2018通信原理实验指导书

实验1 CMI码型变换实验

一、实验目的

1、了解CMI码的编码规则。

2、观察输入全0码或全1码时各编码输出码型,了解是否含有直流分量。

3、观察CMI码经过码型反变换后的译码输出波形及译码输出后的时间延迟。

4、熟练掌握CMI与输入信号的关系。

二、实验器材

1、主控&信号源、2号、8号、13号模块各一块

2、双踪示波器一台

3、连接线若干

三、实验原理

1、实验原理框图

CMI/BPH编译码实验原理框图

2、实验框图说明

CMI编码规则是遇到0编码01,遇到1则交替编码11和00。由于1bit编码后变成2bit,输出时用时钟的1输出高bit,用时钟的0输出低bit,也就是选择器的功能。CMI译码首先也是需要找到分组的信号,才能正确译码。CMI码只要出现下降沿了,就表示分组的开始,找到分组信号后,对信号分组译码就可以得到译码的数据了。

四、实验步骤

概述:本项目通过改变输入数字信号的码型,分别观测编码输入输出波形与译码输出波形,测量CMI编译码延时,验证CMI编译码原理并验证CMI码是否存在直流分量。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。13号模块的开关S3置为0011,即提取512K同步时钟。

3、此时系统初始状态为:PN为256K。

4、实验操作及波形观测。

(1)观测编码输入的数据和编码输出的数据:用示波器分别观测和记录TH38#和TH68#的波形,验证CMI编码规则。

(2)观测编码输入的数据和译码输出的数据:用示波器分别观测和记录TH38#和TH138#的波形,测量CMI码的时延。

(3)断开电源,更改连线及设置。

开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。将模块13的开关S3置为0011即提取512K同步时钟。

将模块2的开关置为00000000 00000000 00000000 00000011,用示波器分别观测编码输入的数据和编码输出的数据,调节示波器,将信号耦合状况置为交流,观察记录波形。保持

连线,拨码开关由0到1逐位拨起,直到模块2的拨动开关置为00111111 11111111 11111111 11111111,观察比较波形0和1示波器波形的变化情况。

思考:CMI码是否存在直流分量?

(4)验证CMI的误码检测功能:设置主控&信号源模块,在CMI实验中插入误码,用示波器对比观测误码插入与误码检测。

思考:CMI码是否可以纠错?

五、实验报告

1、分析实验电路的工作原理,叙述其工作过程。

2、根据实验测试记录,画出各测量点的波形图,并分析实验现象。

3、对实验中两种编码的直流分量观测结果如何?联系数字基带传输系统知识分析若含有编码中直流分量将会对通信系统造成什么影响?

4、说明延时测量的方法。

实验2 BPH码型变换实验

一、实验目的

1、BPH码的编码规则。

2、观察输入全0码或全1码时各编码输出码型,了解是否含有直流分量。

3、观察BPH码经过码型反变换后的译码输出波形及译码输出后的时间延迟。

4、测试BPH码的检错功能。

5、BPH码的译码同步观测。

二、实验器材

1、主控&信号源、2号、8号、13号模块各一块

2、双踪示波器一台

3、连接线若干

三、实验原理

1、实验原理框图

CMI/BPH编译码实验原理框图

2、实验框图说明

BPH编码编码规则不同,是0编码为01,1编码为10,BPH译码首先也是需要找到分组的信号,才能正确译码。BPH译码只要找到连0或连1,就表示分组的开始。找到分组信号后,对信号分组译码就可以得到译码的数据了。

实验概述:本项目通过改变输入数字信号的码型,分别观测编码输入输出波形与译码输出波形,对比CMI编码,分析两种编码规则的异同,验证BPH编译码原理并验证BPH码是否存在直流分量。

1、关电,连线和开关S3的设置与实验项目1 CMI码型变换实验相同。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPH码】→【无误码】。

3、此时系统初始状态为:PN为256K。

4、类似实验项目1 CMI码型变换的操作步骤,进行BPH码编码规则观测和BPH码直流分量观测。

五、实验报告

1、分析实验电路的工作原理,叙述其工作过程。

2、根据实验测试记录,画出各测量点的波形图,并分析实验现象。

3、对实验中两种编码的直流分量观测结果如何?联系数字基带传输系统知识分析若含有编码中直流分量将会对通信系统造成什么影响?

4、比较两种编码的优劣。

5、写出完成本次实验后的心得体会以及对本次实验的改进建议。

实验3 HDB3码型变换实验

一、实验目的

1、了解几种常用的数字基带信号的特征和作用。

2、掌握HDB3码的编译规则。

3、了解滤波法位同步在的码变换过程中的作用。

二、实验器材

1、主控&信号源、2号、8号、13号模块各一块

2、双踪示波器一台

3、连接线若干

三、实验原理

1、HDB3编译码实验原理框图

HDB3编译码实验原理框图

2、实验框图说明

我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。当没有连续4个连0时与AMI编码规则相同。当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。若该传号与前一个1的极性

不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。

同样AMI译码只需将所有的±1变为1,0变为0即可。而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。

四、实验步骤

项目一HDB3编译码(256KHz归零码实验)

概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【归零码实验】。将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。

3、此时系统初始状态为:编码输入信号为256K的PN序列。

4、实验操作及波形观测。

(1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH1(HDB3输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证HDB3编码规则。

注:观察时注意码元的对应位置。

(2)保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP2 (HDB3-A1),观察基带码元的奇数位的变换波形。

(3)保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP3 (HDB3-B1),观察基带码元的偶数位的变换波形。

(4)用示波器分别观测模块8的TP2(HDB3-A1)和TP3(HDB3-B1),可从频域角度观察信号所含256KHz频谱分量情况;或用示波器减法功能观察HDB3-A1与HDB3-B1相减后的波形情况,,并与HDB3编码输出波形相比较。

(5)用示波器对比观测编码输入的数据和译码输出的数据,观察记录HDB3译码波形与输入信号波形。

思考:译码过后的信号波形与输入信号波形相比延时多少?

(6)用示波器分别观测TP4(HDB3-A2)和TP8(HDB3-B2),从时域或频域角度了解HDB3码经电平变换后的波形情况。

(7)用示波器分别观测模块8的TH7(HDB3输入)和TH5(单极性码),从频域角度观测双极性码和单极性码的256KHz频谱分量情况。

(8)用示波器分别观测编码输入的时钟和译码输出的时钟,观察比较恢复出的位时钟波形与原始位时钟信号的波形。

思考:此处输入信号采用的单极性码,可较好的恢复出位时钟信号,如果输入信号采用的是双极性码,是否能观察到恢复的位时钟信号,为什么?

实验项目二HDB3码对连0信号的编码、直流分量以及时钟信号提取观测概述:本项目通过设置和改变输入信号的码型,观测HDB3归零码编码输出信号中对长连0码信号的编码、含有的直流分量变化以及时钟信号提取情况,进一步了解HDB3码特性。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【归零码实验】。将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。将模块2的开关S1、S2、S

3、S4全部置为11110000,使DoutMUX输出码型中含有连4个0的码型状态。(或自行设置其他码值也可。)

3、此时系统初始状态为:编码输入信号为256KHz的32位拨码信号。

4、实验操作及波形观测。

(1)观察含有长连0信号的HDB3编码波形。用示波器观测模块8的TH3(编码输入-数据)和TH1(HDB3输出),观察信号中出现长连0时的波形变化情况。

注:观察时注意码元的对应位置。

思考:HDB3编码与AMI编码波形有什么差别?

(2)观察HDB3编码信号中是否含有直流分量。将模块2的开关S1、S2、S3、S4拨为00000000 00000000 00000000 00000011,用示波器分别观测编码输入数据和编码输出数据,编码输入时钟和译码输出时钟,调节示波器,将信号耦合状况置为交流,观察记录波形。保持连线,拨码开关由0到1逐位拨起,直到模块2的拨动开关置为00111111 11111111 11111111 11111111,观察拨码过程中编码输入数据和编码输出数据波形的变化情况。

思考:HDB3码是否存在直流分量?

(3)观察HDB3编码信号所含时钟频谱分量。将模块2的开关S1、S2、S3、S4全部置0,用示波器先分别观测编码输入数据和编码输出数据,再分别观测编码输入时钟和译码输出时钟,观察记录波形。再将模块2的开关S1、S2、S3、S4全部置1,观察记录波形。

思考:数据和时钟是否能恢复?注:有数字示波器的可以观测编码输出信号FFT频谱。在恢复时钟方面HDB3码与AMI码比较有哪一个更好?比较不同输入信号时两种码型的时钟恢复情况并联系其编码信号频谱分析原因。

五、实验报告

1、分析实验电路的工作原理,叙述其工作过程。

2、根据实验测试记录,画出各测量点的波形图,并分析实验现象。

3、测试HDB3的反演,即给出HDB3码,求出原消息。

实验4测试W681512的幅频特性

一、实验目的

1、掌握脉冲编码调制与解调系统的动态围和频率特性的定义及测量方法。

2、了解脉冲编码调制信号的频谱特性。

3、熟悉了解W681512。

二、实验器材

1、主控&信号源模块、3号、21号模块各一块

2、双踪示波器一台

3、连接线若干

三、实验原理

1、实验原理框图

图2-1 21号模块W681512芯片的PCM编译码实验

图2-23号模块的PCM编译码实验

图2-3A/μ律编码转换实验

2、实验框图说明

图2-1中描述的是信号源经过芯片W681512经行PCM编码和译码处理。W681512的芯片工作主时钟为2048KHz,根据芯片功能可选择不同编码时钟进行编译码。在本实验的项目一中以编码时钟取64K为基础进行芯片的幅频特性测试实验。

图2-2中描述的是采用软件方式实现PCM编译码,并展示中间变换的过程。PCM编码过程是将音乐信号或正弦波信号,经过抗混叠滤波(其作用是滤波3.4kHz以外的频率,防止A/D 转换时出现混叠的现象)。抗混滤波后的信号经A/D转换,然后做PCM编码,之后由于G.711协议规定A律的奇数位取反,μ律的所有位都取反。因此,PCM编码后的数据需要经G.711协议的变换输出。PCM译码过程是PCM编码逆向的过程,不再赘述。

A/μ律编码转换实验中,如实验框图2-3所示,当菜单选择为A律转μ律实验时,使用3号模块做A律编码,A律编码经A转μ律转换之后,再送至21号模块进行μ律译码。同理,当菜单选择为μ律转A律实验时,则使用3号模块做μ律编码,经μ转A律变换后,再送入21号模块进行A律译码。

四、实验步骤

概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特性,了解芯片W681512的相关性能。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【A律编码观测实验】。调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。将模块21的开关S1拨至“A-Law”,即完成A律PCM编译码。

3、此时实验系统初始状态为:设置音频输入信号为峰峰值3V,频率1KHz正弦波;PCM 编码及译码时钟CLK为64KHz方波;编码及译码帧同步信号FS为8KHz。

4、实验操作及波形观测。

(1)调节模拟信号源输出波形为正弦波,输出频率为50Hz,用示波器观测A-out,设置A-out峰峰值为3V。

(2)将信号源频率从50Hz增加到4000Hz,用示波器接模块21的音频输出,观测信号的幅频特性。

注:频率改变时可根据实验需求自行改变频率步进,例如50Hz~250Hz间以10Hz的频率为步进,超过250Hz后以100Hz的频率为步进。

思考:W681512PCM编解码器输出的PCM数据的速率是多少?在本次实验系统中,为什么要给W681512提供64KHz的时钟,改为其他时钟频率的时候,观察的时序有什么变化?

认真分析W681512主时钟与8KHz帧收、发同步时钟的相位关系。

五、实验报告

1、分析实验电路的工作原理,叙述其工作过程。

2、根据实验测试记录,画出各测量点的波形图,并分析实验现象。(注意对应相位关系)

3、对实验思考题加以分析,做出回答。

实验5 ASK调制及解调实验

一、实验目的

1、掌握用键控法产生ASK信号的方法。

2、掌握ASK非相干解调的原理。

二、实验器材

1、主控&信号源、9号模块各一块

2、双踪示波器一台

3、连接线若干

三、实验原理

1、实验原理框图

ASK调制及解调实验原理框图

2、实验框图说明

ASK调制是将基带信号和载波直接相乘。已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。

四、实验步骤

实验项目一ASK调制

概述:ASK调制实验中,ASK(振幅键控)载波幅度是随着基带信号的变化而变化。在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【ASK数字调制解调】。将9号模块的S1拨为0000。

3、此时系统初始状态为:PN序列输出频率32KHz,调节128KHz载波信号峰峰值为3V。

4、实验操作及波形观测。

(1)分别观测调制输入和调制输出信号:用示波器同时观测9号模块TH1和TH4,验证ASK调制原理。

(2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。

实验项目二ASK解调

概述:实验过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证ASK 解调原理。观测解调输出的中间观测点,如:TP4(整流输出),TP5(LPF-ASK),深入理解ASK解调过程。

1、保持实验项目一中的连线及初始状态。

2、对比观测调制信号输入以及解调输出:用示波器同时观测9号模块TH1和TH6,调节W1直至二者波形相同;再观测TP4(整流输出)、TP5(LPF-ASK)两个中间过程测试点,验证ASK解调原理。

3、观测9号模块LPF-ASK信号,观测眼图。

五、实验报告

1、分析实验电路的工作原理,简述其工作过程;

2、分析ASK调制解调原理。

3、正确理解低通滤波器作用。

实验6 DBPSK调制及解调实验

一、实验目的

1、掌握DBPSK调制和解调的基本原理;

2、掌握DBPSK数据传输过程,熟悉典型电路;

3、熟悉DBPSK调制载波包络的变化;

4、掌握DBPSK载波恢复特点与位定时恢复的基本方法;

二、实验器材

1、主控&信号源、9号、13号模块各一块

2、双踪示波器一台

3、连接线若干

三、实验原理

1、DBPSK调制解调(9号模块)实验原理框图

DBPSK调制及解调实验原理框图

2、DBPSK调制解调(9号模块)实验框图说明

基带信号先经过差分编码得到相对码,再将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK调制输出;已调信号送入到13模块载波提取单元

得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始相对码,最后经过差分译码恢复输出原始基带信号。其中载波同步和位同步由13号模块完成。

四、实验步骤

实验项目一DBPSK调制信号观测(9号模块)

概述:DBPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证DBPSK调制原理。

1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0100,13号模块的S3拨为0111。

3、此时系统初始状态为:PN序列输出频率32KHz,调节信号源模块的W3使256KHz 载波信号的峰峰值为3V。

4、实验操作及波形观测。

(1)观测模块“NRZ-I”,观测“I”;

(2)观测模块“NRZ-Q”,观测“Q”。

(3)观测模块“基带信号”,观测“调制输出”。

思考:分析以上观测的波形,分析与ASK有何关系?

实验项目二DBPSK差分信号观测(9号模块)

概述:本项目通过对比观测基带信号波形与NRZ-I输出波形,观察差分信号,验证差分变换原理。

1、保持实验项目一中的连线。

2、将9号模块的S1拨为“0100”。

3、观测“基带信号”和“NRZ-I”。记录波形,并分析差分编码规则。

实验项目三DBPSK解调观测(9号模块)

概述:本项目通过对比观测基带信号波形与DBPSK解调输出波形,验证DBPSK解调原理。

1、保持实验项目一中的连线。将9号模块的S1拨为“0100”。

2、观测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。观测“DBPSK解调输出”,多次单击13号模块的“复位”按键。观测“DBPSK解调输出”的变化。

3、测9号模块LPF-BPSK,观测眼图。

五、实验报告

1、分析实验电路的工作原理,简述其工作过程;

2、通过实验波形,分析DBPSK调制解调原理。

3、测试眼图。

通信原理实验指导书 (凌特修改)

TongXinYuanLi TONGXINYUANLI SHIYANXITONG ZHIDAOSHU 高等学校信息工程类专业系列教材 通信原理实验系统指导书 研发中心编写组编著 武汉凌特电子技术有限公司

目录 实验一CPLD可编程数字信号发生器实验 (1) 实验二模拟信号源实验 (7) 实验三抽样定理和PAM调制解调实验 (13) 实验四脉冲编码调制解调实验 (21) 实验五两路PCM时分复用实验 (35) 实验六两路PCM解复用实验 (41) 实验七振幅键控(ASK)调制与解调实验 (45) 实验八移频键控FSK调制与解调实验 (52) 实验九移相键控(PSK/DPSK)调制与解调实验 (60) 实验十载波同步提取实验 (69) 实验十一位同步提取实验 (76) 实验十二帧同步提取实验 (86)

武汉凌特电子技术有限公司LTE-TX-02E型通信原理实验指导书实验一CPLD可编程数字信号发生器实验 一、实验目的 1、熟悉各种时钟信号的特点及波形。 2、熟悉各种数字信号的特点及波形。 二、实验内容 1、熟悉CPLD可编程信号发生器各测量点波形。 2、测量并分析各测量点波形及数据。 3、学习CPLD可编程器件的编程操作。 三、实验器材 1、信号源模块一块 2、连接线若干 3、20M双踪示波器一台 四、实验原理 CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。它由CPLD 可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。晶振JZ1用来产生系统内的32.768MHz主时钟。 1、CPLD数字信号发生器 包含以下五部分: 1)时钟信号产生电路 将晶振产生的32.768MH Z时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。通过拨码开关S4和S5来改变时钟频率。有两组时钟输出,输出点为“CLK1”和“CLK2”,S4控制“CLK1”输出时钟的频率,S5控制“CLK2”输出时钟的频率。 2)伪随机序列产生电路 通常产生伪随机序列的电路为一反馈移存器。它又可分为线性反馈移存器和非线性反馈移存器两类。由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈

2018通信原理实验指导书

实验1 CMI码型变换实验 一、实验目的 1、了解CMI码的编码规则。 2、观察输入全0码或全1码时各编码输出码型,了解是否含有直流分量。 3、观察CMI码经过码型反变换后的译码输出波形及译码输出后的时间延迟。 4、熟练掌握CMI与输入信号的关系。 二、实验器材 1、主控&信号源、2号、8号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 CMI/BPH编译码实验原理框图 2、实验框图说明 CMI编码规则是遇到0编码01,遇到1则交替编码11和00。由于1bit编码后变成2bit,输出时用时钟的1输出高bit,用时钟的0输出低bit,也就是选择器的功能。CMI译码首先也是需要找到分组的信号,才能正确译码。CMI码只要出现下降沿了,就表示分组的开始,找到分组信号后,对信号分组译码就可以得到译码的数据了。

四、实验步骤 概述:本项目通过改变输入数字信号的码型,分别观测编码输入输出波形与译码输出波形,测量CMI编译码延时,验证CMI编译码原理并验证CMI码是否存在直流分量。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。13号模块的开关S3置为0011,即提取512K同步时钟。 3、此时系统初始状态为:PN为256K。 4、实验操作及波形观测。 (1)观测编码输入的数据和编码输出的数据:用示波器分别观测和记录TH38#和TH68#的波形,验证CMI编码规则。 (2)观测编码输入的数据和译码输出的数据:用示波器分别观测和记录TH38#和TH138#的波形,测量CMI码的时延。 (3)断开电源,更改连线及设置。 开电,设置主控菜单,选择【主菜单】→【通信原理】→【CMI码】→【无误码】。将模块13的开关S3置为0011即提取512K同步时钟。 将模块2的开关置为00000000 00000000 00000000 00000011,用示波器分别观测编码输入的数据和编码输出的数据,调节示波器,将信号耦合状况置为交流,观察记录波形。保持

通信原理实验指导书(上)-仿真部分

通信原理实验指导书 上册(仿真部分) 计算机工程系通信教研室 2008.9

实验一 模拟线性调制系统仿真实验 一、 实验目的 1、 理解模拟线性调制的基本原理; 2、 验证常规AM 调制和DSB 调制计算机仿真方法。 二、 实验原理 1.AM 调制原理 任意AM 已调信号可以表示为S am (t)=c(t)m(t) 当)()(0t f A t m +=;)cos()(0θω+=t t c c 且A 0不等于0时称为常规调幅,其时域表达式为: )cos()]([)()()(00θω++==t t f A t m t c t s c am A 0是外加的直流分量,f(t)是调制信号,它可以是确知信号也可以是随机信号,为方便起见通常设θ0为0。 cos(ω0t) 要使输出已调信号的幅度与输入调制信号f(t)呈线性对应关系,应满足max 0)(t f A ≥,否则会出现过调制现象。 2.DSB 调制原理 在常规调幅时,由于已调波中含有不携带信息的载波分量,故调制效率较低,为了提高调制效率,在常规调幅的基础上抑制载波分量,使总功率全部包含在双边带中,这种调制方式称为抑制载波双边带调制。 任意DSB 已调信号都可以表示为DSB S )()()(t m t c t = 当)()(0t f A t m +=;)cos()(0θω+=t t c c 且A 0等于0时称为抑制载波双边带调制。其时域 表达式为t t f t m t c t s c DSB ωcos )()()()(==;频域表达式为: C DSB F t s ωω+=([)(C F ωω-+()2)]÷ 3.SSB 调制原理 由于滤波法比较简单,主要介绍单边带的移相法形成原理及仿真。 为简便起见,设调制信号为单边带信号f(t)=A m cosωm t ,载波为c(t)=cosωc t 则调制后的双边带时域 波形为: 2/])cos()cos([cos cos )(t A t A t t A t S m c m m c m c m m DSB ωωωωωω-++== 保留上边带,波形为: 2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m USB ωωωωωω-=+= 保留下边带,波形为: 2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m LSB ωωωωωω+=-= 上两式中的第一项与调制信号和载波信号的乘积成正比,成为同相分量;而第二项的乘积则是调 制信号与载波信号分别移相900后想乘的结果,称为正交分量。原理图如下: Acos(ω0t) f(t) S(t)

通信原理实验指导书

实验一 PAM实验 一、实验目的 1、验证抽样定理; 2、观察PAM信号形成的过程; 3、了解混迭效应产生的原因; 4、学习中频抽样的基本方法; 二、实验仪器 1、J H5001-4实验箱一台 2、20MHz双踪示波器一台 3、函数信号发生器一台 三、实验原理 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。 抽样定理指出,一个频带受限信号m(t),如果它的最高频率为f h,则可以唯一地由频率等于或大于2f h的样值序列所决定。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原始信号。通常将语音信号通过一个3400 Hz低通滤波器(或通过一个300~3400Hz的带通滤波器),限制语音信号的

最高频率为3400Hz ,这样可以用频率大于或等于6800 Hz 的样值序列来表示。语音信号的频谱和语音信号抽样频谱见图3.1.1和图 3.1.2所示。从语音信号抽样频谱图可知,用截止频率为f h 的理想低通滤波器可以无失真地恢复原始信号m(t)。 f f h 0 图3.1.1 语音信号频谱 h s h s h 图3.1.2 语音信号的抽样频谱

f f h 0 2f s +f h f s + f h 图3.1.3 f s <2f h 时语音信号的抽样频谱 h s h s h 图3.1.4 留出防卫带的语音信号的抽样频谱 实际上,设计实现的滤波器特性不可能是理想的,对限制最高频率为3400Hz 的语音信号,通常采用8KHz 抽样频率。这样可以留出一定的防卫带(1200Hz ),参见图 4.1.4所示。当抽样频率f s 低于2倍语音信号的最高频率f h ,就会出现频谱混迭现象,产生混迭噪声,影响恢复出的话音质量,原理参见图3.1.3所示。 在抽样定理实验中,采用标准的8KHz 抽样频率,并用函数信号发生器产生一个信号,通过改变函数信号发生器的频率,观察抽样序列和重建信号,检验抽样定理的正确性。抽样定理实验各点波形见图3.1.5所示。

通信原理 实验指导书

郑州工商学院 《通信原理》 实验指导书 所属课程名称:通信原理 院部:工学院 专业:通信工程、电子信息工程制定人:张盼盼

目录 实验一抽样定理实验 (1) 实验二 HDB3码型变换实验 (4) 实验三 ASK调制及解调实验 (7) 实验四 BPSK调制及解调实验 (10)

实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 二、实验仪器、设备 1、主控&信号源、3号模块各1块 2、双踪示波器1台 3、连接线若干 三、实验原理 1、实验原理框图 图1 抽样定理实验框图 2、实验框图说明 实验框图如图3.6所示,抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验内容 抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证

抽样定理。 五、实验步骤 1、关电,按表1所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 (2)观测并记录平顶抽样前后的信号波形:设置开关S13#为“平顶抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 (3)观测并对比抽样恢复后信号与被抽样信号的波形:设置开关S13#为“自然抽样”档位,用示波器观测MUSIC主控&信号源和LPF-OUT3# ,以100Hz的步进减小A-OUT 主控&信号源的频率,比较观测并思考在抽样脉冲频率多小的情况下恢复信号有失真。 (4)用频谱的角度验证抽样定理(选做):用示波器频谱功能观测并记录被抽样信号MUSIC和抽样输出频谱。以100Hz的步进减小抽样脉冲的频率,观测抽样输出以及恢复信号的频谱。(注意:示波器需要用250kSa/s采样率(即每秒采样点为250K),FFT 缩放调节为×10)。 六、实验注意事项 1、爱护仪器设备 2、注意按实验框图连接实验仪器 …… 七、思考题 1、通过观测信号的恢复,思考抽样脉冲频率与恢复信号是否失真之间的关系。

通信原理实验指导书讲解

通信原理实验指导书 信息工程系

目录 实验一数字信号源实验 (3) 实验二数字调制实验 (7) 实验三2ASK、2FSK数字解调实验..............................................1 7 实验四PCM编译码及TDM时分复用实验 (23)

实验一数字信号源实验 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握集中插入帧同步码时分复用信号的帧结构特点。 3、掌握数字信号源电路组成原理。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。 2、用示波器观察NRZ、FS、BS三信号的对应关系。 3、学习电路原理图。 三、基本原理 本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。发光二极管亮状态表示‘1’码,熄状态表示‘0’码。 本模块有以下测试点及输入输出点: ? CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz ? BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz ? FS 信源帧同步信号输出点/测试点,频率为7.1KHz ? NRZ-OUT NRZ信号输出点/测试点 图1-3为数字信源模块的电原理图。图1-1中各单元与图1-3中的元器件对应关系如下: ?晶振CRY:晶体;U1:反相器7404 ?分频器US2:计数器74161;US3:计数器74193; US4:计数器40160 ?并行码产生器KS1、KS2、KS3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应 ?八选一US5、US6、US7:8位数据选择器4512 ?三选一US8:8位数据选择器4512 ?倒相器US10:非门74HC04 ?抽样US9:D触发器74HC74

通信原理实验指导书(完整)

实验一:抽样定理实验 一、实验目的 1、熟悉TKCS—AS型通信系统原理实验装置; 2、熟悉用示波器观察信号波形、测量频率与幅度; 3、验证抽样定理; 二、实验预习要求 1、复习《通信系统原理》中有关抽样定理的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。 作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。

图1-1 单路PCM系统示意图 为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。 2、抽样定理 抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音信号m(t)的频谱如图1-2和图1-3所示。 由频谱可知,用截止频率为f H的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs<2f H,就会出现频谱混迭的现象,如图1-5所示。 在验证抽样定理的实验中,我们用单一频率f H的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。 图1-2 语音信号的频谱图1-3 语音信号的抽样频谱和抽样信号的频谱

通信原理实验指导书

实验一HDB3码型变换实验 一、实验目的 1、了解几种常用的数字基带信号的特征和作用。 2、掌握HDB3码的编译规则。 3、了解滤波法位同步在的码变换过程中的作用。 二、实验器材 1、主控&信号源、2号、8号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、HDB3编译码实验原理框图 HDB3编译码实验原理框图 2、实验框图说明 我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。当没有连续4个连0时与AMI编码规则相同。当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。 同样AMI译码只需将所有的±1变为1,0变为0即可。而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。

四、实验步骤 实验项目一HDB3编译码(256KHz归零码实验) 概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K 归零码实验】。将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。 3、此时系统初始状态为:编码输入信号为256K的PN序列。 4、实验操作及波形观测。 (1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH1(HDB3输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证HDB3编码规则。 注:观察时注意码元的对应位置。 (2)保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP2 (HDB3-A1),观察基带码元的奇数位的变换波形。 (3)保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP3 (HDB3-B1),观察基带码元的偶数位的变换波形。 (4)用示波器分别观测模块8的TP2(HDB3-A1)和TP3(HDB3-B1),可从频域角度观察信号所含256KHz频谱分量情况;或用示波器减法功能观察HDB3-A1与HDB3-B1相减后的波形情况,,并与HDB3编码输出波形相比较。 (5)用示波器对比观测编码输入的数据和译码输出的数据,观察记录HDB3译码波形与输入信号波形。 思考:译码过后的信号波形与输入信号波形相比延时多少? (6)用示波器分别观测TP4(HDB3-A2)和TP8(HDB3-B2),从时域或频域角度了解HDB3码经电平变换后的波形情况。 (7)用示波器分别观测模块8的TH7(HDB3输入)和TH6(单极性码),从频域角度观测双极性码和单极性码的256KHz频谱分量情况。 (8)用示波器分别观测编码输入的时钟和译码输出的时钟,观察比较恢复出的位时钟波形与原始位时钟信号的波形。 思考:此处输入信号采用的单极性码,可较好的恢复出位时钟信号,如果输入信号采用的是双极性码,是否能观察到恢复的位时钟信号,为什么? 实验项目二HDB3编译码(256KHz非归零码实验) 概述:本项目通过观测HDB3非归零码编译码相关测试点,了解HDB3编译码规则。 1、保持实验项目一的连线不变。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K

通信原理实验指导书

通信原理实验报告 学院:信息与通信工程学院

目录 II、实验基本操作说明..................................................................................... 错误!未定义书签。 第一章信源编码技术 (1) 实验一抽样定理实验 (1) 实验二PCM编译码实验 (9) 实验三ADPCM编译码实验 (15) 实验四△m及CVSD编译码实验 (19) 实验五PAM孔径效应及其应对方法 (26) 第二章基带传输编译码技术 (29) 实验六AMI码型变换实验 (29) 实验七HDB3码型变换实验 (34) 实验八CMI/BPH码型变换实验 (39) 第三章基本数字调制技术 (44) 实验九ASK调制及解调实验 (44)

第一章 信源编码技术 实验一 抽样定理实验 一、实验目的 1、 了解抽样定理在通信系统中的重要性。 2、 掌握自然抽样及平顶抽样的实现方法。 3、 理解低通采样定理的原理。 4、 理解实际的抽样系统。 5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、 理解低通滤波器的相频特性对抽样信号恢复的影响。 7、 理解带通采样定理的原理。 二、实验器材 1、 主控&信号源、3号模块 各一块 2、 双踪示波器 一台 3、 连接线 若干 三、实验原理 1、实验原理框图 保持电路 S1信号源 A-out music 抽样电路 被抽样信号 抽样脉冲 平顶抽样自然抽样 抽样输出 抗混叠滤波器 LPF LPF-IN LPF-OUT FPGA 数字滤波 FIR/IIR 译码输出 编码输入 3# 信源编译码模块 图1-1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关

(完整版)通信原理实验指导书SystemView

实验一图符库的使用 一、实验目的 1、了解SystemVue图符库的分类 2、掌握SystemVue各个功能库常用图符的功能及其使用方法 二、实验内容 按照实例使用图符构建简单的通信系统,并了解每个图符的功能。 三、基本原理 SystemVue的图符库功能十分丰富,一共分为以下几个大类 1.基本库 SystemView的基本库包括信源库、算子库、函数库、信号接收器库等,它为该系统仿真提供了最基本的工具。 (信源库):SystemView为我们提供了16种信号源,可以用它来产生任意信号 (算子库)功能强大的算子库多达31种算子,可以满足您所有运算的要求 (函数库)32种函数尽显函数库的强大库容! (信号接收器库)12种信号接收方式任你挑选,要做任何分析都难不倒它 2.扩展功能库 扩展功能库提供可选择的能够增加核心库功能的用于特殊应用的库。它允许通信、DSP、射频/模拟和逻辑应用。 (通信库):包含有大量的通信系统模块的通信库,是快速设计和仿真现代通信系统的有力工具。这些模块从纠错编码、调制解调、到各种信道模型一应俱全。 (DSP库):DSP库能够在你将要运行DSP芯片上仿真DSP系统。该库支持大多DSP芯片的算法模式。例如乘法器、加法器、除法器和反相器的图标代表真正的DSP算法操作符。还包括高级处理工具:混合的Radix FFT、FIR和IIR滤波器以及块传输等。 (逻辑运算库):逻辑运算自然离不开逻辑库了,它包括象与非门这样的通用器件的图标、74系列器件功能图标及用户自己的图标等。 (射频/模拟库):射频/模拟库支持用于射频设计的关键的电子组件,例如:混合器、放大器和功率分配器等。 3.扩展用户库 扩展的用户库包括有扩展通信库2、IS95/CDMA、数字视频广播DVB等。 通信库2: 扩展的通信库2主要对原来的通信库加了时分复用、OFDM调制解调、QAM编码与调制解调、卷积码收缩编解码、GOLD码以及各种衰落信道等功能。4.5版中,通信库2已被合并到基本通信库中。 IS95库:IS95库为设计CDMA和个人通信系统提供了一个快捷的工具。除了产生CDMA所需的信号发生器模型、

通信原理实验指导书

通信原理实验指导书 实验一HDB3码型变换实验 一、实验目的 1、了解几种常用的数字基带信号的特征和作用。 2、掌握HDB3码的编译规则。 3、了解滤波法位同步在的码变换过程中的作用。 二、实验器材 1、主控&信号源、2号、8号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、HDB3编译码实验原理框图 HDB3输出信号源PN15数据HDB3编码HDB3-A1电平变换CLK时钟HDB3-B1数据移位输出取绝对值缓存4bitHDB3-A2极性反变换HDB3输入时钟HDB3-B2信号检测译码时钟输入单极性码8#基带传输编译码模块数字锁相环法位同步BS2数字锁相环输入13#载波同步及位同步模块HDB3编译码实验原理框图 2、实验框图说明 我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。当没有连续4个连0时与AMI编码规则相同。当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。若该传号与前一个1的极

性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。 同样AMI译码只需将所有的±1变为1,0变为0即可。而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。传号A的识别方法是:该符号的极性与前一极性相同,该符号即 为传号。实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。 四、实验步骤 实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。 1、关电,按表格所示进行连线。源端口信号源:PN据)信号源:CLK 钟)模块8:TH1(HDB3输出)模块8:TH5(单极性码)模块13:TH5(BS2)模块8:TH7(HDB3输入)块模块13:TH7(数字锁相环输入)模块8:TH9(译码时钟输入)数字锁相环位同步提取提供译码位时钟将数据送入译码模模块8:TH4(编码输入-时提供编码位时钟目的端口模块8:TH3(编码输入-数连线说明基带信号输入 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。将模块13的开关 S3分频设置拨为0011,即提取512K同步时钟。 3、此时系统初始状态为:编码输入信号为256K的PN序列。 4、实验操作及波形观测。

通信原理课程实习指导书3篇

通信原理课程实习指导书3篇 通信原理课程实习指导书1 实验一CPLD 可编程数字信号发生器实训 一、实验目的 1、熟悉各种时钟信号的特点及波形; 2、熟悉各种数字信号的特点及波形。 二、实验设备与器件 1、通信原理实验箱一台; 2、模拟示波器一台。 三、实验原理 1、CPLD 可编程模块电路的功能及电路组成 CPLD可编程模块(芯片位号:U101)用来产生实验系统所需要的各种时钟信号和数字信号。它由CPLD可编程器件ALTERA公司的__(或者是Xilinx 公司的XC)、编程下载接口电路(J104)和一块晶振(OSC1)组成。晶振用来产生系统内的主时钟。本实验要求参加实验者了解这些信号的产生方法、工作原理以及测量方法,才可通过CPLD可编程器件的二次开发生成这些信号,理论联系实践,提高实际操作能力,实验原理图如图1-1 所示。 2、各种信号的功用及波形

CPLD 型号为__ 由计算机编好程序从J104 下载写入芯片,OSC1 为晶体,频率为,经8 分频得到主时钟,面板测量点与__ 各引脚信号对应关系如下: SP101 2048KHz 主时钟方波对应U101__ 11 脚SP102 1024KHz 方波对应U101__ 10 脚SP103 512KHz 方波对应U101__ 9 脚SP104 256KHz 方波对应U101__ 8 脚SP105 128KHz 方波对应U101__ 6 脚SP106 64KHz 方波对应U101__ 5 脚 SP107 32KHz 方波对应U101__ 4 脚SP108 16KHz 方波对应U101__ 81 脚SP109 8KHz 方波对应U101__ 80脚SP110 4KHz 方波对应U101__ 79脚SP111 2KHz 方波对应U101__ 77脚SP112 1KHz 方波对应U101__ 76脚SP113 PN32KHz 32KHz伪随机码对应U101__ 75脚SP114 PN2KHz 2KHz伪随机码对应U101__ 74脚SP115 自编码自编码波形,波形由对应U101__ 73 脚J106 开关位置决定 SP116 长0 长1 码码形为1、0 连“1” 对应U101__ 70脚、0 连“0”码 SP117 X 绝对码输入对应U101__ 69 脚SP118 Y 相对码输出对应U101__ 68 脚SP119 F80 8KHz0 时隙取样脉冲对应 U101__ 12 脚 此外,取样时钟、编码时钟、同步时钟、时序信号还将被接

通信原理实验指导书(学生)资料

通信原理实验指导书西南大学电子信息工程学院实验教学中心

目录 前言 .............................................. 错误!未定义书签。目录 (1) 拨码器开关设置一览表 (2) 第一部分通信原理预备性实验 (5) 实验1 平台介绍及实验注意事项 (5) 实验2 DDS信号源实验 (8) 第二部分通信原理重要部件实验 (11) 实验1 抽样定理及其应用实验 (11) 实验2 PCM编译码系统实验 (16) 实验3 FSK(ASK)调制解调实验 (20) 实验4 PSK DPSK调制解调实验 (25) 实验5 位同步提取实验 (33) 实验6 眼图观察测量实验 (38) 实验7 基带信号的常见码型变换实验 (43) 实验8 AMI/HDB3编译码实验 (50) 实验9 幅度调制(AM)实验* (54) 实验10 幅度解调(AM)实验* (61) 实验11 频率调制(PM)实验* (64) 实验12 频率解调(PM)实验* (68) 第三部分信道复用技术和均衡技术实验 (72) 实验1 频分复用/解复用实验 (72) 实验2 时分复用/解复用(TDM)实验 (76)

拨码器开关设置一览表 在本实验平台上,我们采用了红色的拨码器,设置各种实验的项目、信号类型、功能和参数。拨码器的白色开关上位为1;下位为0。现将各主要拨码开关功能列表说明如下:

注:1. 时钟与基带数据产生模块中各铆孔与测量点说明: 4P01为原始基带数据输出铆孔; 4P02为码元时钟输出铆孔; 4P03为相对码输出铆孔。 4TP01为码型变换后输出数据测量点; 4TP02为编码时钟测量点。 2.以上实验设置的功能和各种参数也可根据学校要求定制。 表0-2“信道编码与ASK。FSK。PSK。QPSK调制”拨码开关SW03状态设置与功能一览表 表0-3“基带同步与信道译码模块”拨码开关25SW01状态设置与功能一览表 注:译码模块25SW01第一位X为空位待用。

通信原理实验指导书完整版

通信原理实验指导书 通信原理课程是一门理论性与实践性都很强的专业基础课。如何加强理论课程的学习,加深学生对本课程中的基本理论知识及基本概念的理解,提高学生理论联系实际的能力,如何培养学生实践动手能力和分析解决通信工程中实际问题的能力是通信原理教学的当务之急。而通信原理实验课程就是一种重要的教学手段和途径。本通信原理实验将通信原理的基础知识灵活地运用在实验教学环节中。可独立也可组合、综合实施多项实验或示教。本实验重点突出,实验内容丰富。同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力及动手能力,并通过有目的地选择完成实验项目及二次开发,使学生进一步巩固理论基本知识,建立完整的通信系统的概念。 实验注意事项 1、实验系统接通电源前请确保电源插座接地良好。 2、除信号源模块外,其它实验模块平时应保存在保管箱中,注意防潮、防尘。在实验完毕后应尽快将实验模块放入保管箱中保存。 3、从保管箱中取出或放入实验模块应轻拿轻放,实验模块的两侧应与保管箱插槽对准方可取出或插入实验模块,切勿用蛮力。 4、每次安装实验模块之前应确保主机箱右侧的交流开关处于断开状态。为保险起见,建议拔下电源线后再安装实验模块。 5、安装实验模块时,应先将模块左侧卡口与固定槽中的定位卡对齐,再轻轻压下实验模块,然后在实验模块右侧用胶木螺钉固定。应确保固定槽中的电源插针与实验模块底部的电源接口接触良好,无短路和断路,手旋螺钉也不应固定得过紧,以免压坏实验模块表面或造成短路,经过仔细检查后方可通电实验。 6、各实验模块上的双刀双掷开关、轻触开关、微动开关、拨码开关、手旋电位器均为磨损件,请不要频繁按动或旋转。 7、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。 8、各模块中的3362电位器(蓝色正方形封装)是出厂前调试使用的。出厂后的各实验模块功能已调至最佳状态,勿需另行调节这些电位器,否则将会对实验结果造成严重影响。若已调动请尽快复原;若无法复原,请与指导老师或直接与我公司联系。 9、在关闭各模块电源之后,方可进行连线。连线时在保证接触良好的前提下应尽量轻插轻拔,检查无误后方可通电实验。拆线时若遇到连线与孔连接过紧的情况,应用手捏住连线插头的塑料线端,左右摇晃,直至连线与孔松脱,切勿用蛮力强行拔出。 10、FPGA下载线和串口线应轻插、轻拔,以免折断插针。 11、按动开关或转动电位器时,切勿用力过猛,以免造成元件损坏。 12、本实验系统中的工具模块(信号源模块、码型变换模块、频谱分析模块、终端模块、同步信号提取模块)在完成本身实验功能的基础上,主要是为其它实验模块服务的。各工具模块的使用方法我们都做了详细的介绍,希望同学们能灵活运用这些工具模块,达到最好的实验效果。

通信原理实验指导书

实验一数字信号发生实验 一、实验目的 1.了解多种时钟信号的产生方法; 2.了解PCM编码中的收、发帧同步信号的产生过程; 3.掌握3级、4级、5级伪随机码的编码方法和伪随机码性质。 二、实验仪器与设备 1.THEXZ-2B型实验箱、数字信号发生模块; 2.20MHz双踪示波器。 三、实验原理 时钟信号乃是数字通信各级电路的重要组成局部,在数字通信电路中,假设没有时钟信号,那么电路根本工作条件将得不到满足而无法工作。 〔一〕电路组成 时钟与伪码发生实验是供应PCM、PSK、FSK、HDB3等实验所需时钟和基带信号,由以下电路组成: 1.内时钟信号源,图18-1。 2.多级分频及脉冲编码调制系统收、发帧同步信号产生电路,图18-1。 3.三级伪随机码发生电路,图18-2; 4.四级伪随机码发生电路,图18-3;5.五级伪随机码发生电路,图18-4。 图18-1 时钟及多级分频及脉冲编码调制系统收、发帧同步信号产生电原理图

图18-2 三级伪码发生电原理图 图18-3 四级伪码发生电原理图 18-4 五级伪码发生电原理图 〔二〕电路工作原理 1.时钟信号源 时钟信号源由钟振Y1提供,假设电路加电后,在CLK测试点输出一个比拟理想的方波

信号,输出振荡频率为,经过D触发器进行二分频,输出为方波信号。 2.三级基准信号分频及PCM编码调制收发帧同步信号产生电路 该电路的输入时钟信号为Z的方波,由可预置四位二进制计数器〔带直接清零〕组成的三级分频电路组成,逐次分频变成1K方波,由第一级分频电路产生的P128KH Z窄脉冲和由第二级分频电路产生的Q8KH窄脉冲进行与非后输出,即为PCM编译码中的收、发分帧同步信号P8K。 3.三级伪随机码发生器电路 伪随机序列,也称作m序列,它的显著特点是:〔a〕随机特性;〔b〕预先可确定性;〔c〕可重复实现。 本电路采用带有两个反应的三级反应移位存放器,示意图见图18-5。假设设初始状态为111〔Q2Q1Q0=111〕,那么在CP时钟作用下移位一次后,由Q1与Q0模二加产生新的输入Q=Q0○+Q1=1○+1=0,那么新状态为Q2Q1Q0=011。当移位二次时为Q2Q1Q0=001;当移位三次为Q2Q1Q0=100;移位四次后为Q2Q1Q0=010;移位五次后为Q2Q1Q0=101;移位六次后为Q2Q1Q0=110;移位七次后为Q2Q1Q0=111;即又回到初始状态Q2Q1Q0=111。该状态转移情况可直观地用“状态转移图〞表示。见图18-6。 图18-2是实验系统中3级伪随机序列码发生器电原理图。从图中可知,这是由三级D 触发器和异或门组成的三级反应移存器。在测量点PN处的码型序列为1110010周期性序列。假设初始状态为全“零〞那么状态转移后亦为全“零〞,需增加U8A三输入与非门“破全零状态〞。 图18-5 具有两个反应抽头的3级伪随机序列码发生器图18-6 状态转移图4.四级伪随机码发生电路 图18-3是实验系统中4级伪随机序列码发生器电原理图。从图中可知,这是由4级D 触发器和异或门组成的4级反应移位存放器。本电路是利用带有两个反应抽头的4级反应移位存放器,其示意图见图18-7,状态转移图见表18-1,在测量点PN处的码序列为。 图18-7 具有两个反应抽头的4级伪随机序列码发生器 5.五级伪随机码发生电路 图18-4是实验系统中5级伪随机序列码发生器电原理图,从图中可知,这是由5级D 触发器和异或门组成的5级反应移位存放器。本电路是利用带有两个反应抽头〔注意,反应点是Q0与Q2〕的5级反应移位存放器,其示意图见图18-8,状态转移图见表18-1,在测量点PN处的码序列为。

相关主题
相关文档
最新文档