中国海上地震勘探技术新进展-石油物探

中国海上地震勘探技术新进展-石油物探
中国海上地震勘探技术新进展-石油物探

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

地震处理及解释软件发展现状

地震处理及解释软件发展现状 作者:发布时间:2010-04-08 10:51:27 地震资料处理技术的发展与计算机技术的发展息息相关。从模拟处理到数字处理;从简单的陆上二维资料处理到复杂的山地资料处理、全三维资料处理、高分辨率和深层资料处理等;从常规资料的处理到处理解释一体化的叠前深度偏移技术,每一次地球物理技术的进步都离不开计算机技术的进步和应用软件的发展。 以胜利油田的地震资料处理计算机装备为例,其发展过程已历经了数代的变化。从最早的IRIS60机、TIMAP—I、TIMAP4、VAX11/782、IBM3083,到并行计算SGI/Orgin2000和IBM—SP,以及目前正在迅猛发展的PC—CLUSTER,运算速度已从最初的每秒40万次提高到现在的每秒万亿次。 随着地震资料处理硬件装备的发展,处理软件也在不断地更新,处理技术日趋完善。勘探软件是现代地震勘探和油藏描述的基本必备工具,自上世纪70年代,国外的一些软件公司就已着手开发地震处理及解释软件系统,并初步形成了商业化软件,开始在全世界范围内推广和应用。进入上世纪90年代,比较成熟的处理软件有西方地球物理公司的Omega处理软件、法国CGG公司的GEOVECTEUR PLUS处理软件、LandMark公司的Promax处理软件、帕拉代姆公司的GeoDepth软件、Focus软件。国内较早从事勘探软件研究和开发的单位,主要是以东方地球物理公司(原石油物探局)为主,它的处理软件为Grisys处理软件。这些软件的处理技术水平各具特色。另外,随着油藏地球物理技术的发展,各种相关的特殊处理软件逐步发展与完善。 地震数据处理软件的发展 批处理阶段上世纪70~80年代末,由于计算机技术落后,限制了地震处理软件和处理技术的发展,地震处理软件一直处于批处理阶段,代表性的软件有:法国CGG公司的GEO—MASTER软件、美国GSI公司的TIPEX软件、美国WGC公司的IQ处理软件、美国CSD 公司DISCO软件等。 交互处理阶段上世纪90年代初,随着计算机技术的飞速发展,地震处理软件和处理技术发展很快。开始发展交互地震处理软件。代表性的软件有:法国CGG公司的

地震解释的现状及发展趋势

地震波地质信息综合解释 摘要:地震解释质量决定了一个区块勘探开发的方向和进程,地震解释的发展对解释人员提出了更高的要求,即要求解释人员通晓地质知识,同时具有物探知识。本文主要从现今已经在应用的解释技术和方法以及近年来涌现出来的一些新思路、新方法展开论述。分别包括三维可视化技术、构造解释、构造解释和利用振幅属性预测含烃概率、利用波峰瞬时频率计算薄层厚度、多子波地震道分解和重构等。 关键字:地震解释、构造解释、振幅属性、波峰瞬时频率 引言:地震资料解释是勘探和开发地震的最后环节,其功能是将地震信息翻译成地质语言或符号;其目的是直接服务于勘探和开发。因此解释质量决定了一个区块勘探开发的方向和进程。地震勘探开发技术发展的目标都是为了提供更好的易于解释的具更高可信度的地震资料。地震解释现在更多地强调综合性和在地质规律控制下的地震解释。这对解释人员提出了更高的要求,即要求解释人员通晓地质知识,同时具有物探知识。地震解释从来就不是从事物探方法研究人员单纯可以从事的工作。地震解释已经开始从注重地震解释方法向注重多学科综合性的转变,现在更为明显!地震解释的另一个明显的趋势是强调在地质规律认识下的地震解释,即地震和地质的紧密结合。 一、地震综合解释的现今技术及方法 在地震综合解释方面,主要是以地震反演技术、多种属性分析技术及三维解释为主体的地震综合储层预测技术,通过与层序地层学、测井和地质等其他测量解释成果的结合给出地震资料综合解释的应用实例。例如AmoutColpaert应用神经网络将地震解释数据和井中岩石物理特性分析联合实现多属性分析,从而进行岩相预测。靶区的目标地层是岩溶发育的斜坡形向陆架坡过渡的碳酸盐岩地层,探区内井资料很少或几乎没有,作者综合应用了基于井资料的层序地层分析、岩石物理分析和多属性地震分析,对无井控制区的岩相进行了预测。其基本流程见图1。

海上宽频地震采集技术新进展

*基金项目:国家科技重大专项“我国油气及煤层气勘探开发技术发展战略研究”(编号:2008ZX05043-003)。 第一作者简介:余本善,1982年生,博士,工程师,2012年毕业于中国地质大学(北京),目前从事物探前沿技术跟踪及战略研究工作。E-mail:yubs@https://www.360docs.net/doc/9c17254867.html, 海洋油气资源十分丰富。据最新资料显示,海洋油气探明储量约占全球探明储量的34%,而探明率仅有30%。随着陆上常规可采资源储量的不断减少,全球油气需求快速增加与油气资源相对匮乏的矛盾日益突出, 为满足人类日益增长的能源需求,走向海洋是未来油气勘探开发的必然选择。近几年,全球海洋油气年均投资突破1000亿美元,越来越多的石油公司、服务公司把海洋油气作为未来发展的重要战略接替区和技术创新的主攻方向。 海上拖缆地震技术是目前海洋油气勘查的主要手段,常规的海上拖缆采集一般是配置单一类型的水检,且各个检波器排列处于同一水平面上,这种采集方式具有施工灵活、作业效率高等特点,但是随着海上开发油气藏类型日益复杂,常规作业方式取得的资料已越来越难以满足海上精细化勘探的要求。 海上宽频地震勘探技术不但能改善盐下、玄武岩下等深层构造成像,还能提高薄层、隐蔽圈闭、特殊岩性体等难识别油区成像品质,因而能提高地震资料的解释精度,帮助寻找遗漏油藏,降低勘探风险[1~5]。宽频地震作为提高地震成像精度的重要方法,已经成为物探学 界的研究热点问题。近5年来国外海上宽频地震采集技术取得了飞速发展,出现了上下双缆采集、倾斜电缆采集、双检电缆采集、四分量拖缆采集等多种方法。 1 海上地震采集“鬼波” 海上拖缆地震采集一般是将震源和检波器沉放到水下一定深度,当震源激发出子波后,地震波在向下传播(简称下行波)的同时也向上传播(简称上行波)。由于海水面是一个很强的波阻抗界面,当上行波到达海面会产生强烈反射,再向下传播;同理,由地下反射回来的地震波,有的直接到达检波器,有的继续向上传播,经海面反射后到达检波器,这种海面反射波称为虚反射(也称鬼波)(图1)。研究表明,由于鬼波的陷频作用[6],在一定的水深范围内,震源沉放较浅,震源子波频谱较宽,高频效果越好,但低频部分相对缺失;震源沉放较深,低频成分相对丰富,但频带较窄。同理,检波器沉放深度对地震资料的频带也有着类似的影响。 2 倾斜电缆采集技术 倾斜电缆技术理论最早由C.Ray [7]于1982年提出,

地震勘探技术的发展与应用

地球探测与信息技术 读书报告 课题名称:地震勘探的发展与应用 班级:064091 姓名:吴浩 学号:20091004040 指导老师:胡祥云

地震勘探的发展与应用 吴浩 (地球物理与空间信息学院,地球科学与技术专业) 摘要地震勘探是地球物理勘探中发展最快的一项技术,近年来,高分辨率地震勘探仪器装备、处理软件升级换代速度明显加快,地震资料采集、处理与解释出现了一体化的趋势。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,应用于石油、煤炭、采空区调查、地热普查等重要领域,由陆地不断向海洋发展。本文着重针对地震勘探过程和技术的发展几个重要阶段及应用进行展开。 关键字地震勘探三维地震石油勘探煤矿发展与应用 1 引言 地震勘探是利用岩石的弹性性质研究地下矿床和解决工程地质,环境地质问题的一种地球物理方法。地震勘探应用领域广泛,与其他物探方法相比,具有精度高、分层详细和探测深度大等优点,近年来,随着电子技术、计算机技术的高速发展,地震勘探的仪器装备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,通常用人工激发地震波,地震波通过不同路径传播后,被布置在井中或地面的地震检波器及专门仪器记录下来,这些地震拨携带有所经过地层的丰富地质信息,计算机对这些地震记录进行处理分析,并用计算机进行解释,便可知道地下不同地层的空间分布,构造形态,岩性特征,直至地层中是否有石油、天然气、煤等,并可解决大坝基础,港口,路,桥的地基,地下潜在的危险区等工程地质问题,以及环境保护,考古等问题。 2 地震勘探过程及发展 地震勘探过程由地震数据采集、数据处理和地震资料解释3个阶段组成。 1.地震数据采集 在野外观测作业中,一般是沿地震测线等间距布置多个检波器来接收地震波信号。常规的观测是沿直线测线进行,所得数据反映测线下方二维平面内的地震信息。一般地讲,地震野外数据采集成本占勘探成本的80%左右,因此世界各国为了降低勘探成本、提高勘探效果,

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

物探新方法、新技术

第一章 地震模拟技术 地震模拟技术是指用物理模型和数学模型代替地下真实介质,用物理实验和数学计算模拟地震记录的形成过程,以得到理论地震记录的各种方法和技术。 物理模拟 :物理模拟是用一些已知参数的介质做成一定几何形态的模型来模拟地下地质结构,采用超声波模拟地震波,专用换能器模拟震源和检波器,将野外地震勘探过程在实验室内重现,得到理论地震记录的方法和技术。 物理模拟的优点是与实际情况接近,真实性和可比性高;缺点是模型制作和改变参数均困难、成本较高。 合成地震记录 制作合成地震记录的假设条件是: (1) 地下介质是水平层状的,无岩性横向变化,各层间密度变化不大,均可视为常数; (2) 地震子波以平面波形式垂直向下入射到界面,各层反射波的波形与子波波形相同,只是振幅和极性不同; (3) 所有波的转换、吸收、绕射等能量损失均不考虑。 制作合成地震记录的步骤是: (1) 获得反射系数 反射系数曲线?)(t R 波阻抗曲线),(ρv z 根据假设(1),可用速度曲线代替波阻抗曲线。 通常用声速测井资料即可,但某些地区无声速测井资料,也可利用电测井资料获得声速资料(法斯特公式) 6/13)(102)(ρh h v ?= (1-1) (2) 地震子波的选择 选用不同的子波来制作合成记录,与井旁的地震道比较,选择最接近的一个。 (3) 不考虑多次波及透射损失情况 地震子波与地层反射系数的褶积为合成记录 )()(*)(t s t t b =ξ (1-2) (4) 不考虑多次波,但考虑透射损失情况 )()(*)(t s t t b =ξ (1-3) 式中 )(t ξ——t 时刻并考虑以上各界面透射损失的等效反射系数。 例如第n 个界面的等效反射系数为 )1()1)(1(212221ξξξξξ---=-- n n n n (5) 考虑多次波及透射损失情况 )()(*)(t s t t b =ξ (1-4) 式中 )(t ξ——t 时刻并考虑多次波与以上各界面透射损失的等效反射系数。 图1—3为合成地震记录的示意图。利用合成地震记录,对地震剖面上的地质层位

前沿:海洋宽频带地震勘探新技术扫描

前沿:海洋宽频带地震勘探新技术扫描 文|吴志强 国土资源部海洋油气资源与环境地质重点实验室

1、概况 海洋地震勘探在海洋地质调查、油气藏勘探与开发中起到了无可替代的重要作用。随着勘探领域的不断拓展,地震勘探的难度越来越大。在深部地质调查和复杂构造、火山岩(或碳酸盐岩)屏蔽下的油气藏地震勘探中,为了获取目的层有效反射信号、实现精确成像,对地震数据采集的要求进一步提高,包括采集到低频、高频成分丰富的宽频带、高信噪比原始地震记录。地震信号中的低频信息具有穿透能力强、对深部目的层成像清晰的优势,同时也使地震反演处理结果更具稳定性。宽频带可产生更尖锐子波,为诸如薄层和地层圈闭等重要目标体的高分辨率成像提供全频带基础数据。 理论研究表明:当地震数据的频带宽度不低于两个倍频程时,才能保证获得较高精度的成像效果;频带越宽,地震成像处理的精度越高;增加低频分量的主要作用是减少子波旁瓣,降低地震资料解释的多解性,提高解释成果的精度。 图形象地展示了低频分量的重要性:高频分量丰富、但缺少低频分量的地震子波的主峰尖锐,却会产生子波旁瓣,使地震资料的精确解释变得困难且多解;高分辨率子波是在低频和高频两个方向都得到拓展的宽频带子波,这样子波的主峰尖锐、旁瓣少且能量低,能分辨厚度极小的薄层,地震解释的精度高。 现今地震资料反演处理大多是基于模型的地震反演,成功的关键是能否提取真实子波和建立精确的低频模型。常规地震数据中缺失低频信息,只能采用从测

井数据中提取低频分量再与地震数据反演的相对波阻抗合并处理方式得到绝对 波阻抗。 在目标地质体复杂、钻井少的探区,仅靠测井资料提取的低频分量难以反映复杂地质体横向变化,导致不精确或假的反演结果。为弥补该缺陷,一般采用从地震叠加速度提取低频分量方式,而叠加速度只能提供0~5Hz低频信息,无法弥补常规地震所缺少的0~10Hz低频分量。可见,地震数据中低频信息对保证地震岩性反演的精度意义重大。 然而,在海洋地震勘探中得到宽频带地震数据是比较困难的。 首先,在常规海洋地震数据采集中,电缆和气枪都要以固定深度沉放于海平面之下,以保证下传的激发能量最大化和降低接收环境噪声。 由于海平面是强反射界面,在激发和接收环节都会产生虚反射效应,从而压制了信号的低频和高频能量,并产生了陷波点,限制了地震勘探的频带宽度。例如,为了获得深部目的层有效反射信号,必须增加气枪阵列容量、加大沉放深度以得到穿透能力大、主频低的激发子波,并加大电缆沉放深度以减少对来自深部反射界面的低频反射信号的压制效应,由此带来的副作用是高频信号受到较大压制,降低了地震信号的频带宽度和分辨率。 在海洋高分辨率地震勘探中,一般采用较小气枪阵列容量和较浅沉放深度以得到高频成分丰富的激发子波,同时降低电缆沉放深度以降低接收环节对高频信号的压制效应,这样虽然提高了地震信号的频带宽度和视觉分辨率,但它是以牺牲低频信息和勘探深度为代价,处理后的成果数据缺少低频信息,给后续的反演处理带来较大困难。 勘探设备性能也限制海洋地震勘探获得宽频带地震数据的能力,电缆在移动时产生的机械和声波噪声掩盖了微弱的有效地震信号,降低了地震数据的频宽和信噪比,尤其是对高频段信号的影响幅度更大。到目前为止,常规海洋地震勘探中尚未找到完全有效压制虚反射效应的采集和处理方法。 近年来,针对海洋宽频带地震勘探面临的主要难题,在勘探设备方面进行了研发并取得重要进展。固体电缆的研制成功和工业化应用,有效地降低了电缆噪声,提高了对微弱高频信号的响应和记录能力;双检波器拖缆采集技术的发展与应用,压制了虚反射效应,拓宽了地震频带。 众所周知,气枪和电缆以一定深度沉放于海平面之下,海平面反射在上行波和下行波之间产生交互干涉的鬼波效应,对地震反射信号产生了压制和陷波作用,降低了原始地震资料的频带宽度。气枪和电缆沉放越深,对高频信号压制越大,越有利于低频信号;沉放越浅,对低频信号压制越大,越有利于高频信号。 为了压制虚反射效应,提高地震数据频带宽度,在海洋地震激发时借鉴陆上地震勘探压制虚反射的成功做法,开发了多层震源组合新技术代替传统的平面震源组合方式,激发地震子波的低频和高频分量都得到有效拓展和提升,因此其频带展宽、穿透能力增强。 在海洋地震信号接收环节,为有效削弱由海平面虚反射引起的陷波作用,利用电缆沉放深度的变化对不同频带的压制特性,采用上、下缆接收技术,既有效

地震数据处理解释技术发展研究

地震数据处理解释技术发展研究 地震数据处理解释是地震勘探的主要组成部分,是石油天然气勘探开发产业链中对油田勘探开发效益影响最大、技术含量最高的一环。…… 一、地震数据处理解释是地震勘探的主要组成部分 地震勘探就是通过人工地震反射波“给地球做CT”,让油气勘探者能够“看见”地层的地质构造和油藏情况,为石油公司“找油”做出含油气评价、提出钻井位置、模拟油藏未来的生产动态以便为后续油气藏开采和开发提供技术资料。 地震勘探包括地震采集、处理和解释三大部分:地震采集是利用野外地震采集系统获取地震数据处理所需的反射波数据;地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释;地震解释分为构造解释、地层解释,岩性和烃类检测解释及综合解释,目的是利用地震反射波的地质特征和意义确定井位寻找石油。地震数据处理依赖于地震采集数据的质量,处理结果直接影响解释的正确性和精确度和找油的成功率。 图1 地震勘探产业链构成 地震数据处理解释是地震勘探的主要组成部分,是石油天然气勘探开发产业链中对油田勘探开发效益影响最大、技术含量最高的一环。其原因有四:1、石油勘探地震数据处理解释与井位部署成功率、油田发现、油田采收率、油田增储上产等经济效益直接相关,是寻找油气资源的关键技术; 2、石油勘探技术发展的基础主要体现在地震数据处理环节中地震成像技术的发展;3、地震数据处理解释下游钻井业务等油气开采技术均十分成熟;4、上游地震数据采集依赖于先进的仪器设备,理论简单。综合而言,地震数据处理的质量和地震成像的准确度与清晰度直接决定油气资源的发现的成败和勘探成功率,是影响后期油田生产建设最重要的环节。 BP公司北海油田日产量与地震数据处理解释新技术的关系表明,新技术尤其是地震成像技术的发展和应用对于油田产量的增加影响极大。 图2 石油勘探地震数据处理解释技术对北海油田的产量的影响由此可见,地震数据处理解释是地震勘探的主要组成部分,其发展和技术进步对于解决人类能源供应问题具有十分重要的意义。 二、地震数据处理解释技术发展历程 地震数据处理解释技术中最核心的就是地震成像技术,因此地震数据处理解释技术的发展历程主要依据地震成像技术的发展水平进行划分。 地震数据处理解释最早出现于20世纪20年代初期。随后的40年间由于是对光点记录(1920—1950)和模拟记录(1950—1965)进行处理,在这一阶段地震处理解释技术发展缓慢,也没有可实用的地震成像技术出现。

物探新方法新技术--本科课程第一章

1地震模拟技术 在地震资料解释过程中,常常需要根据地震解释结果建立地层模型。这种模型是真实地层的简化,只考虑影响地震剖面的主要因素。制作模型的技术就是地震模拟技术,包括物理模拟和数学模拟。 地震模拟技术是指用物理模型和数学模型代替地下真实介质,用物理实验和数学计算模拟地震记录的形成过程,以得到理论地震记录的各种方法和技术。 地震模拟技术广泛应用于地震理论研究领域,并能够指导实际生产。 1.1物理模拟 物理模拟是用一些已知参数的介质做成一定几何形态的模型来模拟地下 地质结构,采用超声波模拟地震波,专用换能器模拟震源和检波器,将野外地震勘探过程在实验室内重现,得到理论地震记录的方法和技术。 物理模拟的优点是与实际情况接近,真实性和可比性高;缺点是模型制作和改变参数均困难、成本较高。 有些地质现象十分复杂,几乎不能用理论方法去解决,所以有时需要用缩小了的物理模型进行模拟,见图1—1。但是如果希望模拟结果真实可靠,模型必须从几何地震学、运动学和动力学各个方面都与所模拟的地质系统相似。 图1—1地震模拟槽为使物理模型观测到的波场特征与野外观测到的波场特征一致,要求模 型与被模拟系统具有几何相似性和物理相似性(运动学、动力学)。

几何相似性是指用相应的比例将地质模型缩小,各层的倾角与实际地层的 倾角相同,就可以满足物理模型与地质系统的几何相似性。如果长度方向缩小的 比例为「则面积缩小的比例就是2,体积缩小的比例就是3。 物理相似性则要求模型材料与地层介质的物性参数具有相似性,以便获 得与野外记录相似的运动学和动力学特征。运动学相似性考虑的是时间比.,需要模型在位置和形状上与实际地质体产生相似的响应,速度与加速度比分别为 ■ /.和7 ?2。动力学相似性考虑的是质量分布比,则密度比为■厂3。与维数 无关的参数(例如泊松比)必须与实际地质体在数学上相同。 例如可以建立一个用10cm表示1km的模型,则模型的长度比例为鑿=10*。实际上,所用的模型材料限制了地震速度,模型与真实地层的速度比只能限制在一个很小的范围内,即"。由于已经选择了「所以只能限制.。如果模型材料与真实地质体具有相同的速度,即? =10*,则所使用的震源频率就是实际勘探中所使用的震源频率的104倍(频率比等于1/ )0制作模型的材料密度与实际地质体的密度基本相同,由于密度比」厂3=1,所以质量比为丿=10J20 图1 —2为美国Geoquest公司利用物理模拟手段证明菲涅尔带的影响,其中道间距为85m,主频为30Hz,菲涅尔带半径为280m。图1 —2(a)为地质模型,图1— 2(b)为沿测线A在箱型构造上方的地震记录,图1—2(c)为沿测线B离箱型构造150 m 处的地震记录。补充:French三维模型试验 1.2合成地震记录 制作合成地震记录的假设条件是: (1)地下介质是水平层状的,无岩性横向变化,各层间密度变化不大,均可视为常数; (2)地震子波以平面波形式垂直向下入射到界面,各层反射波的波形与子波 波形相同,只是振幅和极性不同; (3)所有波的转换、吸收、绕射等能量损失均不考虑。 - 1500m >4------- \209tn

海底地震勘探最新方法与技术发展

海底地震勘探最新方法与技术发展 摘要:随着深海耐压材料工艺的突破和海上高分辨精细地震勘探技术的发展,底地震勘探方法逐渐成为热点。一方面,海上三维地震勘探方法逐渐向四维发展,在海上布设漂缆数量越来越多的同时,海底电缆或检波器也被应用到海上复杂油气区块的精细调查中去;另一方面,新能源研究与深水油气技术的突破,同样需要高频与低频型海底地震仪器。本文讲述目前国际上海底地震勘探新方法与仪器设备的发展和我国在海底地震勘探领域的研究状况。 关键词:海底地震仪;横波勘探;四维地震;精确时间计时;精准布设DOI:10.3772/j.issn.1009-5659.2010.06.003上个世纪地震勘探发展过程中,海底地震勘探方法 是以横波信息接收分析,作为观测天然地震,研究海底演变以及作为海上拖缆地震的补充而出现和发展的。由于横波(S波) 不能在液体中传播,因而只接收到了纵波的反射与折射信息。海底地震仪器的出现,检波器放置于海底,与海底耦合,可以接收到横波或者转换横波信息。随着电子科学、材料科学的发展进步,海底地震勘探仪器设备的性能得到了很大的提升;同时,全世界对能源需求和依赖进一步提高,海上油气资源勘探难度逐步加大,海底新型能源的开发利用步伐加快,海底地震勘探技术方法正逐渐成熟,已成为海底深部构造研究、海上四维油气勘探、天然气水合物勘探研究必不可少的手段。 1 海底地震勘探技术简介 海底地震勘探技术是海上地震勘探技术的一种,同样有震源和采集器组成。海底地震勘探技术大都采用非炸药震源(以空气枪为主),震源漂浮在接近海面,有海上调查船拖曳;采集器陈放到海底来接收震源发出,经过海底底层反射的纵横波信号。其特点是在水中激发,水中接收,激发、接收条件均一,可进行不停船的连续观测。检波器最初使用压电检波器,现在发展到压电与振速检波器组合使用。海底地震勘探技术又可分为海底电缆勘探技术(OCEAN BOTTOM CABLE,以下简称OBC)和海底地震仪勘探技术(OCEAN BOTTOMSEISMOMETER,以下简称OBS)。OBC技术是将采集电缆沉入海底,调查船拖曳震源在海面上放炮的方法 OBS勘探技术是将海底地震仪陈放到海底,调查船拖曳震源在海面上放炮的方法。 OBC的优点是:全波场采集;成像效果更好、地层层次清楚、形态可靠;消除鬼波影响,环境噪音低。但技术应用难度大、成本高,应用于海上油田储油区扩展调查等快速收回投资的项目;OBS技术是由研究海底天然地震发展起来,它的特点是:广方位角、全波接收,现在逐渐应用于海底石油勘探和新能源勘探开发。 2 近年来国际海底勘探技术发展 20世纪60年代,美国军方为观测海底核试验位置而研制了世界上第一台海底地震仪,由陆地检波器电缆发展而来的浅水底电缆引用于陆上浅水区和海上滩涂区地震油气勘探。60年代末,西方国家海洋计划开始实施,研究海洋地壳地幔结构、板块俯冲带,海沟海槽演化动力学等课题,研制出功能多样、先进、广泛应用到海洋地球科学研究中的海底地震仪。通过海底地震仪长期定点的至于海洋深处,接收天然地震或对人工触发的地震波的观测,科学家们对大洋中脊和海沟俯冲带地壳结构有了新的认识,发现快速扩张的洋中脊与慢速扩张的洋中脊结构的不同。同时,海底地震仪也用于研究天然地震的地震层析成像以及地震活动和地震预报等。随着工业化的迅猛发展,西方主要经济体对石油需求加大,更精确的油气勘探调查也向更精确和深海方向发展。设计成高分辨率、广方位角、全波接收的海底地震仪被应用到,海上油田储油目标区块的精细调查和深海油气调查中。美国、日本等国家近年来将海底地震仪应用到了新型能源——天然气水合物的调查研究当中。随即,欧盟国家德国、法国、挪威、意大利等也相继推出了新型的海底地震仪产品,并开始走

地震勘探技术新进展_杨勤勇

第25卷第1期2002年2月 勘探地球物理进展 Progress in Exploration Geophysics Vol.25,No.1 Feb.2002地震勘探技术新进展 杨勤勇1徐丽萍2 (1.中国石化石油勘探开发研究院南京石油物探研究所,江苏南京210014; 2.西北石油局规划设计研究院,乌鲁木齐830011) 摘要:近几年来,地震勘探技术得到了很大的发展。超万道地震仪的投入使用,以及优化采集设计技术的发展,有效地提高了采集效率和资料质量;叠前深度偏移技术使复杂构造的成像更为清晰;3D可视化技术和虚拟现实技术大大提高了地震解释的能力、精度和速度;地震属性技术的发展把地震解释向定量化解释推进了一步;井中地震技术、多波多分量地震技术以及时延地震技术的发展,有力地增强了油气静态描述和动态监测的能力;复杂介质中地震波传播规律的研究向传统的层状介质理论发起了冲击。 关键词:可视化;虚拟现实;地震属性;成像;井中地震;VSP;多分量;时延地震 中图分类号:TE132.1+1文献标识码:A 地震勘探是利用地层岩石的弹性特性来研究地下地质结构,推断岩体物性,预测油气的一种勘查方法。几十年来,地震勘探以其高信噪比、高分辨率、高保真度、高精确度、高清晰度和高可信度等赢得了广大用户的信任,成为找油找气的关键技术。在油气勘探开发中,应用地震勘探已有效地解决了一系列复杂的地质问题,在各种复杂构造油气藏和隐蔽油气藏的勘查方面取得了重大成果,给油气公司带来了可观的经济效益。 近几年来,以PC计算机群大规模投入使用,可视化、虚拟现实、网络技术飞速发展为标志,以高分辨率地震、3D地震为代表,以4D地震、井中地震、多波多分量地震为发展前沿的地震勘探技术正跃上新的台阶,高密度采集和3D空间成像归位技术以其精确、灵活显示等优点,在国内外已卓有成效地用于查明各种复杂构造油气藏和隐蔽油气藏。 1主要进展 1.13D可视化技术[1~4] 可视化技术是把描述物理现象的数据转化为图形、图像,并运用颜色、透视、动画和观察视点的实时改变等视觉表现形式,使人们能够观察到不可见的对象,洞察事物内部结构。方法包括以图形为基础(或称为面可视化)和以体素为基础(体可视化)的可视化。在以体素为基础的体可视化中,每一个数据采样点被转换成一个体素(一个3D象素的大小近似于面元间隔和采样间隔)。每一个体素有一个对应于源3D数据体的值,一个RGB(红色、绿色、蓝色)色彩值以及可被用来标定数据透明度的暗度变量。 多年来,许多公司致力于地学可视化应用软件的开发,取得了可喜的成果。在3D图形工作站环境支持下,各种基于数据体操作、图素提取与曲面造型、体绘制技术的应用软件相继出现,它们基本上代表了当今综合解释工作站3D可视化软件功能的发展水平(见表1)。 表1有代表性的可视化解释处理软件 公司软件 Landmark 3DVI(3D体积解释) Voxcube(3D立体动画) Geoquest GeoViz(交互3D解释) Paradigm Voxel Geo(真3D地震解释系统) DGI Earth Vision (基于3D空间地质建模) Photo3DViz(3D体可视化) 体可视化允许解释人员直接进行地层解释,识别地震相,改进油藏特征描述。它通过数据的3D 立体显示,使解释人员能够作构造、断层、地层沉积、岩性、储集参数和油气等的交互解释。解释结果在三度空间内立体显示,可以激发资料处理解释人员的科学灵感,赋予他们无限的想像空间与创造力,极大地提高了工作效率和工作质量。 1.2虚拟现实技术 虚拟现实(Virtual Reality,简写为VR)是一种 收稿日期:2001-12-31 作者简介:杨勤勇(1964-),高级工程师,1985年毕业于中国地质大学物探系,现从事情报研究。

浅谈页岩气地震勘探技术_王万合

科技·探索·争鸣 科技视界 Science &Technology Vision Science &Technology Vision 科技视界0序言 页岩气是指以吸附、游离或溶解状态赋存于泥页岩中的天然气,其特点是页岩既是源岩,又是储层和封盖层。在埋藏温度升高或有细菌侵入时,泥页岩中的有机质,甚至包括已生成的液态烃,就裂解或降解成气态烃,游离于基质孔隙和裂缝中,或吸附于有机质和黏土矿物表面,在一定地质条件下就近聚集,形成页岩气藏[1]。页岩气作为一种非常规天然气资源,已经越来越得到各国的重视。 1地震勘探技术 目前,国内已陆续开展了部分地区的页岩气地震勘探试验,如对施工观测系统选择的试验等,获得了一些原始地震数据以及时间剖面,根据剖面相位、波组特征分析,取得了一些有价值的结论。就页岩气地震勘探而言,若想解决好反射波(组)与页岩层段之间的相互关系,并为井位布设和后期进一步的勘探开发提供科学依据,笔者认为应从以下几个方面的进行研究。1.1构造情况 对于页岩,其本身即是生气场所也是重要的盖层,在构造转折带、地应力相对集中带以及褶皱-断裂发育带,通常是页岩气富集的重要场所。在这些地区,裂缝发育程度较高,能够为页岩气提供大量的储集空间。成藏之后发生的构造运动也能诱发页岩裂缝的发育,也有利于页岩气的富集,但这可能会破坏页岩本身作为盖层的部分[2],若是通过运移机制进入页岩外部的储集层,则外部储集层构造特征的研究也十分重要。地震勘探技术以物性差异(波阻抗差异)为基础,是一种探测构造最有效、经济的地球物理方法。因此,通过地震勘探技术探明勘探区内的构造情况,再根据页岩气的沉积储层预测,可有效获得区内页岩气有利区。1.2储层标定 储层的标定是确定页岩层段的主要手段,但前提是勘探区内必须有已知的页岩气勘探孔,通过钻井揭露的页岩层段情况,结合地震反射波组特征,对地质主要层位进行标定,从而获得区内不同时代地层反射波(组)特征,根据该特征可实现对全区页岩层段的波组追踪,从而为后期确定储层的厚度、埋深及属性提取研究提供了坚实的基础。1.3厚度预测 厚度预测是页岩气勘探孔位选定及页岩气储量预测的基础,同时,更要注重优质页岩的厚度预测,因为优质页岩是页岩气赋存的主要载体,优质页岩与普通泥页岩的差别主要表现在自然伽马曲线上,虽然优质页岩速度并不一定比普通页岩层低,但是它的自然伽马数值要比普通泥页岩高,利用此特征,通过拟声波曲线重构,重构的曲线具有低频声波及高频自然伽马信息,它能够对优质页岩层进行很好的预测[3]。 1.4埋深计算 根据合成记录结果确定的目标层位,对地震数据进行连续追踪,获得页岩气储层的全区时间场,利用钻孔反算的速度及叠加速度值,可获得区内近似的平均速度场,通过网格化数据,利用时深转换公式:储层埋深=时深转换深度-(基准面-地震测量高程),可获得区内储层埋深等值线,为钻孔的布设及后期勘探、开发提供科学依据。1.5地震多属性提取技术研究 地震数据体中含有丰富的地质信息,如果有效提取、优选敏感信息对页岩气藏进行预测,是页岩气地震勘探成功的关键一环,页岩的孔隙度、泊松比等在常规地震时间剖面上可能无法反映,但通过地震波属性提取,建立页岩的孔隙度等与地震属性的相互关系,提取相关信息,可较好的解决页岩气的丰度等重要信息,以往多事利用某一相对敏感性属性信息进行解释,现如今已是结合了地质模型正演、地质统计学、函数逼近、神经网络、统计模式识别、模糊模式识别等数学方法综合预测,为提高储层预测的可靠性提供了更多的途径。1.6“甜点”预测 页岩气地震勘探的主要目的就是寻找页岩气勘探开发的有利区域———“甜点”,为井位部署和开发方案的制订提供科学依据,通过区域内构造的分布情况、页岩气储层的厚度及埋深、多属性优选、分析和提取技术,按照埋深介于1000~3000m 范围、构造相对简单、优质页岩厚度大于30m 的原则,最终可获得“甜点”的分布规律,为目标区块井位的部署及开展其它相关工作提供了较为全面、详实的数据[3]。 2结论 页岩气作为一种非常规能源,是一种近源岩、“自生自储自盖型”油气藏,其成气、运移和储集过程复杂,成藏模式多样化。 地震勘探因其高效、经济,是常规能源勘探的重要手段,通过对地震波场的进一步的认识,建立地震波场与页岩气藏之间的相互关系,也必将在页岩气勘探领域内大显身手。 通过地震勘探在页岩区域内构造、储层的厚度及埋深、敏感属性与页岩气的相关性等研究,可获得较为可靠的页岩气“甜点”区,为下一步页岩气的钻井布设、勘探、开发提供科学依据。【参考文献】 [1]郭思刚,梁国伟.大方地区页岩气采集参数试验分析[J].油气藏评价与开发, 2011,1(5):71-75. [2]邢恩袁,庞雄奇,欧阳学成,等.浅析页岩气成藏模式[C]//第五届油气成藏机理与油气资源评价国际学术研讨会论文集.2009:914-919. [3]李志荣,邓小江,杨晓,等.四川盆地南部页岩气地震勘探新进展[J].天然气工业,2011,31(4):40-43. [责任编辑:庞修平] S ※基金项目:中煤科工集团青年科技创新基金项目(2013XAYFX004)。 作者简介:王万合(1981—),男,汉族,安徽蒙城人,2007年毕业于中国地质大学〈武汉〉地球探测与信息技术专业,硕士,中煤科工集团西安研究院有限公司,工程师,从事煤田地质勘探、非常规气藏勘探研究及城市活断层探测工作。 浅谈页岩气地震勘探技术 王万合 (中煤科工集团西安研究院有限公司,陕西西安710077) 【摘要】本文讲述了对页岩气的基本认识,提出了页岩气地震勘探勘探应着重解决的几个方面,即寻找页岩区构造,储层标定,页岩的厚度预测和埋深计算,并对页岩气敏感属性进行优选、分析和提取,获得页岩气藏与地震数据体间的相互关系,从而实现对页岩气“甜点”的预测。 【关键词】页岩气;地震勘探;甜点 A Brief Talk about the Technology of Seismic Exploration on Shale Gas WANG Wan-he (Xi ’an Research Institute,China Coal Technology and Engineering Group Corp.,Xi ’an Shaanxi 710077,China ) 【Abstract 】This article tells us basic understanding about shale gas ,and proposes us several aspects should be focused on about the technology of seismic exploration in shale gas,that is structure for shale area,reservoir calibration,the thickness forecast and depth calculation,optimalizes,analyses,and extracts sensitive properties about shale gas.Then obtains the relationship between seismic data volume and shale gas reservoirs,So as to achieve the prediction of “The dessert ”on shale gas. 【Key words 】Shale gas;Seismic exploration;The dessert 项目与课题 58

地震勘探发展史

地震勘探发展史 利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法叫作地震勘探。地震勘探是钻探前勘测石油与天然气资源的重要手段。 地震勘探起始于19世纪中叶 1845年,R.马利特曾用人工激发的地震波来测量弹性波在地壳中的传播速度。 1913年前后R.费森登发明反射法地震勘探。 1921年,J.C.卡彻将反射法地震勘探投入实际应用。 1930年,通过反射法地震勘探工作,在该地区发现了3个油田。从此,反射法进入了工业应用的阶段。 20世纪早期德国L.明特罗普发现折射法地震勘探。 20世纪30年代,苏联Г。А。甘布尔采夫等吸收了反射法的记录技术,对折射法作了相应的改进。 20世纪50~60年代,反射法的光点照相记录方式被模拟磁带记录方式所代替,从而可选用不同因素进行多次回放,提高了记录质量。 20世纪70年代,模拟磁带记录又为数字磁带记录所取代,形成了以高速数字计算机为基础的数字记录、多次覆盖技术、地震数据处理技术相互结合的完整技术系统,大大提高了记录精度和解决地质问题的能力。 从20世纪70年代初期开始,采用地震勘探方法研究岩性和岩石孔隙所含流体成分。

我国的地震勘探发展 1955年,我国煤炭工业上开始采用地震勘探技术,并在华东组建了全国第一支地震勘探队伍。 1971年,由煤炭科学研究总院西安分院、渭南煤矿专用设备厂研制成功MD-1型半导体磁带记录地震仪,这是我国第一套自行设计制造的煤田地震勘探仪器,并在国内煤田地震队中推广应用。 1979年我国打破了西方国家的技术封锁,成功研制出MDS-1型数字地震仪,对数字地震勘探起到了很大的推动作用。 1984~1985年,随着对外改革开放政策的实施,我国煤田地震勘探队伍开始从国外引进21套以DFS-V和SN338为主的数字地震仪,同时引进了以IBM-4381为主机的地震数据处理系统。 1978年,中国煤田地质总局在伊敏河矿区开展煤田三维地震勘探技术前提性研究。 1989年、1993年山东煤田物探队与煤炭科学研究总院西安分院利用小型数字地震仪进行三维地震勘探技术的试验研究。 1994年,由中国矿业大学和安徽煤田物探测量队联合开展的“煤矿采区高分辨率三维地震技术”研究项目,在安徽淮南矿务局谢桥煤矿采区地震勘探中首次在采区地质勘探中查明了落差大于5m以上的断层(参见图2),取得了重大的技术突破。 参考文献 百度百科 煤炭网《地震勘探技术的回顾与发展》

浅谈三维地震勘探技术

龙源期刊网 https://www.360docs.net/doc/9c17254867.html, 浅谈三维地震勘探技术 作者:刘鹏飞 来源:《科学与财富》2018年第12期 摘要:三维地震勘探技术是地球物理勘探的一种方法。三维地震勘探技术的基础是二维地震勘探技术,比二维地震勘探得到的数据更精准,更具有空间立体性,但是对于勘探环境也有更高的要求。本文简要论述了三维勘探技术的采集流程,采集环境要求和数据分析方法,并根据三维地震勘探技术的优点提出三维勘探技术的应用前景,在应用于油田煤矿的基础上延伸应用到学术性的地震勘探领域,为三维勘探技术的应用提供理论分析依据。 关键词:三维技术,地震勘探,地震技术 前言:三维地震勘探技术不是指预测地震的发生的技术,而是利用地震波的波长和波形特点对于地下地质和岩层的情况进行数字化分析。目前三维地震勘探技术广泛应用于煤矿油田的开采地点确定和开采环境分析。本研究根据三维地震勘测技术应用的基本要素提出三维地震勘测技术的其他应用,为三维地震勘测技术的发展提供科学依据。 1.三维地震勘探技术的基本要素 1.1勘测地点的地势环境要求 三维地震勘探技术对于勘测地形有着严格的要求,才能得到更精准的数据,野外地势环境对于勘测过程和勘测结果的影响非常大。勘测地点要远离附近有其他磁场或者地震波的区域,保证实验收集的数据没有其他误差的干扰。三维地震勘测的原理就是利用爆破后产生的声波信息进行数据收集和分析,如果周围还有其他声波的影响,将会严重影响到数据的准确。在其他误差排除之后还要保证地质条件符合要求,施工地点通常地形环境复杂,种类也是多种多样,但一般分为岩石区和黄土区。三维地震勘测需要在勘测区域钻孔,方便埋线和声波收集设备,对于不同的地形要进行不同的处理方法。岩石区采用风钻将岩石震碎,坚硬的岩石层变成粉末之后就可以继续打孔进行填埋工作。黄土区地表松软不需要处理岩石直接打钻即可进行填埋工作。除了钻孔工具还可以人工钻孔,利用钢柱对地表进行钻孔处理。三维地震勘测对于地势环境要求严格,但是在实际操作中不可能每次都遇到完全符合要求的地形,因此要利用一定的工具和处理方法改善不同的环境。 1.2实施三维勘探技术的流程 对环境处理保证在野外环境符合要求之后,就可以进行三维地震勘测了。三维地震勘测技术的的实施流程包括确定勘测地点,选择合适的勘测仪器和数据收集方法,建立地震勘探面的特点网格,根据不同地表层确定炮检距。勘测地点钻孔处理中后先埋检测仪器在埋电源线,然后再合适的距离以外钻浅井埋炸药作为声源,利用声波收集仪器采集数据并记录。选择地震面

相关文档
最新文档