地震勘探技术新进展_杨勤勇

地震勘探技术新进展_杨勤勇
地震勘探技术新进展_杨勤勇

第25卷第1期2002年2月

勘探地球物理进展

Progress in Exploration Geophysics

Vol.25,No.1

Feb.2002地震勘探技术新进展

杨勤勇1徐丽萍2

(1.中国石化石油勘探开发研究院南京石油物探研究所,江苏南京210014;

2.西北石油局规划设计研究院,乌鲁木齐830011)

摘要:近几年来,地震勘探技术得到了很大的发展。超万道地震仪的投入使用,以及优化采集设计技术的发展,有效地提高了采集效率和资料质量;叠前深度偏移技术使复杂构造的成像更为清晰;3D可视化技术和虚拟现实技术大大提高了地震解释的能力、精度和速度;地震属性技术的发展把地震解释向定量化解释推进了一步;井中地震技术、多波多分量地震技术以及时延地震技术的发展,有力地增强了油气静态描述和动态监测的能力;复杂介质中地震波传播规律的研究向传统的层状介质理论发起了冲击。

关键词:可视化;虚拟现实;地震属性;成像;井中地震;VSP;多分量;时延地震

中图分类号:TE132.1+1文献标识码:A

地震勘探是利用地层岩石的弹性特性来研究地下地质结构,推断岩体物性,预测油气的一种勘查方法。几十年来,地震勘探以其高信噪比、高分辨率、高保真度、高精确度、高清晰度和高可信度等赢得了广大用户的信任,成为找油找气的关键技术。在油气勘探开发中,应用地震勘探已有效地解决了一系列复杂的地质问题,在各种复杂构造油气藏和隐蔽油气藏的勘查方面取得了重大成果,给油气公司带来了可观的经济效益。

近几年来,以PC计算机群大规模投入使用,可视化、虚拟现实、网络技术飞速发展为标志,以高分辨率地震、3D地震为代表,以4D地震、井中地震、多波多分量地震为发展前沿的地震勘探技术正跃上新的台阶,高密度采集和3D空间成像归位技术以其精确、灵活显示等优点,在国内外已卓有成效地用于查明各种复杂构造油气藏和隐蔽油气藏。

1主要进展

1.13D可视化技术[1~4]

可视化技术是把描述物理现象的数据转化为图形、图像,并运用颜色、透视、动画和观察视点的实时改变等视觉表现形式,使人们能够观察到不可见的对象,洞察事物内部结构。方法包括以图形为基础(或称为面可视化)和以体素为基础(体可视化)的可视化。在以体素为基础的体可视化中,每一个数据采样点被转换成一个体素(一个3D象素的大小近似于面元间隔和采样间隔)。每一个体素有一个对应于源3D数据体的值,一个RGB(红色、绿色、蓝色)色彩值以及可被用来标定数据透明度的暗度变量。

多年来,许多公司致力于地学可视化应用软件的开发,取得了可喜的成果。在3D图形工作站环境支持下,各种基于数据体操作、图素提取与曲面造型、体绘制技术的应用软件相继出现,它们基本上代表了当今综合解释工作站3D可视化软件功能的发展水平(见表1)。

表1有代表性的可视化解释处理软件

公司软件

Landmark

3DVI(3D体积解释)

Voxcube(3D立体动画)

Geoquest GeoViz(交互3D解释)

Paradigm Voxel Geo(真3D地震解释系统)

DGI

Earth Vision

(基于3D空间地质建模)

Photo3DViz(3D体可视化)

体可视化允许解释人员直接进行地层解释,识别地震相,改进油藏特征描述。它通过数据的3D 立体显示,使解释人员能够作构造、断层、地层沉积、岩性、储集参数和油气等的交互解释。解释结果在三度空间内立体显示,可以激发资料处理解释人员的科学灵感,赋予他们无限的想像空间与创造力,极大地提高了工作效率和工作质量。

1.2虚拟现实技术

虚拟现实(Virtual Reality,简写为VR)是一种

收稿日期:2001-12-31

作者简介:杨勤勇(1964-),高级工程师,1985年毕业于中国地质大学物探系,现从事情报研究。

新型的3D解释环境,是一种能响应用户指令、实时3D绘图并营造一种让用户有沉浸感的显示环境。系统一般要求首先输入有关的石油数据,其中包括3D地震数据、解释后的层位和断层、地质模型、钻井轨迹、测井曲线、油藏网格化数据等。然后进行预处理,将原始数据格式转化为适宜实时绘制的形式,同时转换到公共坐标系上。预处理包括空间细分、简化和合成,建立多种分辨率的几何模型,建立适合快速绘制的图形基本单元,图像处理和体数据压缩,可视化参数(颜色、透明度等)编辑等。通过预处理后的数据称为VR数据,这种数据能够得到快速的响应。针对这种VR数据,利用VR工具、显示技术和人机接口技术等,就可以在虚拟现实环境中作各种分析和决策。

从近二年SEG演示报告现场和各方面的报导来看,国外有许多石油公司和研究机构都在开发和建立用于油气勘探和开发的虚拟现实系统。例如, ARCO公司和Norsk Hydro公司开发建立了沉浸式虚拟现实系统,Texaco公司开发建立了虚拟现实可视厅,Alternate Realities股份有限公司开发建立了可视穹(VisionDome),美国SGI公司建立了一个专门的演示厅,IB M公司开发建立了可以用来再现4D地震油藏模拟现实的虚拟现实系统,斯仑贝谢的Geo Quest公司等目前也在开发虚拟现实系统等。

目前的虚拟现实技术主要是针对油藏模拟、钻井轨迹设计以及地震解释而开发的,也就是说主要应用于钻井轨迹设计以及油藏模拟等方面。

1.3地震属性技术[1~4]

地震解释人员的主要目标就是从地震数据中提取越来越多的信息,然后利用这些信息解释地下构造、地层和岩性特征,最终定义精确的油藏模型,用于钻井决策、估计地质储量和可采储量。由于生成地震属性是获取所需信息的一条重要捷径,因此,长期以来地震属性技术一直是地震特殊处理和解释的主要研究内容。从60年代的直接烃类检测、亮点,到70年代的瞬时属性或复数道分析,80年代的多属性分析,直至90年代的多维属性(如倾角、方位和相干等)分析,地震属性的发展经历了几起几落,目前已逐渐走向成熟。通过近几年的发展,地震属性技术已经成为油藏地球物理的核心部分,在勘探地震与开发地震之间起到了桥梁作用,成为解释的重头戏。

从地震数据中提取的地震属性越来越丰富,有关时间、振幅、频率、吸收衰减等方面的地震属性已多达60多种,包括了运动学和动力学属性,几何属性以及物理属性等。新的属性还在不断涌现。人们除了仍按传统方法从频谱、自相关函数、复数道分析以及通过线性预测等方法中提取属性外,近年来还采用分形、小波变换等方法从数据时窗中提取属性。大量新属性的出现,引起了多属性联合分析(用聚类、神经网络或协方差等方法)的流行,而地震属性的分类学又使这项技术上了一个新的台阶。

3D地震已经使地震数据量增加了几个量级。当代强大的运算能力、交互工作站以及先进的可视化解释技术,为人们提取和分析3D地震属性并进行储层表征提供了条件,将3D地震解释向定量化方向推进了一步。

1.4深度域成像技术[5,6]

近几年地震深度域成像技术在国内外得到了迅猛发展。在方法理论研究方面,国外以美国斯坦福大学为代表的一批地球物理学家在Kirchhoff积分法、共方位角波动方程深度偏移成像及炮域的波动方程深度偏移成像方面取得了一批重要成果;国内以同济大学为首的一批地球物理学家系统地研究了Kirchhoff积分法、波动方程有限差分法及广义屏深度偏移成像方法,其研究成果达到了国际先进水平;成都理工学院在与地震成像密切相关的静校正方面做了很多工作,取得了一批实用的研究成果。

近几年,各大地球物理服务公司加紧实施地震深度成像成果的产品化。具有代表性的公司有美国加州大学吴如山教授领导的模拟和成像实验室,以色列的Paradigm公司,美国的ADS公司,美国的Landmark公司以及法国的CGG公司等。且地球物理服务公司正由销售地震成像软件向提供地震资料处理服务方向发展。

随着地震勘探的不断深入和研究的构造日趋复杂,人们提出了许多改进后的成像方案。最初建议采用D MO加叠后偏移的方法解决速度依赖倾角的问题,但由于速度的求取与成像脱节,因此在剧烈横向速度变化的区域,如盐丘、逆掩断层带、古潜山等,该偏移方法往往造成成像位置不准确,甚至出现虚假构造。于是,人们纷纷把目光转向叠前深度偏移成像,特别是基于速度模型的叠前深度偏移成像。叠前深度偏移成像克服了水平叠加速度不准确引起的部分误差,使得地震成像精度大大提高,但由于叠前深度偏移过程中的数据及计算量巨大,受计算环境的限制,因此它是随着计算机技术的发展而发展起来的。叠前深度偏移成像的发展大致可分为三个阶段:第一个阶段是计算量相对较

6勘探地球物理进展第25卷

小,易于实现的Kirchhoff积分偏移成像。该方法的实现曾在地震勘探界掀起一股叠前深度偏移热,它极大地推动了叠前深度偏移的发展。但由于Kirchhoff积分法是对波动方程的一种高频近似,其缺陷是无法解决在对复杂模型的射线追踪过程中出现的多路径或者出现射线无法照射的盲区等问题。这时许多基于波动方程的叠前深度偏移方法应运而生。时间)空间域(或频率)空间域)的有限差分深度偏移成像方法,频率)波数域和频率)空间域的各种广义深度偏移成像方法的出现,标志叠前深度偏移已发展到第二阶段。理论和实践都已证明,在复杂构造地区基于波动方程的叠前深度偏移成像方法要比基于几何射线理论的Kirchhoff 积分深度偏移成像方法成像效果好,但目前要解决的问题是如何减少波动方程深度偏移成像过程中的巨大计算量,提高计算效率。面炮技术在这方面作了一些探索。前面所述的深度偏移成像方法都是基于声波层状介质,是一种波动方程近似偏移成像方法。在第三阶段,深度偏移成像方法研究的将是全三维叠前弹性波波动方程深度偏移,实现真介质(离散介质)的深度偏移成像,地下构造的成像精度将会极大提高。

随着深度偏移成像方法的发展,其速度模型建立和速度模型修改也得到了巨大的发展。从最初采用DIX公式将叠加速度转换为层速度,发展到采用相干反演以及层析成像等手段获得层速度,使建立的速度模型的精度和可信度大为提高。最科学的建立速度模型的方法是采用神经网络法等手段并在建立速度模型过程中充分利用其它地球物理信息及地质信息。

1.5井中地震技术[1~4]

井中地震(Borehole Seismology)技术目前没有严格的定义,国外通常把凡是使用检波器、震源和井的测量技术都归于此类。其中,VSP测量技术已商业化生产多年;井间地震技术在美国已进入商业化生产,其他国家仍在发展和向实用性转化的过程中;其他大部分技术仍处于研究阶段。

将接收系统或激发系统置于井中,减少了地表浅层低速带对地震波高频信号衰减的影响。对于VSP测量,浅层影响一般是单程的,而井间地震测量通常不存在这种影响,因此接收的地震波信号比地面地震有更高的分辨率。此外,由于井中接收点(或激发点)可以精确深度定位,接收(或激发)装置更接近于目的层,使得在地震波速度分析、深度偏移成像甚至是地震属性分析等方面具有自身的特色,能在其探测范围内弥补地面地震成果的不足,并能校正和丰富地面地震成果。

井中地震应用最多的是VSP测量,零井源距测量应用最广,但应用领域非常窄。非零井源距测量也得到一定的应用,但效果不突出。井间地震测量在油田开发领域面临的最大问题是效益问题。油藏工程师认可井间地震技术的成果并用于解决一定的开发问题,但不能容忍其测量占用生产井的时间太长。究其原因,可归结为该项技术在采集、处理和解释三个方面的工作和研究仍不完善。可以认为,主要影响其发展的技术瓶颈是其中的采集技术,而采集技术的发展则受到了井下仪器设备的制约。因此,近几年井下地震信号接收系统的研究一直伴随和影响着VSP和井间地震等测量技术的发展。国外不少地震仪器生产厂家(OYO GeoSpace、C GG Sercel、I/O-P/GSI和OYO Japan等)和国内的西安石油仪器总厂在井下接收系统的研制方面取得重大进展,其中已有数家推出商业化的井下多级多分量接收系统。

井下多级多分量接收系统的研制成功,大大提高了井中地震技术的采集效率,降低了生产成本,快速地推动了该行业的发展。特别是VSP测量技术,采集出现了前所未有的方法更新,推动了处理和解释的研究步伐,提高了技术的应用范围和效果,带来了更广阔的市场。目前在VSP测量的生产应用中,使用最多的井下多级接收系统为法国C GG生产的SST-500,该系统由12级四分量接收(共48道)组成。

1.5.1VSP技术

常规的VSP测量包括零井源距和非零井源距两种。零井源距的测量结果主要用于地震剖面的层位标定和速度分析;非零井源距的测量结果多数是通过VSP)CDP转换对井附近区域成像,用于地面地震资料的辅助解释。

在采集技术方面,主要是在非零井源距测量的基础上采用沿2D测线放炮测量的变井源距(Walk-away和Walkabove等)观测方式、沿井口周围一定偏移距放炮测量的Walkaroud环形观测方式、以及按地面3D地震放炮测量的3D观测方式。这些观测方式无需投入很大成本,却能采集更多的数据,较大程度地改善VSP的成像范围和效果,解决更为复杂的地质问题。

1.5.2井间地震技术

关于井间地震技术是否值得发展的争论似乎逐渐明朗,因为井间地震有着许多优势,诸如分辨

7

第1期杨勤勇.地震勘探技术新进展

率比地面地震高得多,能识别井间的薄砂体,能分辨井间的油水层等。目前的主要问题是如何加快科研成果向实用转化的步伐,其中迫切需要解决的是应用该项技术的经济效益问题。据统计,近几年美国SEG年会每年都有不少论文介绍关于井间地震技术的科研和应用成果。最近资料表明,美国的一些大油田一直雇用专业公司进行油藏管理阶段的井间地震测量。井间地震技术之所以目前能比较顺利地向应用转化,主要得益于近几年来井下设备的快速发展,从而保证高速高效地采集施工。尽管近一二年介绍井间地震技术的论文不多,但主要研究内容均偏重于应用方面,这与原来偏重算法研究有所不同。从近几年所发表的论文看,内容主要包括利用井间地震资料估算储层岩石的孔隙度和渗透率、岩石的各向异性分析及应用导波检测气层等。

1.6多分量地震技术[7]

在多分量勘探技术发展中,各向异性介质转换波的成像技术是近几年研究开发的重点,是解决复杂地质、构造成像、油藏描述问题的关键所在。利用横波分裂可以预测裂缝性各向异性;利用转换波成像,可以改善P波剖面成像受气云的影响,可以对高速玄武岩覆盖区下方的油藏进行成像。许多专家预测,多分量地震是未来地震勘探向前发展的核心技术之一。

在各向异性介质转换波成像方面,近几年提出了转换波极化各向异性动校正参数法、双曲型的转换波时差、参数估算、井中微分模型射线追踪校正,此外还提出了各向异性介质转换波的叠前偏移,包括横各向同性介质的P)S波叠前偏移和速度分析方法,以及各向同性、各向异性的速度分析。

最小熵旋转法是转换波数据处理中一种新的横波分离技术。横波分离分析是希望获得较准确的储层属性的关键步骤,并且可以直接给出各向异性的方位和强度。

1.7时延(4D)地震技术[8]

时延地震包括时延3D地震、时延2D地震、时延VSP和时延井间地震等,其中以时延3D地震(即4D地震)为主要方法。目前,时延地震已成为各大石油公司致力发展的技术。通过近几年的发展,时延地震技术已从地面发展到井间时延地震成像,并正在走向实际生产应用。

1.7.1岩石物理研究和模拟分析

目前国外学者已对各种储层条件作了岩石物理学研究,以证实油气田开采过程中流体的抽提或注入会引起孔隙流体、压力和温度的改变。这种改变会引起密度和速度的变化,也就是波阻抗的变化,而波阻抗的改变将产生足以被检测到的地震响应变化。

1.7.2提高数据重复性的解决方案

时延地震技术是一种地震属性求差技术,因此提高数据的重复性相当重要。对于不同时间采集的地震数据,除了作传统的互均衡处理外,还有两种解决方案,一种是对偏移后的数据集作叠后互均衡处理和剩余偏移处理;另一种是完全重处理。后者从野外记录开始,处理流程中包括坐标合并、子波处理、反褶积、共偏移距DMO、速度分析、NMO、叠加、网格旋转、重采样和偏移等。这种全部重处理能给出更好的重复性和分辨率。当两次地震测量之间的带宽和横向分辨率大不相同时,可采用非线性数据匹配方法。

此外,IB M公司开发建立了可以用来再现4D 地震油藏模拟现实的虚拟现实系统。

1.8地震理论研究[3,4]

随着复杂构造成像技术的逐渐成熟,理论研究者们就开始向传统的均匀层状介质理论发起了冲击。在政府和油公司的资助下,不少大学和研究机构开展了复杂介质情况下地震波传播规律的研究,如科罗拉多矿院、斯坦福大学、Delft科技大学等。研究内容大致可以分为正演模拟、反演与层析成像、各向异性及裂缝介质波场研究等几个方面。数值模拟的主要对象为复杂构造、复杂地表、各向异性及裂缝介质、粘弹性介质等,研究方法主要有射线追踪和波动方程两种,研究目的一是分析波在特定介质中的传播,二是解决方法本身诸如运算速度、稳定性等问题。反演的研究对象是用声波与弹性波、地面与井中等数据对各种复杂介质进行分析和预测。研究方法有旅行时反演、波形反演、随机反演、层析成像等。研究目的一是分析和估算各种复杂介质的参数及其分布,二是分析和评估反演方法本身的不确定性。各向异性及裂缝介质的波场研究主要以正演模拟和反演方法为手段,而数值模拟和反演又反过来以各向异性及裂缝介质为主要研究对象。

2发展趋势[9~12]

随着油田勘探开发的深入,地球物理正从一种勘探工具向油藏描述和监测工具过渡。大量的地面信息(主要为地震数据)与越来越多的地下信息

8勘探地球物理进展第25卷

(VSP、测井、钻井、测试、生产等)紧密结合,使我们能够从地面数据中挖掘越来越多的地下信息。地球物理将伴随着人们对地下资源的不断需求而不断发展。

2.1超万道地震仪器正在投入使用,优化采集设

计技术将倍受重视

由于计算能力和仪器研制水平的提高,西方石油工业界竟相采用体现当今世界先进水平的万道(或超万道)地震仪器,陆上可达3万道。I/O、WesternGeco、PGS-Tensor等著名地球物理技术服务公司均具备该类型仪器的制造能力。目前,超万道地震仪已投入了实际使用。

由于3D地震中费用最大的部分是数据采集,几乎占到全部费用的70%~80%,而且数据采集效果的好坏直接影响其处理和解释成果的质量,因此3D地震采集的规划设计得到格外的重视,多家软件公司也为此开发出了专用的软件。

2.2多分量地震(全波场方法):下一个发展浪潮

多分量地震,有人称全波地震,是近年来最热的两大技术之一(另一技术指重复地震),主要工作量在海上,陆上也已开始应用。

80年代早、中期在多分量地震方面做过大量工作,当时以陆上为主,取得了一些令人鼓舞的成果,特别是应用多波多分量地震来检测方位各向异性。然而,在技术上始终没有找到可以接受的方案,主要问题是频带太窄,得不到高分辨率的数据,而且由于仪器的原因,空间采样也不够。最近它的重新兴起是因为在海上取得了突破,海底电缆作业取得了良好的数据,最主要的是解决了如挪威海域气云导致的成像模糊区的问题。目前已有很多成功的例子,解决气云问题只是多分量发挥作用中的一个方面。

已有许多这方面成功的实例:从北海到泰国海湾,用P-S波对气饱和层的成像取得了令人难以置信的成功;从加拿大Blackfoot油田到北海Alba 油田,对砂岩/页岩层的成像证明了多分量数据的优势;墨西哥湾Mahagony油田的P-S波成像显示断层更加清晰。由多分量地震提取的v P/v S、拉梅系数、对流体类型非常敏感的Q P/Q S,孔隙饱和度、孔隙压力以及各向异性特征有着非常重要的作用。

多分量的进一步发展是研制陆上数字检波器和更先进的海底电缆。如果我们要区分油藏岩性、饱和度、流体运动就需要更多的信息,而多分量地震能满足这种要求。另外,各向异性深度偏移正在发展。

2.3广角地震引起重视

广角地震(W ARRP:Wide Angle Reflection/Re-fraction Profiling或Wide Aperture Reflection and Re-fraction Profiling)是在研究地球深部构造中发展起来的,最初主要利用折射波信息。在目前的勘探地球物理中,广角地震主要用于常规地震难以成像的地区,即盐下、火成岩下、推覆体下的地层成像。该方法可用于我国南方碳酸盐岩、胜利油田、塔里木的盐下成像等。目前见到的最大偏移距为12.5 km,可同时利用反射和折射信息成像。当前要加强研究的是采集技术中的数学、物理模拟,处理技术中的多种波的利用技术,以及与之配套的新的解释技术。

2.4油藏表征由静态向动态过渡:未来发展方向

精确的油藏表征是油藏管理及生产最佳化的关键步骤。油藏的静态表征依靠的主要数据仍是地震数据,用作标定的数据是测井、钻井、测试、VSP、生产等现有数据。由于油藏的开发是一个动态过程,因此静态表征须向动态表征过渡,目前的重复地震、重复VSP、重复测井以及不断增加的钻井信息和不断采集的生产数据为动态表征提供了可能。在整个油田的生命期间,静态油藏特性如孔隙度、渗透率、相类型和动态油藏特性(如压力、流体饱和度和温度等)都将得到更新,油藏模型已从最初的简单模型不断优化,指导整个油田的合理开发。

在过去的几十年里,石油工业界曾经掀起过多次新技术浪潮,如地震数据采集和处理、反褶积、偏移/反演、3D地震、叠前数据分析及多分量数据采集和处理。综合油藏监测和时延地震是近年来最重大的一次新技术浪潮。这种技术的潜力在于把地球物理、地质和油藏工程数据自然地结合起来,从而大大提高对油气藏的认识。因此我们说,地震正由从一种勘探工具转变成一种油藏描述和监测工具。这种转移使我们能更好地管理油藏,改善油田的生产和产油周期,降低生产成本。

2.5时延地震向提高地震资料重复性和分辨率方

向发展

目前时延地震主要用于寻找剩余油,确定注水和注汽分布范围等。从其应用地区来看,海上应用较多,而且主要集中在北海和墨西哥湾,陆上应用则相对较少,主要是因为海上资料的信噪比高,油质好,经济效益也高。从其研究深度来看,基本在3000m以内,在高孔隙度(大于25%)软砂岩厚储

9

第1期杨勤勇.地震勘探技术新进展

层情况下,取得成功的机会较高。从其精度来看,目前已从定性解释逐渐向定量解释发展。对于不同油藏和不同的开采机理,时延地震的监测效果也不同。因此,若要开展时延地震项目务必做到:1要作岩石物理分析,利用测井、岩心和流体资料,建立起油藏特性与地震观测数据之间的联系;

o作油藏模拟,确定开采可能引起的流体和压力变化;

?作地震模型模拟,预测地震观测数据的变化,制作合成地震记录,研究可以观测到的变化幅度和特征;

?作经济效益评估,在可行性研究的基础上,设计基线地震测量或重复的地震测线,确定处理流程和处理参数,减小非储层因素引起的地震属性差异;

?进行地震数据求差以及差值剖面的解释。

数据的重复性是时延地震的关键,也是成功的基本保证。数据采集和处理的发展方向是如何提高数据的重复性;数据解释则是向多学科综合方向发展,只有综合利用各种资料,包括井资料、地质资料和生产资料等,才能真正去除非储层流体因素产生的效应。此外,时延地震解释正在向3D可视化解释发展,因为解释人员是通过两次3D地震测量数据之间的差值来判断流体流动情况的,可想而知,如果不在3D空间上对其作解释和显示,要分析整个油藏的流体流动情况会有多难、多抽象,而在3D空间上对4D数据体作解释和显示,就能从整个油藏的角度作分析判断,再通过综合其他资料就能得出合理可靠的解释结果。

3结语

目前,在我国的油气勘探中,地震技术需要解决的问题包括:复杂地表(山地、沙漠、黄土塬等)条件下的数据采集,以及干扰波压制和地表静校正;高速屏蔽层(火成岩和盐层等)下的地震数据采集;高陡构造和复杂断层的成像;非均质储层(孔、缝、洞储层等)的识别和描述;深层地震数据采集等等。在油气开发中,随着一些主力油田已进入高含水期或特高含水期,开发难度越来越大,开发成本逐渐上升。要实现更为有效的开发,需要精确描述储层的非均质,弄清复杂的断裂系统(封闭性/开启性)、地层岩性的封堵性等,查明死油区。因此,开发地震需要解决的技术问题包括储层的岩石物理学研究、井中地震技术、时延地震技术、以及多波多分量地震技术。

参考文献

1SEG第68届年会论文概要.北京:石油工业出版社,1999

2SEG第69届年会论文概要.北京:石油工业出版社,2000

3SEG第70届年会论文概要.北京:石油工业出版社,2001

4Expanded Abstracts of SEG Seventy-First Annual Meeting. 2001

5方伍宝.深度域成像技术的研究现状及发展趋势.石油物探信息,2000-11-15(3)

6Gray S H.Seis mic imag i ng.Geophysics,2001,66(1):15~17

7黄中玉.多分量地震勘探的机遇与挑战.石油物探,2001, 40(2):131~137

8Lumley D E.Time-lapse seismic reservoir moni toring.Geo-physics,2001,66(1):50~53

9Roche S.Seismic data acqui sition)))The new millennium.Geo-physics,2001,66(1):54

10孙建国.中国石化勘探地球物理技术发展战略初探.见:石油勘探开发论文集:工程技术篇,2001

11Davis T L.Multicomponent.Geophysics,2001,66(1):49

12Pennington W D.Reservoir geophysics.Geophysics,2001,66

(1):25~30

10勘探地球物理进展第25卷

地震解释技术

随着锦州油田油气勘探开发的不断深入,先进的三维地震解释技术及相关的属性分析技术的使用凸显重要。利用最新采集处理的三维地震资料,采油厂加大了相关地震配套软件的使用,2011年锦州采油厂计划引进SeisWare地震解释系统及landmark地震解释工作站,使得利用各种地震属性研究储层的技术得到了加强。利用高精度三维地震叠前时间偏移数据体,可以在精细地层小层对比、整体解剖精细评价的基础上针对目标层段内的砂泥岩薄互层砂组进行多种地震属性的处理,引进landmark解释工作站的多体多属性地层追踪及快速高效的储层描述方法,能从整体上描述储层的空间展布及小断块内储层的分布特征, 计算机技术的飞速发展及相应的层位自动追踪技术、三维可视化技术等解释手段的发展极大地提高了解释工作的效率及准确度,同时最大限度地发挥了三维数据体的优势。利用最新采集处理的三维地震资料,经过地震资料品质分析后,优选具有较高的信噪比,偏移归位合理,目的层波组特征明显的资料,在合成记录标定的基础上,搭建格架剖面并进行人工解释,然后采用人机联合波形对比层位自动追踪技术进行全区层位解释,采用相干、倾角扫描以及层面光滑度分析技术进行断层平面组合分析,能精细落实研究区的构造特征和断层展布特征。

LandMark 一体化系统通过强有力的可视化技术提供给用户一个真三维的解释平台,可对海量的三维地震数据进行快速准确地构造解释,能快速搜索地质目标,精确雕刻;并提供了一个多学科协同和决策环境,可以实现构造解释、储层预测、叠前AVO分析、可视化处理以及井轨迹设计和钻井实时监控。其三维可视化手段可应用于地震资料处理、构造解释、全区目标搜索、精细目标解释、储层预测等三维连片解释的所有阶段。 LandMark 一体化系统特点: 储层自动追踪ezTracker 基于波形的层位自动追踪,可同时拾取多个种子点,可以保存种子点信息,灵活定义追踪的波形时窗,对追踪结果可进行多种灵活编辑,如遗传删除、门槛值调整和多边形删除 点集自动追踪Autopick 可根据种子点值的大小,或人工定义数据体值的范围,快速追踪地质体。也可利用多种属性(如在波阻抗体和相位体上)共同约束追踪地质体三维形态,如河道、扇体等,直接形成地质体顶底t0面。点集可自由转换为层位。 三维体雕刻Geobody 可用三维体追踪点集,层位,断面作为约束条件雕刻三维地质体,利用透明度和颜色来彰显地质异常体,突出空间展布。 异常体快速搜索GeoAnomaly 依据多数据体振幅值和数据连通性,快速搜索满足定义条件的异常体。 SeisWare软件的地震地质解释功能灵活方便,适于在勘探/开发阶段进行综合地震解释、随钻跟踪分析、油气层识别、储量计算以及新区预探、老区扩边、部署调整等研究工作。 其特点包括: 多工区,不同类型地震资料的连片解释; 断层追踪识别功能 可以直观方便的显示地震剖面上断层的平面要素,实时地观察断层面的空间走向及展布趋势。 欢西油田是一个地质条件和油藏来信十分复杂的断块油田,断距从十几米至几百米不等的不同级次断层纵横交错,断块分隔凌乱,油层埋藏差异大,储层沉积特征不一,发育不稳定,诸多因素都给地质研究带来困难。 面对复杂断块,Seisware地震解释系统的技术优势是,可以直观方便地显示地震剖面上断层的平面要素,实时地观察断层面空间走向及展布趋势,并使三维数据断层解释过程自动化。地震解释人员可以能够在较短时间内进行高精度的断层解释,即使在构造情况复杂地区或资料品质较差地区也能实现,其直观的编辑功

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

地震处理及解释软件发展现状

地震处理及解释软件发展现状 作者:发布时间:2010-04-08 10:51:27 地震资料处理技术的发展与计算机技术的发展息息相关。从模拟处理到数字处理;从简单的陆上二维资料处理到复杂的山地资料处理、全三维资料处理、高分辨率和深层资料处理等;从常规资料的处理到处理解释一体化的叠前深度偏移技术,每一次地球物理技术的进步都离不开计算机技术的进步和应用软件的发展。 以胜利油田的地震资料处理计算机装备为例,其发展过程已历经了数代的变化。从最早的IRIS60机、TIMAP—I、TIMAP4、VAX11/782、IBM3083,到并行计算SGI/Orgin2000和IBM—SP,以及目前正在迅猛发展的PC—CLUSTER,运算速度已从最初的每秒40万次提高到现在的每秒万亿次。 随着地震资料处理硬件装备的发展,处理软件也在不断地更新,处理技术日趋完善。勘探软件是现代地震勘探和油藏描述的基本必备工具,自上世纪70年代,国外的一些软件公司就已着手开发地震处理及解释软件系统,并初步形成了商业化软件,开始在全世界范围内推广和应用。进入上世纪90年代,比较成熟的处理软件有西方地球物理公司的Omega处理软件、法国CGG公司的GEOVECTEUR PLUS处理软件、LandMark公司的Promax处理软件、帕拉代姆公司的GeoDepth软件、Focus软件。国内较早从事勘探软件研究和开发的单位,主要是以东方地球物理公司(原石油物探局)为主,它的处理软件为Grisys处理软件。这些软件的处理技术水平各具特色。另外,随着油藏地球物理技术的发展,各种相关的特殊处理软件逐步发展与完善。 地震数据处理软件的发展 批处理阶段上世纪70~80年代末,由于计算机技术落后,限制了地震处理软件和处理技术的发展,地震处理软件一直处于批处理阶段,代表性的软件有:法国CGG公司的GEO—MASTER软件、美国GSI公司的TIPEX软件、美国WGC公司的IQ处理软件、美国CSD 公司DISCO软件等。 交互处理阶段上世纪90年代初,随着计算机技术的飞速发展,地震处理软件和处理技术发展很快。开始发展交互地震处理软件。代表性的软件有:法国CGG公司的

地震解释的现状及发展趋势

地震波地质信息综合解释 摘要:地震解释质量决定了一个区块勘探开发的方向和进程,地震解释的发展对解释人员提出了更高的要求,即要求解释人员通晓地质知识,同时具有物探知识。本文主要从现今已经在应用的解释技术和方法以及近年来涌现出来的一些新思路、新方法展开论述。分别包括三维可视化技术、构造解释、构造解释和利用振幅属性预测含烃概率、利用波峰瞬时频率计算薄层厚度、多子波地震道分解和重构等。 关键字:地震解释、构造解释、振幅属性、波峰瞬时频率 引言:地震资料解释是勘探和开发地震的最后环节,其功能是将地震信息翻译成地质语言或符号;其目的是直接服务于勘探和开发。因此解释质量决定了一个区块勘探开发的方向和进程。地震勘探开发技术发展的目标都是为了提供更好的易于解释的具更高可信度的地震资料。地震解释现在更多地强调综合性和在地质规律控制下的地震解释。这对解释人员提出了更高的要求,即要求解释人员通晓地质知识,同时具有物探知识。地震解释从来就不是从事物探方法研究人员单纯可以从事的工作。地震解释已经开始从注重地震解释方法向注重多学科综合性的转变,现在更为明显!地震解释的另一个明显的趋势是强调在地质规律认识下的地震解释,即地震和地质的紧密结合。 一、地震综合解释的现今技术及方法 在地震综合解释方面,主要是以地震反演技术、多种属性分析技术及三维解释为主体的地震综合储层预测技术,通过与层序地层学、测井和地质等其他测量解释成果的结合给出地震资料综合解释的应用实例。例如AmoutColpaert应用神经网络将地震解释数据和井中岩石物理特性分析联合实现多属性分析,从而进行岩相预测。靶区的目标地层是岩溶发育的斜坡形向陆架坡过渡的碳酸盐岩地层,探区内井资料很少或几乎没有,作者综合应用了基于井资料的层序地层分析、岩石物理分析和多属性地震分析,对无井控制区的岩相进行了预测。其基本流程见图1。

海上宽频地震采集技术新进展

*基金项目:国家科技重大专项“我国油气及煤层气勘探开发技术发展战略研究”(编号:2008ZX05043-003)。 第一作者简介:余本善,1982年生,博士,工程师,2012年毕业于中国地质大学(北京),目前从事物探前沿技术跟踪及战略研究工作。E-mail:yubs@https://www.360docs.net/doc/e79687444.html, 海洋油气资源十分丰富。据最新资料显示,海洋油气探明储量约占全球探明储量的34%,而探明率仅有30%。随着陆上常规可采资源储量的不断减少,全球油气需求快速增加与油气资源相对匮乏的矛盾日益突出, 为满足人类日益增长的能源需求,走向海洋是未来油气勘探开发的必然选择。近几年,全球海洋油气年均投资突破1000亿美元,越来越多的石油公司、服务公司把海洋油气作为未来发展的重要战略接替区和技术创新的主攻方向。 海上拖缆地震技术是目前海洋油气勘查的主要手段,常规的海上拖缆采集一般是配置单一类型的水检,且各个检波器排列处于同一水平面上,这种采集方式具有施工灵活、作业效率高等特点,但是随着海上开发油气藏类型日益复杂,常规作业方式取得的资料已越来越难以满足海上精细化勘探的要求。 海上宽频地震勘探技术不但能改善盐下、玄武岩下等深层构造成像,还能提高薄层、隐蔽圈闭、特殊岩性体等难识别油区成像品质,因而能提高地震资料的解释精度,帮助寻找遗漏油藏,降低勘探风险[1~5]。宽频地震作为提高地震成像精度的重要方法,已经成为物探学 界的研究热点问题。近5年来国外海上宽频地震采集技术取得了飞速发展,出现了上下双缆采集、倾斜电缆采集、双检电缆采集、四分量拖缆采集等多种方法。 1 海上地震采集“鬼波” 海上拖缆地震采集一般是将震源和检波器沉放到水下一定深度,当震源激发出子波后,地震波在向下传播(简称下行波)的同时也向上传播(简称上行波)。由于海水面是一个很强的波阻抗界面,当上行波到达海面会产生强烈反射,再向下传播;同理,由地下反射回来的地震波,有的直接到达检波器,有的继续向上传播,经海面反射后到达检波器,这种海面反射波称为虚反射(也称鬼波)(图1)。研究表明,由于鬼波的陷频作用[6],在一定的水深范围内,震源沉放较浅,震源子波频谱较宽,高频效果越好,但低频部分相对缺失;震源沉放较深,低频成分相对丰富,但频带较窄。同理,检波器沉放深度对地震资料的频带也有着类似的影响。 2 倾斜电缆采集技术 倾斜电缆技术理论最早由C.Ray [7]于1982年提出,

地震勘探技术的发展与应用

地球探测与信息技术 读书报告 课题名称:地震勘探的发展与应用 班级:064091 姓名:吴浩 学号:20091004040 指导老师:胡祥云

地震勘探的发展与应用 吴浩 (地球物理与空间信息学院,地球科学与技术专业) 摘要地震勘探是地球物理勘探中发展最快的一项技术,近年来,高分辨率地震勘探仪器装备、处理软件升级换代速度明显加快,地震资料采集、处理与解释出现了一体化的趋势。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,应用于石油、煤炭、采空区调查、地热普查等重要领域,由陆地不断向海洋发展。本文着重针对地震勘探过程和技术的发展几个重要阶段及应用进行展开。 关键字地震勘探三维地震石油勘探煤矿发展与应用 1 引言 地震勘探是利用岩石的弹性性质研究地下矿床和解决工程地质,环境地质问题的一种地球物理方法。地震勘探应用领域广泛,与其他物探方法相比,具有精度高、分层详细和探测深度大等优点,近年来,随着电子技术、计算机技术的高速发展,地震勘探的仪器装备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,通常用人工激发地震波,地震波通过不同路径传播后,被布置在井中或地面的地震检波器及专门仪器记录下来,这些地震拨携带有所经过地层的丰富地质信息,计算机对这些地震记录进行处理分析,并用计算机进行解释,便可知道地下不同地层的空间分布,构造形态,岩性特征,直至地层中是否有石油、天然气、煤等,并可解决大坝基础,港口,路,桥的地基,地下潜在的危险区等工程地质问题,以及环境保护,考古等问题。 2 地震勘探过程及发展 地震勘探过程由地震数据采集、数据处理和地震资料解释3个阶段组成。 1.地震数据采集 在野外观测作业中,一般是沿地震测线等间距布置多个检波器来接收地震波信号。常规的观测是沿直线测线进行,所得数据反映测线下方二维平面内的地震信息。一般地讲,地震野外数据采集成本占勘探成本的80%左右,因此世界各国为了降低勘探成本、提高勘探效果,

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

前沿:海洋宽频带地震勘探新技术扫描

前沿:海洋宽频带地震勘探新技术扫描 文|吴志强 国土资源部海洋油气资源与环境地质重点实验室

1、概况 海洋地震勘探在海洋地质调查、油气藏勘探与开发中起到了无可替代的重要作用。随着勘探领域的不断拓展,地震勘探的难度越来越大。在深部地质调查和复杂构造、火山岩(或碳酸盐岩)屏蔽下的油气藏地震勘探中,为了获取目的层有效反射信号、实现精确成像,对地震数据采集的要求进一步提高,包括采集到低频、高频成分丰富的宽频带、高信噪比原始地震记录。地震信号中的低频信息具有穿透能力强、对深部目的层成像清晰的优势,同时也使地震反演处理结果更具稳定性。宽频带可产生更尖锐子波,为诸如薄层和地层圈闭等重要目标体的高分辨率成像提供全频带基础数据。 理论研究表明:当地震数据的频带宽度不低于两个倍频程时,才能保证获得较高精度的成像效果;频带越宽,地震成像处理的精度越高;增加低频分量的主要作用是减少子波旁瓣,降低地震资料解释的多解性,提高解释成果的精度。 图形象地展示了低频分量的重要性:高频分量丰富、但缺少低频分量的地震子波的主峰尖锐,却会产生子波旁瓣,使地震资料的精确解释变得困难且多解;高分辨率子波是在低频和高频两个方向都得到拓展的宽频带子波,这样子波的主峰尖锐、旁瓣少且能量低,能分辨厚度极小的薄层,地震解释的精度高。 现今地震资料反演处理大多是基于模型的地震反演,成功的关键是能否提取真实子波和建立精确的低频模型。常规地震数据中缺失低频信息,只能采用从测

井数据中提取低频分量再与地震数据反演的相对波阻抗合并处理方式得到绝对 波阻抗。 在目标地质体复杂、钻井少的探区,仅靠测井资料提取的低频分量难以反映复杂地质体横向变化,导致不精确或假的反演结果。为弥补该缺陷,一般采用从地震叠加速度提取低频分量方式,而叠加速度只能提供0~5Hz低频信息,无法弥补常规地震所缺少的0~10Hz低频分量。可见,地震数据中低频信息对保证地震岩性反演的精度意义重大。 然而,在海洋地震勘探中得到宽频带地震数据是比较困难的。 首先,在常规海洋地震数据采集中,电缆和气枪都要以固定深度沉放于海平面之下,以保证下传的激发能量最大化和降低接收环境噪声。 由于海平面是强反射界面,在激发和接收环节都会产生虚反射效应,从而压制了信号的低频和高频能量,并产生了陷波点,限制了地震勘探的频带宽度。例如,为了获得深部目的层有效反射信号,必须增加气枪阵列容量、加大沉放深度以得到穿透能力大、主频低的激发子波,并加大电缆沉放深度以减少对来自深部反射界面的低频反射信号的压制效应,由此带来的副作用是高频信号受到较大压制,降低了地震信号的频带宽度和分辨率。 在海洋高分辨率地震勘探中,一般采用较小气枪阵列容量和较浅沉放深度以得到高频成分丰富的激发子波,同时降低电缆沉放深度以降低接收环节对高频信号的压制效应,这样虽然提高了地震信号的频带宽度和视觉分辨率,但它是以牺牲低频信息和勘探深度为代价,处理后的成果数据缺少低频信息,给后续的反演处理带来较大困难。 勘探设备性能也限制海洋地震勘探获得宽频带地震数据的能力,电缆在移动时产生的机械和声波噪声掩盖了微弱的有效地震信号,降低了地震数据的频宽和信噪比,尤其是对高频段信号的影响幅度更大。到目前为止,常规海洋地震勘探中尚未找到完全有效压制虚反射效应的采集和处理方法。 近年来,针对海洋宽频带地震勘探面临的主要难题,在勘探设备方面进行了研发并取得重要进展。固体电缆的研制成功和工业化应用,有效地降低了电缆噪声,提高了对微弱高频信号的响应和记录能力;双检波器拖缆采集技术的发展与应用,压制了虚反射效应,拓宽了地震频带。 众所周知,气枪和电缆以一定深度沉放于海平面之下,海平面反射在上行波和下行波之间产生交互干涉的鬼波效应,对地震反射信号产生了压制和陷波作用,降低了原始地震资料的频带宽度。气枪和电缆沉放越深,对高频信号压制越大,越有利于低频信号;沉放越浅,对低频信号压制越大,越有利于高频信号。 为了压制虚反射效应,提高地震数据频带宽度,在海洋地震激发时借鉴陆上地震勘探压制虚反射的成功做法,开发了多层震源组合新技术代替传统的平面震源组合方式,激发地震子波的低频和高频分量都得到有效拓展和提升,因此其频带展宽、穿透能力增强。 在海洋地震信号接收环节,为有效削弱由海平面虚反射引起的陷波作用,利用电缆沉放深度的变化对不同频带的压制特性,采用上、下缆接收技术,既有效

地震数据处理解释技术发展研究

地震数据处理解释技术发展研究 地震数据处理解释是地震勘探的主要组成部分,是石油天然气勘探开发产业链中对油田勘探开发效益影响最大、技术含量最高的一环。…… 一、地震数据处理解释是地震勘探的主要组成部分 地震勘探就是通过人工地震反射波“给地球做CT”,让油气勘探者能够“看见”地层的地质构造和油藏情况,为石油公司“找油”做出含油气评价、提出钻井位置、模拟油藏未来的生产动态以便为后续油气藏开采和开发提供技术资料。 地震勘探包括地震采集、处理和解释三大部分:地震采集是利用野外地震采集系统获取地震数据处理所需的反射波数据;地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释;地震解释分为构造解释、地层解释,岩性和烃类检测解释及综合解释,目的是利用地震反射波的地质特征和意义确定井位寻找石油。地震数据处理依赖于地震采集数据的质量,处理结果直接影响解释的正确性和精确度和找油的成功率。 图1 地震勘探产业链构成 地震数据处理解释是地震勘探的主要组成部分,是石油天然气勘探开发产业链中对油田勘探开发效益影响最大、技术含量最高的一环。其原因有四:1、石油勘探地震数据处理解释与井位部署成功率、油田发现、油田采收率、油田增储上产等经济效益直接相关,是寻找油气资源的关键技术; 2、石油勘探技术发展的基础主要体现在地震数据处理环节中地震成像技术的发展;3、地震数据处理解释下游钻井业务等油气开采技术均十分成熟;4、上游地震数据采集依赖于先进的仪器设备,理论简单。综合而言,地震数据处理的质量和地震成像的准确度与清晰度直接决定油气资源的发现的成败和勘探成功率,是影响后期油田生产建设最重要的环节。 BP公司北海油田日产量与地震数据处理解释新技术的关系表明,新技术尤其是地震成像技术的发展和应用对于油田产量的增加影响极大。 图2 石油勘探地震数据处理解释技术对北海油田的产量的影响由此可见,地震数据处理解释是地震勘探的主要组成部分,其发展和技术进步对于解决人类能源供应问题具有十分重要的意义。 二、地震数据处理解释技术发展历程 地震数据处理解释技术中最核心的就是地震成像技术,因此地震数据处理解释技术的发展历程主要依据地震成像技术的发展水平进行划分。 地震数据处理解释最早出现于20世纪20年代初期。随后的40年间由于是对光点记录(1920—1950)和模拟记录(1950—1965)进行处理,在这一阶段地震处理解释技术发展缓慢,也没有可实用的地震成像技术出现。

解释及分析地震数据体一般步骤

解释及分析地震数据体一般步骤: 1、合成人工记录和层位标定 2、追层位,注意闭合 3、解释断层 3、平面成图 在解释过程中可能用到的五种技术方法: 1.层位标定技术 2.三维体构造精细解释技术 3.相干数据体分析技术 4.低序级断层识别技术 5.断点组合技术 其中各项技术的具体用法自己去查资料 若遇到潜山和特殊岩性体时,在成图前增加1项,速度场分析即第6项技术变速成图技术;若有储层描述部分,还需增加反演处理。 1、反演工区建立 2、地震子波提取 3、井地标定 4、初始模型建立 5、反演参数选取 6、反演处理 7、砂体追踪描述 8、成图 在三维地震构造解释的基础上,对有井斜资料的井,分层段进行了井深校正,将测井井深校正为垂直井深。通过钻井资料的校正,利用校正数据表的数据,对断层的断点位置和断距进行归一化处理,对三维地震所做的构造图与钻井数据相矛盾的地方进行反复推敲,分析油藏油水关系,对一些四、五级断层进行组合、修正,反复修改构造,最后编制研究区构造图。静校正statics:地震勘探解释的理论都假定激发点与接收点是在一个水平面上,并且地层速度是均匀的。但实际上地面常常不平坦,各个激发点深度也可能不同,低速带中的波速与地层中的波速又相差悬殊,所以必将影响实测的时距曲线形状。为了消除这些影响,对原始地震数据要进行地形校正、激发深度校正、低速带校正等,这些校正对同一观测点的不同地震界面都是不变的,因此统称静校正。广义的静校正还包括相位校正及对仪器因素影响的校正。随着数字处理技术的发展,已有多种自动静校正的方法和程序。 [深度剖面]depth record section;据磁带地震记录的时间剖面或普通光点记录,用一般方法所作出的地震剖面只是表示界面的法线深度,而不是真正的铅垂深度。经过偏移校正和深度校正之后,得到界面的铅垂深度剖面才叫做深度剖面,它是地质解释的重要资料。用数字电子计算机处理磁带地震记录,能自动得出深度剖面 [同相轴]lineups;地震记录上各道振动相位相同的极值(俗称波峰成波谷)的连线称为同相轴。在解释地震勘探资料时,常常根据地震记录上有规律地出现的形状相似的振动画出不同的同相轴,它们表示不同层次的地震波。 [速度界面]velocity interface;是指对地震波传播速度不同的、相邻的两层介质的公共接触面。信噪比signal-to-noise ratio:信噪比有多种定义。通常将地震仪器的输出端上,有效信号的功率与噪声(干扰)的功率之比称为信噪比。信噪比既与输入信号本身有关,更决定于仪器的特性,它也被用来衡量资料处理的效果。因此,提高信噪比是提高地震工作质量的关键问题之一。信噪比愈大愈好,可以通过改进仪器性能或选择工作方法提高信噪比。 子波wavelet:从震源发出的原始地震脉冲在介质中传播时,由于介质对地震脉冲有滤波作用,并且地层界面使波产生反射和折射,因此,自距震源一定距离起,脉冲波形便发生变化而与原始波形不同,但在一定传播范围内其形状甚本保持不变,这时的地震脉冲便称为子波。子波的形状决定于震源和介质的滤波性质,其频率随传播距离的增大而有所降低,振幅也逐渐减小。不同的界面各自的子波不同,每一道的地震记录可以认为是由一系列的子波构成的。子波不仅用于制作理论地震记录,而且在断层对比和反褶积处理等方面都需要它。 [有效速度] effective velocity; 把覆盖层看作均匀介质而从实际观测所得的反射波或从折射波时距曲线求得的波速,统称为有效速度。由于在层状地层中存在层理,介质并不真正是均匀的,再加上界面的弯曲,使有效速度不同于平均速度,往往是比平均速度大的一种近似速度,但在各层速度的差别不很大和界面弯曲不大时,两者的差别很小。 [有效波]effective wave; 指能用来解决某些地质问题的人工激发的地震波。有效波是个相对的

海底地震勘探最新方法与技术发展

海底地震勘探最新方法与技术发展 摘要:随着深海耐压材料工艺的突破和海上高分辨精细地震勘探技术的发展,底地震勘探方法逐渐成为热点。一方面,海上三维地震勘探方法逐渐向四维发展,在海上布设漂缆数量越来越多的同时,海底电缆或检波器也被应用到海上复杂油气区块的精细调查中去;另一方面,新能源研究与深水油气技术的突破,同样需要高频与低频型海底地震仪器。本文讲述目前国际上海底地震勘探新方法与仪器设备的发展和我国在海底地震勘探领域的研究状况。 关键词:海底地震仪;横波勘探;四维地震;精确时间计时;精准布设DOI:10.3772/j.issn.1009-5659.2010.06.003上个世纪地震勘探发展过程中,海底地震勘探方法 是以横波信息接收分析,作为观测天然地震,研究海底演变以及作为海上拖缆地震的补充而出现和发展的。由于横波(S波) 不能在液体中传播,因而只接收到了纵波的反射与折射信息。海底地震仪器的出现,检波器放置于海底,与海底耦合,可以接收到横波或者转换横波信息。随着电子科学、材料科学的发展进步,海底地震勘探仪器设备的性能得到了很大的提升;同时,全世界对能源需求和依赖进一步提高,海上油气资源勘探难度逐步加大,海底新型能源的开发利用步伐加快,海底地震勘探技术方法正逐渐成熟,已成为海底深部构造研究、海上四维油气勘探、天然气水合物勘探研究必不可少的手段。 1 海底地震勘探技术简介 海底地震勘探技术是海上地震勘探技术的一种,同样有震源和采集器组成。海底地震勘探技术大都采用非炸药震源(以空气枪为主),震源漂浮在接近海面,有海上调查船拖曳;采集器陈放到海底来接收震源发出,经过海底底层反射的纵横波信号。其特点是在水中激发,水中接收,激发、接收条件均一,可进行不停船的连续观测。检波器最初使用压电检波器,现在发展到压电与振速检波器组合使用。海底地震勘探技术又可分为海底电缆勘探技术(OCEAN BOTTOM CABLE,以下简称OBC)和海底地震仪勘探技术(OCEAN BOTTOMSEISMOMETER,以下简称OBS)。OBC技术是将采集电缆沉入海底,调查船拖曳震源在海面上放炮的方法 OBS勘探技术是将海底地震仪陈放到海底,调查船拖曳震源在海面上放炮的方法。 OBC的优点是:全波场采集;成像效果更好、地层层次清楚、形态可靠;消除鬼波影响,环境噪音低。但技术应用难度大、成本高,应用于海上油田储油区扩展调查等快速收回投资的项目;OBS技术是由研究海底天然地震发展起来,它的特点是:广方位角、全波接收,现在逐渐应用于海底石油勘探和新能源勘探开发。 2 近年来国际海底勘探技术发展 20世纪60年代,美国军方为观测海底核试验位置而研制了世界上第一台海底地震仪,由陆地检波器电缆发展而来的浅水底电缆引用于陆上浅水区和海上滩涂区地震油气勘探。60年代末,西方国家海洋计划开始实施,研究海洋地壳地幔结构、板块俯冲带,海沟海槽演化动力学等课题,研制出功能多样、先进、广泛应用到海洋地球科学研究中的海底地震仪。通过海底地震仪长期定点的至于海洋深处,接收天然地震或对人工触发的地震波的观测,科学家们对大洋中脊和海沟俯冲带地壳结构有了新的认识,发现快速扩张的洋中脊与慢速扩张的洋中脊结构的不同。同时,海底地震仪也用于研究天然地震的地震层析成像以及地震活动和地震预报等。随着工业化的迅猛发展,西方主要经济体对石油需求加大,更精确的油气勘探调查也向更精确和深海方向发展。设计成高分辨率、广方位角、全波接收的海底地震仪被应用到,海上油田储油目标区块的精细调查和深海油气调查中。美国、日本等国家近年来将海底地震仪应用到了新型能源——天然气水合物的调查研究当中。随即,欧盟国家德国、法国、挪威、意大利等也相继推出了新型的海底地震仪产品,并开始走

地震勘探技术新进展_杨勤勇

第25卷第1期2002年2月 勘探地球物理进展 Progress in Exploration Geophysics Vol.25,No.1 Feb.2002地震勘探技术新进展 杨勤勇1徐丽萍2 (1.中国石化石油勘探开发研究院南京石油物探研究所,江苏南京210014; 2.西北石油局规划设计研究院,乌鲁木齐830011) 摘要:近几年来,地震勘探技术得到了很大的发展。超万道地震仪的投入使用,以及优化采集设计技术的发展,有效地提高了采集效率和资料质量;叠前深度偏移技术使复杂构造的成像更为清晰;3D可视化技术和虚拟现实技术大大提高了地震解释的能力、精度和速度;地震属性技术的发展把地震解释向定量化解释推进了一步;井中地震技术、多波多分量地震技术以及时延地震技术的发展,有力地增强了油气静态描述和动态监测的能力;复杂介质中地震波传播规律的研究向传统的层状介质理论发起了冲击。 关键词:可视化;虚拟现实;地震属性;成像;井中地震;VSP;多分量;时延地震 中图分类号:TE132.1+1文献标识码:A 地震勘探是利用地层岩石的弹性特性来研究地下地质结构,推断岩体物性,预测油气的一种勘查方法。几十年来,地震勘探以其高信噪比、高分辨率、高保真度、高精确度、高清晰度和高可信度等赢得了广大用户的信任,成为找油找气的关键技术。在油气勘探开发中,应用地震勘探已有效地解决了一系列复杂的地质问题,在各种复杂构造油气藏和隐蔽油气藏的勘查方面取得了重大成果,给油气公司带来了可观的经济效益。 近几年来,以PC计算机群大规模投入使用,可视化、虚拟现实、网络技术飞速发展为标志,以高分辨率地震、3D地震为代表,以4D地震、井中地震、多波多分量地震为发展前沿的地震勘探技术正跃上新的台阶,高密度采集和3D空间成像归位技术以其精确、灵活显示等优点,在国内外已卓有成效地用于查明各种复杂构造油气藏和隐蔽油气藏。 1主要进展 1.13D可视化技术[1~4] 可视化技术是把描述物理现象的数据转化为图形、图像,并运用颜色、透视、动画和观察视点的实时改变等视觉表现形式,使人们能够观察到不可见的对象,洞察事物内部结构。方法包括以图形为基础(或称为面可视化)和以体素为基础(体可视化)的可视化。在以体素为基础的体可视化中,每一个数据采样点被转换成一个体素(一个3D象素的大小近似于面元间隔和采样间隔)。每一个体素有一个对应于源3D数据体的值,一个RGB(红色、绿色、蓝色)色彩值以及可被用来标定数据透明度的暗度变量。 多年来,许多公司致力于地学可视化应用软件的开发,取得了可喜的成果。在3D图形工作站环境支持下,各种基于数据体操作、图素提取与曲面造型、体绘制技术的应用软件相继出现,它们基本上代表了当今综合解释工作站3D可视化软件功能的发展水平(见表1)。 表1有代表性的可视化解释处理软件 公司软件 Landmark 3DVI(3D体积解释) Voxcube(3D立体动画) Geoquest GeoViz(交互3D解释) Paradigm Voxel Geo(真3D地震解释系统) DGI Earth Vision (基于3D空间地质建模) Photo3DViz(3D体可视化) 体可视化允许解释人员直接进行地层解释,识别地震相,改进油藏特征描述。它通过数据的3D 立体显示,使解释人员能够作构造、断层、地层沉积、岩性、储集参数和油气等的交互解释。解释结果在三度空间内立体显示,可以激发资料处理解释人员的科学灵感,赋予他们无限的想像空间与创造力,极大地提高了工作效率和工作质量。 1.2虚拟现实技术 虚拟现实(Virtual Reality,简写为VR)是一种 收稿日期:2001-12-31 作者简介:杨勤勇(1964-),高级工程师,1985年毕业于中国地质大学物探系,现从事情报研究。

浅谈页岩气地震勘探技术_王万合

科技·探索·争鸣 科技视界 Science &Technology Vision Science &Technology Vision 科技视界0序言 页岩气是指以吸附、游离或溶解状态赋存于泥页岩中的天然气,其特点是页岩既是源岩,又是储层和封盖层。在埋藏温度升高或有细菌侵入时,泥页岩中的有机质,甚至包括已生成的液态烃,就裂解或降解成气态烃,游离于基质孔隙和裂缝中,或吸附于有机质和黏土矿物表面,在一定地质条件下就近聚集,形成页岩气藏[1]。页岩气作为一种非常规天然气资源,已经越来越得到各国的重视。 1地震勘探技术 目前,国内已陆续开展了部分地区的页岩气地震勘探试验,如对施工观测系统选择的试验等,获得了一些原始地震数据以及时间剖面,根据剖面相位、波组特征分析,取得了一些有价值的结论。就页岩气地震勘探而言,若想解决好反射波(组)与页岩层段之间的相互关系,并为井位布设和后期进一步的勘探开发提供科学依据,笔者认为应从以下几个方面的进行研究。1.1构造情况 对于页岩,其本身即是生气场所也是重要的盖层,在构造转折带、地应力相对集中带以及褶皱-断裂发育带,通常是页岩气富集的重要场所。在这些地区,裂缝发育程度较高,能够为页岩气提供大量的储集空间。成藏之后发生的构造运动也能诱发页岩裂缝的发育,也有利于页岩气的富集,但这可能会破坏页岩本身作为盖层的部分[2],若是通过运移机制进入页岩外部的储集层,则外部储集层构造特征的研究也十分重要。地震勘探技术以物性差异(波阻抗差异)为基础,是一种探测构造最有效、经济的地球物理方法。因此,通过地震勘探技术探明勘探区内的构造情况,再根据页岩气的沉积储层预测,可有效获得区内页岩气有利区。1.2储层标定 储层的标定是确定页岩层段的主要手段,但前提是勘探区内必须有已知的页岩气勘探孔,通过钻井揭露的页岩层段情况,结合地震反射波组特征,对地质主要层位进行标定,从而获得区内不同时代地层反射波(组)特征,根据该特征可实现对全区页岩层段的波组追踪,从而为后期确定储层的厚度、埋深及属性提取研究提供了坚实的基础。1.3厚度预测 厚度预测是页岩气勘探孔位选定及页岩气储量预测的基础,同时,更要注重优质页岩的厚度预测,因为优质页岩是页岩气赋存的主要载体,优质页岩与普通泥页岩的差别主要表现在自然伽马曲线上,虽然优质页岩速度并不一定比普通页岩层低,但是它的自然伽马数值要比普通泥页岩高,利用此特征,通过拟声波曲线重构,重构的曲线具有低频声波及高频自然伽马信息,它能够对优质页岩层进行很好的预测[3]。 1.4埋深计算 根据合成记录结果确定的目标层位,对地震数据进行连续追踪,获得页岩气储层的全区时间场,利用钻孔反算的速度及叠加速度值,可获得区内近似的平均速度场,通过网格化数据,利用时深转换公式:储层埋深=时深转换深度-(基准面-地震测量高程),可获得区内储层埋深等值线,为钻孔的布设及后期勘探、开发提供科学依据。1.5地震多属性提取技术研究 地震数据体中含有丰富的地质信息,如果有效提取、优选敏感信息对页岩气藏进行预测,是页岩气地震勘探成功的关键一环,页岩的孔隙度、泊松比等在常规地震时间剖面上可能无法反映,但通过地震波属性提取,建立页岩的孔隙度等与地震属性的相互关系,提取相关信息,可较好的解决页岩气的丰度等重要信息,以往多事利用某一相对敏感性属性信息进行解释,现如今已是结合了地质模型正演、地质统计学、函数逼近、神经网络、统计模式识别、模糊模式识别等数学方法综合预测,为提高储层预测的可靠性提供了更多的途径。1.6“甜点”预测 页岩气地震勘探的主要目的就是寻找页岩气勘探开发的有利区域———“甜点”,为井位部署和开发方案的制订提供科学依据,通过区域内构造的分布情况、页岩气储层的厚度及埋深、多属性优选、分析和提取技术,按照埋深介于1000~3000m 范围、构造相对简单、优质页岩厚度大于30m 的原则,最终可获得“甜点”的分布规律,为目标区块井位的部署及开展其它相关工作提供了较为全面、详实的数据[3]。 2结论 页岩气作为一种非常规能源,是一种近源岩、“自生自储自盖型”油气藏,其成气、运移和储集过程复杂,成藏模式多样化。 地震勘探因其高效、经济,是常规能源勘探的重要手段,通过对地震波场的进一步的认识,建立地震波场与页岩气藏之间的相互关系,也必将在页岩气勘探领域内大显身手。 通过地震勘探在页岩区域内构造、储层的厚度及埋深、敏感属性与页岩气的相关性等研究,可获得较为可靠的页岩气“甜点”区,为下一步页岩气的钻井布设、勘探、开发提供科学依据。【参考文献】 [1]郭思刚,梁国伟.大方地区页岩气采集参数试验分析[J].油气藏评价与开发, 2011,1(5):71-75. [2]邢恩袁,庞雄奇,欧阳学成,等.浅析页岩气成藏模式[C]//第五届油气成藏机理与油气资源评价国际学术研讨会论文集.2009:914-919. [3]李志荣,邓小江,杨晓,等.四川盆地南部页岩气地震勘探新进展[J].天然气工业,2011,31(4):40-43. [责任编辑:庞修平] S ※基金项目:中煤科工集团青年科技创新基金项目(2013XAYFX004)。 作者简介:王万合(1981—),男,汉族,安徽蒙城人,2007年毕业于中国地质大学〈武汉〉地球探测与信息技术专业,硕士,中煤科工集团西安研究院有限公司,工程师,从事煤田地质勘探、非常规气藏勘探研究及城市活断层探测工作。 浅谈页岩气地震勘探技术 王万合 (中煤科工集团西安研究院有限公司,陕西西安710077) 【摘要】本文讲述了对页岩气的基本认识,提出了页岩气地震勘探勘探应着重解决的几个方面,即寻找页岩区构造,储层标定,页岩的厚度预测和埋深计算,并对页岩气敏感属性进行优选、分析和提取,获得页岩气藏与地震数据体间的相互关系,从而实现对页岩气“甜点”的预测。 【关键词】页岩气;地震勘探;甜点 A Brief Talk about the Technology of Seismic Exploration on Shale Gas WANG Wan-he (Xi ’an Research Institute,China Coal Technology and Engineering Group Corp.,Xi ’an Shaanxi 710077,China ) 【Abstract 】This article tells us basic understanding about shale gas ,and proposes us several aspects should be focused on about the technology of seismic exploration in shale gas,that is structure for shale area,reservoir calibration,the thickness forecast and depth calculation,optimalizes,analyses,and extracts sensitive properties about shale gas.Then obtains the relationship between seismic data volume and shale gas reservoirs,So as to achieve the prediction of “The dessert ”on shale gas. 【Key words 】Shale gas;Seismic exploration;The dessert 项目与课题 58

地震资料解释基本方法及发展趋势

地震资料的地质解释,指根据地震信息确定地质构造形态和空间位置,推测地层的岩性、厚度及层间接触关系,确定地层含油气的可能性,直接为钻探提供井位。 地震勘探的地质成效,在很大程度上取决于地震资料的正确与否。而要正确地解释地震资料,必须了解地震剖面上的反射特性及其与地质剖面的内在联系;了解并掌握各种地质现象的变化规律及其地震响应;要善于识别和区分地震剖面上的假象;要正确认识和理解地震勘探的分辨率;也要明确,在沉积岩地区,地震剖面上大多数反射是干涉复合的结果;还要明确一点,地震资料的地质解释往往具有多解性和局限性。地震资料的野外采集和室内处理涉及到基础资料的操作,而地震资料解释就是把这些资料转化成抽象的地质术语。很显然,这种转化和转化的质量是每个解释人员的能力、想象力的综合表现,最终的成果体现在地质解释的合理性上。 地震资料中蕴藏着丰富的地质信息,主要有两大类:一类是运动学信息,另一类是动力学信息。 运动学信息主要是指地震波的反射时间t0及旅行时差,同相性和速度(平均速度、层速度)等,利用这些信息可以把地震时间剖面变为深度剖面,绘制地质构造图,进行地质构造解释,搞清岩层之间的界面、断层、褶皱的位置和展布方向等。 动力学信息主要是指地震反射特征,如反射波的振幅、频率、吸收衰减、极化特点、连续性,反射波的内部结构,外部几何形态等。从这些地震信息中可以提取非常有用的地层岩性信息,借此确立地震层序、分析地震相、恢复盆地的古沉积环境、预测生储油相带的分布、寻找地层圈闭油气藏。除此之外,借助于地震波的振幅,频率、极性等动力学信息并结合层速度、钻井、测井等资料,提取岩性和储层参数,如流体成分、储层厚度及性质、孔隙度等,进行地震资料的岩性分析及烃类检测。 地震资料解释大致可分为三个阶段,即构造解释、地层岩性解释和开发地震解释。20世纪70年代以前,地震勘探方法和技术在解决地质问题过程中,主要以地震资料的构造解释为主,即利用由地震资料提供的反射波旅行时、速度等信息,查明地下地层的构造形态、埋藏深度、接触关系等。在这一阶段中,地震勘探技术在各种构造圈闭油气藏的勘探中做出了重大贡献。但是,随着人类对能源需求的不断增长和构造油气藏的大量发现和开发,比较容易找到的构造油气藏已经越来越少,于是人们不得不设法寻找非构造油气藏。与此相应,在地震勘探技术发展的基础上,对地震资料的解释工作提出了更高的要求。于是,在70年代末期出现了地震资料的地层岩性解释。这一阶段,应该说包括两部分内容,一是地震地层学解释,它是根据地震剖面特征结构来划分沉积层序,分析沉积岩相和沉积环境,进一步预测沉积盆地的有利油气聚集带。二是地震岩性学解释,这是采用各种有效的地震技术(如地震资料的各种分析处理方法),提取一系列地震属性参数,并综合利用地质、钻井、测井等资料,研究特定地层的岩性、厚度分布、孔隙度、流体性质等。油田进入开发阶段,地震技术为开发服务则产生了开发地震解释,主要研究内容包括油藏精细描述、储层参数预测、油藏动态监测等。 地震资料解释大致可分为三个阶段,即构造解释、地层岩性解释和开发地震解释。20世纪70年代以前,地震勘探方法和技术在解决地质问题过程中,主要以地震资料的构造解释为主,即利用由地震资料提供的反射波旅行时、速度等信息,查明地下地层的构造形态、埋藏深度、接触关系等。在这一阶段中,地震勘探技术在各种构造圈闭油气藏的勘探中做出了重大贡献。但是,随着人类对能源需求的不断增长和构造油气藏的大量发现和开发,比较容易找到的构造油气藏已经越来越少,于是人们不得不设法寻找非构造油气藏。与此相应,在地震勘探技术发展的基础上,对地震资料的解释工作提出了更高的要求。在这种情景下,20世纪70年代后期便出现了地震资料的地层岩性解释。这一阶段应该说包括两部分内容,

相关文档
最新文档