用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。 2理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。 3. 用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线, 会描绘函数的图形。 4. 握用洛必达法则求未定式极限的方法。 5. 道曲率和曲率半径的概念,会计算曲率和曲率半径。 6. 了解方程近似解的二分法及切线法。 一、中值定理,泰勒公式(放入泰勒级数中讲) 1.罗尔定理 如()x f 满足: (1)在 []b ,a 连续. (2)在 ()b ,a 可导. (3)()()b f a f = 则至少存在一点()b ,a ∈ξ 使()0f /=ξ 例 设()()()()1x 31x 21x x x g -++=,则 在区间(-1,0)内,方程()0x g /= 有2个实根;在(-1,1)内()0x g //=有2个根 例 设()x f 在[0,1]可导,且()()01f 0f ==, 证明存在()1,0∈ η,使()()0f f /=ηη+η。 证: 设()()x xf x F =在[a,b]可导,()()1F 0F = ∴ 存在()1,0∈η使()0F /=η 即()()0f f /=ηη+η 例 设()x f 在[0,1]可导,且()()01f 0f ==, 证明存在η ()()0F F /=η+η 。 解: 设()()x f e x F x =,且()()1F 0F = 由罗尔定理

存在η 使()0F /=η 即()()0f e f e /=η+ηηη, 亦即()()0f f /=η+η 例 习题6 设()()()x g e x f x F =(复合函数求导) 2、 拉格朗日中值定理 如()x f 满足:①在[a,b]连续;②在(a,b )连续, 则存在()b ,a ∈ξ 使()()()()a b f a f b f /-ξ=-。 推论:⑴ 如果在区间I 上()0x f /≡,则()c x f = ⑵ 如果在区间I 上())0(0x f /<>, ()x f 在I单增(减) 例 对任意满足1x <的x , 都有4x arcsin 21x 1x 1arctg π=++- 设 ()x arcsin 21x 1x 1arctg x f ++-= ∵ ()()0x 1121x 12x 1x 121x 1x 111x f 22/=-++-?+-?+-+= 0x 121x 12x 1x 12x 1212 22=-++?-+?+?-= ∴ ()c x f = ∵ ()4 0f π= ∴ ()4 x f π= 例 设()0x >,证明()x x 1ln x 1x <+<+ 求导证明 作业:见各章节课后习题。

第四章 微分中值定理与导数的应用

第四章 微分中值定理与导数的应用 第一节 中值定理(2课时) 要求:理解罗尔中值定理与拉格朗日中值定理。了解柯西中值定理。 重点:理解中值定理及简单的应用。 难点:中值定理证明的应用。 一、罗尔(Rolle)定理 罗尔定理 如果函数)(x f 满足条件 (1)在闭区间],[b a 上连续; (2)在开区间),(b a 内可导; (3))()(b f a f =. 则在开区间),(b a 内至少有一点)(b a <<ξξ,使得函数)(x f 在该点的导数等 于零,即0)(='ξf . 几何解释 设曲线? AB 的方程为))((b x a x f y ≤≤=,罗尔定理的条件的几何表示,?AB 是一条连续的曲线弧,除端点外处处具有不垂直于x 轴的切线,且两个端点的纵坐标相等,结论是曲线弧? AB 上至少有一点C ,使该点处曲线的切线是水平的.从图中看到,在曲线的最高点或最低点处,切线是水平的,这就启发了我们证明这个定理的思路,ξ应在函数取最值点处找. 例1.验证罗尔定理对函数34)(2+-=x x x f 在]3,1[上的正确性. 证明 因为函数)3)(1(34)(2--=+-=x x x x x f 在闭区间]3,1[上连续,可导.

)2 (2 4 2 ) (- = - = 'x x x f 且0 )3( )1(= =f f 函数) (x f在区间]3,1[上满足罗尔定理条件,所以在区间)3,1(内存在ξ使得 )2 (2 ) (= - = 'ξ ξ f, 于是)3,1( 2∈ = ξ. 故确实在区间)3,1(内至少存在一点2 = ξ使得0 )2(= 'f,结论成立. 二、拉格朗日中值定理(微分中值定理) 几何分析 拉格朗日中值定理设函数) (x f满足条件 (1)在闭区间] , [b a上连续; (2)在开区间) , (b a内可导. 则在区间) , (b a内至少存在一点) (b a< <ξ ξ,使得等式 ) )( ( ) ( ) (a b f a f b f- ' = -ξ成立. 推论1如果函数) (x f在区间I上的导数恒为零,那么函数) (x f在区间I上是一个常数(它的逆命题也成立). 例2.试证 2 cot arctan π = +x arc x) (+∞ < < -∞x. 证明构造函数x arc x x f cot arctan ) (+ =, 因为函数) (x f在) , (+∞ -∞上可导,且 1 1 1 1 ) ( 2 2 = + - + = ' x x x f 由推论得()arctan cot f x x arc x C =+=,(,) x∈-∞+∞,

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

第四章微分中值定理和导数的应用[单选题] 1、 曲线的渐近线为()。 A、仅有铅直渐近线 B、仅有水平渐近线 C、既有水平渐近线又有铅直渐近线 D、无渐近线 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 本题考察渐近线计算. 因为,所以y存在水平渐近线,且无铅直渐近线。 [单选题] 2、 在区间[0,2]上使罗尔定理成立有中值为ξ为() A、4 B、2 C、3 D、1 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 ,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题] 3、 ,则待定型的类型是(). A、 B、 C、 D、

【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题] 4、 下列极限不能使用洛必达法则的是(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则. [单选题] 5、 在区间[1,e]上使拉格朗日定理成立的中值为ξ=(). A、1 B、2 C、e D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】本题考察中值定理的应用。

[单选题] 6、 如果在内,且在连续,则在上(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 在内,说明为单调递增函数,由于在连续,所以在 上f(a)<f(x)<f(b). [单选题] 7、 的单调增加区间是(). A、(0,+∞) B、(-1,+∞) C、(-∞,+∞) D、(1,+∞) 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 ,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题] 8、 ().

高等数学导数与微分练习题

作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin = ; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1(+=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程???-=-=) cos 1()sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二阶导数 2 2dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2sin cos )sin ( x x x x x x y -='='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。

微分中值定理与导数的应用习题

第四章 微分中值定理与导数的应用习题 § 微分中值定理 1. 填空题 (1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 π π -4. (2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中. 2. 选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且 )()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ). A . 必要条件 B .充分条件 C . 充要条件 D . 既非充分 也非必要条件 (2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ). A. x e x f =)( B. ||)(x x f = C. 21)(x x f -= D. ????? =≠=0 ,00 ,1sin )(x x x x x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ). A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξ B . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间

C . 211221)()()()(x x f x x x f x f <<'-=-ξξ D . 211212)()()()(x x f x x x f x f <<'-=-ξξ 3.证明恒等式:)(2 cot arctan ∞<<-∞= +x x arc x π . 证明: 令x arc x x f cot arctan )(+=,则011 11)(2 2=+-+='x x x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2 f π =, 故 )(2 cot arctan ∞<<-∞= +x x arc x π . 4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中 12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf . 证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf . 5. 证明方程06 213 2=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则03 1 )2(,01)0(<-=->=f f ,根据零点 存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在) ,(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02 112>++ηη矛盾.故方程0 62132=+++x x x 只有一个实根.

第三章 微分中值定理与导数应用教案教学设计

第三章 微分中值定理与导数应用 第一节 微分中值定理 教学目的:理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒 中值定理。 教学重点:罗尔定理、拉格朗日中值定理。 教学难点:罗尔定理、拉格朗日中值定理的应用。 教学内容: 一、罗尔定理 1. 罗尔定理 几何意义:对于在],[b a 上每一点都有不垂直于x 轴的切线,且两端点的连线与x 轴平行的不间断的曲线 )(x f 来说,至少存在一点C ,使得其切线平行于x 轴。 从图中可以看出:符合条件的点出现在最大值和最小值点,由此得到启发证明罗尔定理。为应用方便,先介绍费马(Fermat )引理 费马引理 设函数 )(x f 在点0x 的某邻域)(0x U 内有定义, 并且在0x 处可导, 如果对任 意)(0x U x ∈, 有)()(0x f x f ≤ (或)()(0x f x f ≥), 那么0)(0'=x f . 证明:不妨设)(0x U x ∈时,)()(0x f x f ≤(若)()(0x f x f ≥,可以类似地证明). 于是对于)(00x U x x ∈?+,有)()(00x f x x f ≤?+, 从而当0>?x 时, 0 ) ()(00≤?-?+x x f x x f ; 而当0

根据函数 )(x f 在0x 处可导及极限的保号性的得 ==+)()(0'0'x f x f 0)()(lim 000≤?-?++ →?x x f x x f x ==-)()(0'0'x f x f 0)()(lim 000≥?-?+- →?x x f x x f x 所以0)(0'=x f , 证毕. 定义 导数等于零的点称为函数的驻点(或稳定点,临界点). 罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即 0)('=ξf . 证明:由于)(x f 在],[b a 上连续,因此必有最大值M 和最小值m ,于是有两种可能的情形: (1)m M =,此时)(x f 在],[b a 上必然取相同的数值M ,即.)(M x f = 由此得.0)(='x f 因此,任取),(b a ∈ξ,有.0)(='ξf (2)m M >,由于)()(b f a f =,所以M 和m 至少与一个不等于)(x f 在区间],[b a 端点处 的函数值.不妨设)(a f M ≠(若)(a f m ≠,可类似证明),则必定在),(b a 有一点ξ使M f =)(ξ. 因此任取],[b a x ∈有)()(ξf x f ≤, 从而由费马引理有0)(='ξf . 证毕 例1 验证罗尔定理对32)(2--=x x x f 在区间]3,1[-上的正确性 解 显然 32)(2--=x x x f )1)(3(+-=x x 在]3,1[-上连续,在)3,1(-上可导,且 0)3()1(==-f f , 又)1(2)(-='x x f , 取))3,1(1(,1-∈=ξ,有0)(='ξf . 说明:1 若罗尔定理的三个条件中有一个不满足, 其结论可能不成立; 2 使得定理成立的ξ可能多于一个,也可能只有一个. 例如 ]2,2[,-∈=x x y 在]2,2[-上除)0(f '不存在外,满足罗尔定理的一切条件, 但在区间]2,2[-内找不到一点能使0)(='x f . 例如 ?? ?=∈-=0 ,0]1,0(,1x x x y 除了0=x 点不连续外,在]1,0[上满足罗尔定理的一切条

北大版高等数学第四章 微分中值定理与泰勒公式答案 习题4.1

习题 4.1 3 2 12121.()32[0,1][1,2]R o lle 0,(0)(1)(2)0,()[0,1][1,2]R o lle 620,6 3 (0,1),(1,2),()()0. 332.f x x x x f f f f f x x x x x x f x f x =-+==='-+== = ''====2 验证函数在区间及上满足定理的条件并分别求出导数为的点. 处处可导故在区间及上满足定理的条件.f (x )=3x 讨论下列 解11 1 1 ()[1,1]R o lle ,,(1,1),()0. (1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1) (1)(1)()0,(1,1),()0. 1 (2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m n x x m m x n n x c f c m f x -----∈-'==+-=- '=+--+--'=+----== ∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/3 2),(0). 33.()ln [1,],?11(),()(1)ln ln 11(1), 1. 4.L ag ran g e (1)|sin sin |||; (2)|tan tan |||,,(/2,/2);(3) ln x f f x x e c f x f e f e e c e x c y x x y x y y x x y b a b b b a ππ-'=- =='= -=-== -=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解2 2 2 (0). (1)|sin sin ||(sin )|()||co s |||||.(2)|tan tan ||(tan )|()|sec ||||.(3) ln ln ln (ln )|()((,)). 5.()(1)(4)x c x c x c a a b a x y x x y c x y x y y x x y x c y x y x b a b b a b a b a x b a c a b a a c a P x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-= ∈< =--证明多项式的导函数的证1,212,. ()1,2,R o lle ,,,()(2,1),(1,1),(1,2). 6.,,,:()co s co s 2co s (0,). n n P x P x c c c f x c x c x c n x π±±---=+++ 三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证

高等数学考研大总结之四导数与微分

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()() 00,x f x f y x x x -=?-=?则()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量 增量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极 限不存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0 x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

第三章 微分中值定理及其应用

第三章 微分中值定理及其应用 3.1 中值定理 3.1.1 费马引理 设函数)(x f 在点0x 处可导且在点0x 处取得极值,则0)(0'=x f 。 备注:费马引理实质上是可导函数极值存在的必要条件。 3.1.2 罗尔定理 设函数)(x f 在[]b a ,上连续,),(b a 上可导,且)()(b f a f =,则至 少存在一点),(b a ∈ε,使得0)('=εf 。 (1)罗尔定理的三个条件缺一不可。 (2)罗尔定理的几何意义是曲线)(x f 存在水平切线。 (3)罗尔定理只给出了导函数零点的存在性,通常这样的零点是不易具体求出的。 例1:设函数)(x f 在[]3,0上连续,在)3,0(上可导,3)2()1()0(=++f f f ,1)3(=f 。证明:至少存在一点)3,0(∈ε,使得0)('=εf 。 例2:设函数)(x f 在[]b a ,上连续,0)()(==b f a f ,且)(x f 在),(b a 内可导,试证:对任意的实数α,存在一点),(b a ∈ξ,使得αξξ=)()('f f 例3:设函数)(x f 在[]b a ,上具有二阶导数,且0)()(==b f a f , 0)()('' b f a f 。证明: (1)至少存在一点),(b a ∈ε,使得0)(=εf (2)至少存在一点),(b a ∈η,使得0)(''=ηf 。 例4:设n a a a 21,满足n i R a n a a a a i n n ,2,1,,01 2)1(531321=∈=--+++-- 证明:方程0)12cos(3cos cos 21=-+++x n a x a x a n 在)2 ,0(π内至少有一个实根。

第二章导数与微分 高等数学同济大学第六版

第二章 导数与微分 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容. 第一节 导数概念 从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度; (2) 求曲线上一点处的切线; (3) 求最大值和最小值. 这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 本节主要内容 1 引例变速直线运动的瞬时速度和平面曲线的切线 2 导数的定义 3 左右导数 4 用导数计算导数 5 导数的几何意义 6 函数的可导与连续的关系 讲解提纲: 一、 引例: 引例1:变速直线运动的瞬时速度0 00 ()()lim t t f t f t v t t →-=-;

3第三章 微分中值定理与导数的应用习题解答

第三章 微分中值定理与导数的应用答案 §3.1 微分中值定理 1. 填空题 (1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 π π -4. (2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中. 2. 选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ). A . 必要条件 B .充分条件 C . 充要条件 D . 既非充分也非必要条件 (2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ). A . x e x f =)( B. ||)(x x f = C. 2 1)(x x f -= D. ????? =≠=0 ,00 ,1sin )(x x x x x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成 立( B ). A . ),() ()()()(2112b a f x x x f x f ∈'-=-ξξ B . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间 C . 211221)()()()(x x f x x x f x f <<'-=-ξξ D . 211212)()()()(x x f x x x f x f <<'-=-ξξ 3.证明恒等式:)(2 cot arctan ∞<<-∞= +x x arc x π . 证明: 令x arc x x f cot arctan )(+=,则011 11)(2 2=+-+='x x x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2 f π = , 故 )(2 c o t a r c t a n ∞<<-∞=+x x arc x π . 4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf . 证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf .

相关文档
最新文档