抗硫酸盐腐蚀型混凝土(DOC)

抗硫酸盐腐蚀型混凝土(DOC)
抗硫酸盐腐蚀型混凝土(DOC)

混凝土抗硫酸盐侵蚀研究

作者

摘要:本文介绍了混凝土硫酸盐侵蚀破坏的机理和分类以及混凝土硫酸盐侵蚀的影响因素。主要综合说明了5种判断硫酸盐侵蚀混凝土的检验方法:快速法;膨胀法;干湿循环法I;干湿循环法II;氯离子渗透试验。提出了4种改善方法:合理选择水泥及掺合料品种;提高混凝土密实性;采用高压蒸汽养护;增设必要的保护层。

Summary:This paper introduces the mechanism and classification of erosion of concrete sulfate and influence factors of concrete sulfate attack.5 methods for the inspection of sulfate attack concrete are described:Express method;Plavini;dry wet cycling method I;Dry wet cycling method II;Chloride ion penetration test.4 improvement methods are proposed:Reasonable selection of varieties of cement and admixture;Improve the density of concrete;High pressure steam curing;Add the necessary protective layer.

关键词:硫酸盐侵蚀混凝土改善方法影响因素

Key word: Sulfate attack Concrete Improvement method Influential factors

一、研究背景

自混凝土产生以来,就以其原材料来源广泛、强度高、可塑性好、成本低等优点被普遍应用在房建工程、桥梁工程、还有水利及其它工程中,随着社会的发展和科学技术的进步,环境污染也成为了人类面临的一大重要问题,在空气和水中都产生了大量的腐蚀性的物质,给混凝土结构的使用寿命带来了严峻的考验。

近几十年以来,国内外屡次发生因混凝土结构耐久性不足而造成的结构功能提前失效甚至破坏崩塌的事故,给人类造成了巨大的经济损失和生命财产安全问题。在1987年美国国家材料顾问委员会的报告中,大概有25.3万座混凝土桥面板出现不同程度的破坏,其中部分使用不到20年,并且还将以每年3.5万座的速度增。《中国腐蚀调査报告》(2003年版)中显示:我国年腐烛损失约为5000亿元。

1991年召开的第二届混凝土耐久性国际会议上,美国混凝土协会荣誉退休教授P.K Mehta曾在题为《混凝土耐久性一五十年进展》的报告中指出“当今世界,混凝土破坏的原因,按重要性递降顺序排列是:钢筋锈蚀、寒冷气候下的冻害、腐蚀环境的物理化学作用。”其中第三个原因主要是由硫酸盐侵蚀引起。硫酸盐在我国分布广泛,主要存在于盐渍土、地下水以及空气中。全国约有3693万公顷盐馈土,占全国可利用土地面积的4.88%。

随着各种特殊结构和高层结构的快速发展,对基础的要求也越来越严格,桩基础己成为当前各类建筑结构的的常用基础类型。混凝土桩分为预制桩和灌注桩,与混凝土预制桩相比,混凝土灌注桩具有如下几个特点:①适用性好,现场施工,桩长和持力层几乎不受地质条件的影响;②噪音小、工序少,避免了工厂制作和运输;

③造价相对较低,设计时不需要考虑运输、吊装等受力的影响,设计用钢量减少,也不存在接桩造成旳费用。有资料表明,在桩端土为粘性土时灌注柱的造价比预制桩减少约7%。由于上述几个特点,灌注桩己经成为应用最广泛的基础形式之一。

混凝土抽长期埋在地下与土壤和地下水直接接触,会受到来自土壤和地下水中的各种腐蚀介质的侵蚀,影响混凝土桩的使用寿命,给上部结构带来安全隐患。尤其是混凝土灌注桩,采用现场浇筑而且属于地下隐蔽工程,施工质量较难以保证,混凝土在凝结硬化前就可能与腐蚀介质接触,也无法在灌注桩的表面涂刷防腐蚀材料。这一系列的特点使得混凝土灌注桩受到的各类腐烛介质的侵独影响可能会更加严重。现行国家标准《工业建筑防腐蚀设计规范》对灌注柱在各类腐蚀环境下的使用及采取的相应防腐蚀措施做了明确规定,并且禁止灌注柱在强腐烛环境中使用。

在土木工程中除了混凝土灌注柱以外,险道、地铁、桥梁等地下工程也面临着新拌混凝土直接接触腐蚀性介质而受到腐蚀的问题。因此,对新拌混凝土和硬化后的混凝土在腐蚀介质中进行抗腐蚀对比试验研究,不但是房屋建筑的需要,也是铁路、公路、市政等大量土木工程的需要。

国家标准《工业建筑防腐蚀设计规范》的颁布实施,限制了混凝土灌注桩的使用范围,鉴于我国盐绩土分布范围之广、地下硫酸盐等腐蚀介质含量之多,特别是我国西北地区甘肃、青海、宁夏以及东部沿海一带。在这些地区严格执行规范的要求有可能大大增加工程量及工程造价,但是直接使用灌注桩可能无法保证结构使用的安全问题。

通过对新拌混凝土进行抗硫酸盐侵蚀试验,采用长期浸泡的试验方法,更加直

观的表现灌注桩与外界环境接触的实际情况。

三、混凝土硫酸盐侵蚀破坏的机理及类型

混凝土硫酸盐侵蚀破坏的实质,是环境水中的SO

4

2-进入混凝土内部,与水泥中

的Ca(OH)

2

发生反应生成难溶性物质,这些难溶性物质产生体积膨,从而使混凝土结构产生破坏。混凝土硫酸盐侵蚀可以分为两大类:物理性侵蚀和化学性侵蚀。

混凝土酸盐物理性侵蚀,实际上是混凝土在潮湿状态下,通过毛细作用吸进各

种可溶性溶液,在干燥条件下经蒸发、浓缩而结晶。混凝土中的Na

2SO

4

和MgSO

4

水中结晶,形成Na

2SO

4

·10H

2

O和MgSO

4

·7H

2

O晶体。这个过程体积膨胀了4-5倍,

产生的膨胀压力超过混凝土的抗拉强度时,就引发混凝土的开裂与破坏,这种破坏通常发生在干湿循环区。

(1) 钙钒石结晶型

海水、工业污水中的SO

42-通过微小裂缝与水泥石中的Ca(OH)

2

发生反应生成二

水石膏,二水石膏进一步与水泥石中的水化铝酸钙反应生成高硫型水化硫铝酸钙,反应方程式为

Na

2SO

4

·10H

2

O+Ca(OH)

2

→ CaSO

4

·2H

2

O+2NaOH+8H

2

O

3(CaSO

4·2H

2

O)+3CaO ·Al

2

O

3

·6H

2

O +19H

2

O →3CaO·Al

2

O

3

·3CaSO

4

·31H

2

O

高硫型水化硫铝酸钙晶体中含有大量的结晶水,体积膨胀可达1.5倍,使得固相体积明显增大,引起混凝土结构开裂。

(2) 石膏结晶型

当侵蚀溶液中SO

42-的质量浓度大于1000mg/ L时,渗入混凝土毛细孔SO

4

2-与水

泥石中的Ca(OH)

2

作用生成石膏。反应方程式为

Ca(OH)

2+ SO

4

2-+2H

2

O →CaSO

4

·2H

2

O +2OH-

Ca(OH)

2

转变为石膏后体积增大120%,在混凝土内部产生较大的膨胀压力,致使混凝土膨胀开裂,强度下降。导致混凝土强度和耐久性降低。

(3) 镁盐结晶型

在海水、地下水中含有硫酸镁时,水中的Mg2 +、SO

4

2-可以与水泥石中的水化产

物Ca(OH)

2

发生反应,反应方程式

MgSO

4+Ca(OH)

2

→Mg(OH)

2

+CaSO

4

3(CaSO

4·2H

2

O)+3CaO·Al

2

O

3

·6H

2

O+19H

2

O→3CaO·Al

2

O

3

·3CaSO

4

·31H

2

O

Mg(OH)

2是一种无胶结能力的松散物,侵蚀溶液中的 Mg2+、SO

4

2-与Ca(OH)

2

反应,

降低了水泥石的碱含量,破坏了水化硅酸钙等水化产物稳定存在的条件,使水化硅酸钙等水化产物分解生成水化硅酸镁和石膏。水化硅酸镁黏性差、强度低,而石膏和钙矾石晶体的生成可引起混凝土体积膨胀,产生膨胀压力,使混凝土结构表面开裂,导致混凝土性能进一步劣化。

(4) 碳硫硅钙石结晶型

在湿冷的条件下(环境温度低于15℃) ,在硫酸盐和碳酸盐的共同作用下,侵蚀溶液与水泥石中的水化硅酸钙作用生成无胶凝性的碳硫硅钙石晶体,降低水泥石强度。反应方程式为

3CaO·2SiO

2·3H

2

O + 2(CaSO

4

·2H

2

O)+2CaCO

3

+24H

2

O →2Ca

3

SiSO

4

CO

3

(OH)

6

·12H

2

O + Ca(OH)

2

四、混凝土硫酸盐侵蚀的影响因素

影响混凝土硫酸盐侵蚀的因素很多,按材料、环境和相互作用途径概括起来分为:混凝土本身的性能、侵蚀溶液和环境条件。

(一)影响混凝土硫酸盐侵蚀的内因

混凝土本身的性能是影响混凝土抗硫酸盐侵蚀的内因,它不仅包括混凝土水泥品种、矿物组成、混合材掺量,而且还包括混凝土的水灰比、强度、外加剂以及密实性等。

(1)水泥品种

不同品种的水泥配制的混凝土具有不同的抗硫酸盐侵蚀的能力。混凝土的抗硫酸盐侵蚀能力在很大程度上取决于水泥熟料的矿物组成及其相对含量尤其是C

3

A 和

C 3S的含量,因为C

3

A水化析出水化铝酸钙是形成钙矾石的必要组分,C

3

S水化析出的

Ca (OH)

2是形成石膏的必要组分。降低C

3

A和C

3

S的含量也就相应地减少了形成钙矾

石和石膏的可能性,从而可以提高混凝土的抗硫酸盐侵蚀的能力。抗硫酸盐水泥的

C 3A<5% ,C

3

S<50% ,C

3

A+C

4

AF<22% ,高级抗硫酸盐水泥的C

3

A<3.5% ,这两种水泥的C

3

A

含量较低,所以抗钙矾石结晶侵蚀破坏的能力较强。但是,它们不能解决所有的硫酸盐侵蚀问题,而对石膏结晶侵蚀起关键作用的是水泥石中Ca(OH)

2

的多少,混凝土的强度,密实性和环境条件等。

(2)混凝土的密实性和配合比

混凝土的密实度对其抗硫酸盐侵蚀性能力具有重大影响。混凝土的密实度越高,即使混凝土的孔隙率越小,那么侵蚀溶液就越难渗入混凝土的孔隙内部,因而在水泥石孔隙内产生的有害物质的速度和数量必然减少,另外,混凝土的密实度越高,也会使混凝土的强度提高,因此合理设计混凝土的配合比是非常必要的。尤其是降低水灰比,掺适量的减水剂可使混凝土的密实度增大,从而显著地提高混凝土的抗硫酸盐侵蚀的能力。

(二)影响混凝土硫酸盐侵蚀的外因

影响混凝土抗硫酸盐侵蚀的外因主要有:侵蚀溶液中的SO

4

2-浓度及其它离子的浓度、pH 值以及环境条件如水分蒸发、干湿交替和冻融循环。

五、混凝土硫酸盐侵蚀的判定指标

(一)考虑因素

研究混凝土硫酸盐侵蚀破坏标准时,必须综合考虑以下几个因素:

(1)试件的表观情况;

(2)试件的重量变化、长度变化、体积密度变化和孔隙率的变化;

(3)试件的强度、弹性模量的变化。

(二)试验方案

鉴于混凝土硫酸盐侵蚀的复杂性和现有各种试验方法由于各种原因导致试验结果存在不稳定性和不合理性,本试验方案收集了国内外普遍使用的各种硫酸盐侵蚀的试验方法。方案如下:

1 快速法

快速法参照的是水泥硫酸盐侵蚀快速试验方法(GB/T 2420-1981),又稍作改动,分别采用了标准砂(0.5-1mm)、实际用砂(保留小于2.36mm)、实际用砂(0.6-1.18mm),每种砂中采用的胶凝材料分别有纯水泥、粉煤灰等量取代10%、15%、20%、25%、30%、外加防腐剂1.5%、2%、2.5%、6%、8%等几种配合比,试件规格为10mm*10mm*60mm长方体小试件,压力成型,成型压力80Kg/cm2,标准养护1d拆模,50℃养护箱养护7d,分别进行清水和3%硫酸钠溶液浸泡,浸泡时间为28d,测抗折强度,浸泡期间用稀硫酸滴定保证硫酸钠溶液PH值为7左右,最后用处理后的浸泡溶液试件抗折强度与泡清水试件抗折强度的比值作为抗蚀系数,以此来判断胶凝材料抗硫酸盐侵蚀性。

后来由于标准方法结果的不尽人意又补做了采用不同成型压力的,分别做了压力是0只用刀片插捣和40Kg/cm2的试件,采用标准砂,每种压力的胶凝材料分别纯水泥、等量取代10%、20%、30%的粉煤灰、外掺1.5%、2%、2.5%的防腐剂。压力为0Kg/cm2的浸泡28d测抗折,压力为40Kg/cm2浸泡56d测抗折,其他都与原规范一致。

2 膨胀法

膨胀法即按照硅酸盐水泥在硫酸盐环境中的潜在膨胀性能试验方法(GB/T 749-2001)来做的,因该方法明确规定不适和掺加混合材的水泥,这里还是采用,数据供参考。胶凝材料分别有纯水泥、粉煤灰等量取代10%、15%、20%、25%、30%、外加防腐剂1.5%、2%、2.5%等几种配合比,在胶凝材料中掺加石膏,使混合料中SO

3

含量(质量百分比)达到7%,混合料与砂的比为1:2.75,水灰比为0.485,试件规格为25mm*25mm*280mm长方体,两端预埋钉头以便测长,用刀片插捣成型,试体养护

22-23h脱模,脱模后将试件放在水中至少养护30min测初长L

,测完初长后水平放入

20士1℃水中继续养护,14d、42d、70d后测L

t ,根据P

t

=(L

t

-L

)*100/250算出膨胀率,

通过膨胀率来评估胶凝材料的抗硫酸盐侵蚀性能。

3 干湿循环法I

干湿循环法I参照《普通混凝土长期性能与耐久性试验方法标准》修订方案采用100mm*100mm*100mm立方体混凝土试件,成型1d后拆模,拆模后标准养护28d,压一组作为基准强度,后面几组分别进行30次、50次、70次干湿循环,测量的指标有抗压强度比(抗压侵蚀系数)、质量变化,循环的制度为20℃士1℃5%硫酸钠溶液浸泡16h,取出晾干1h,放入80℃烘箱烘干6h,常温下自然降温1h为一个循环24h。每次取出试件后测试溶液PH值,用硫酸滴定使值保持在7左右。

另外,为了考察温度和侵蚀溶液的浓度对侵蚀的影响分别准备几组试件进行在10℃和40℃的环境中浸泡,及用3%和7%的硫酸钠溶液浸泡。这些试件也进行30、50、70次干湿循环。

4 干湿循环法II

干湿循环法II采用40mm*40mm*160mm长方体试件,粗集料粒径5-10mm,成型1d 后拆模,留一组进行28d标准养护,作为基准试件,其余试件80℃养护箱养护7d后进行干湿循环,循环制度与干湿循环法I一样,分别进行15、30、40、50次干湿循环,测试指标有抗折侵蚀系数、抗压侵蚀系数、质量变化。

5 氯离子渗透试验

硫酸盐的反复物理结晶循环可能比硫酸盐化学反应结晶膨胀对混凝土的损害更大,而硫酸盐在混凝土物理结晶的剧烈程度与混凝土的渗透性直接相关,前面的试验都是从胶凝材料角度或者用混凝土浸泡的方法来考察混凝土抗硫酸盐侵蚀的性能,这里准备考察混凝土的渗透性,考察其与混凝土抗硫酸盐侵蚀的相关性。混凝土的渗透性大时,侵蚀性介质在其中的扩散系数就大,因此侵蚀性介质在混凝土中的扩散系数的大小可以很好的反映混凝土渗透性的高低。这里采用测试较简便的氯离子扩散系数来衡量混凝土的渗透性。

在测试氯离子渗透系数时采用的是中国土木工程学会标准CCES2004-01中的混凝土氯离子扩散系数快速检测的NEL法,检测步骤如下:

(1)配制溶液:用分析纯NaCl和蒸馏水搅拌配制4mol/L的NaCl盐溶液,静停8h以上备用。

(2)试样制备:将待测混凝土试件(可为指定龄期的试件或钻取芯样),切去表面层2cm以避免浮浆层的影响,然后切成100mm*100mm*50mm或φ100mm*50mm的试样,上下表面应平整;取其中三块,用千分尺量取试样中心厚度。

(3)真空饱盐:将5cm厚的混凝土试样垂直码放于NEL型混凝土快速真空饱盐装置的真空室中,试样间应留有间隙。密闭真空室并开动真空泵和气路开关,在真空表显示值小于-0.05MPa的压力下保持6h后,断开气路,导入4mol/L的NaCl溶液至液位指示灯灭,关闭水路开关,再打开气路开关,抽真空至上述真空度并保持2h。关闭真空泵和所有开关,继续保持试样浸泡于真空室的状态至24h为止(从开始抽真空时计)。每次饱盐毕,应及时更换真空泵油(若用无油泵,则需检查工作状态是否正常),并清洗真空室。

:擦去饱盐试样侧面盐水并置于试样夹具中两

(4)NEL法量测氯离子扩散系数D

NEL

电极间(如果混凝土试样表面略不平整,可在两电极与试样表面各加一浸有4mol/L NaCl的80目铜网),用NEL型混凝土渗透性电测仪进行量测,混凝土渗透性电测仪

值。

可自动调节电压,直接给出该混凝土试样中氯离子扩散系数D

NEL

(5)NEL法数据处理和混凝土渗透性评定:取三块平行试样的氯离子扩散系数平均值作为该混凝土中氯离子扩散系数值:若三块平行试样的测定值与平均值的偏差均超过15%(试样本身误差),则需重新进行检测。NEL法建议评价标准:

干湿循环法I和干湿循环法II中的混凝土都进行氯离子渗透试验、试验龄期为90d,测得氯离子渗透系数取平均值。

六、防止或减轻混凝土硫酸盐侵蚀的方法

由以上混凝土硫酸盐侵蚀机理的分析可以看出,导致混凝土硫酸盐侵蚀的内因

主要是水泥石水化铝酸钙、Ca(OH)

2和毛细孔,外因则是侵蚀溶液中存在SO

4

2-。因此,

防止或减轻混凝土硫酸盐侵蚀的方法主要有:

(一)合理选择水泥及掺合料品种

配制抗硫酸盐侵蚀的混凝土,应根据侵蚀环境的特点,合理选择水泥品种。选C

3

A 含量低的水泥(如抗硫酸盐水泥)和掺活性混合材水泥(如矿渣水泥) ,但并非所有的活性混合材都能提高混凝土的抗硫酸盐侵蚀能力,掺碱性矿渣混凝土具有优异的抗硫酸盐侵蚀能力,而掺酸性矿渣则很差。当采用火山灰质或粉煤灰掺料与抗硫酸盐水泥联合使用时,配制的混凝土对抗硫酸盐侵蚀有显著的效果。掺硅粉等超细混合材的混凝土,其抗硫酸盐侵蚀能力也大大提高。

粉煤灰由于其化学成分、矿物组分及颗粒形态等特征, 在混凝土中主要产生 3 大效应, 即活性效应( 火山灰效应) 、形态效应及微集料效应。

活性效应: 粉煤灰中的活性氧化硅和活性氧化铝能与混凝土中的氢氧化钙反应生成水化硅酸钙和水化铝酸钙:

xCa(OH)

2+ SiO

2

+ mH2O= xCaO·SiO

2

·mH

2

O

yCa(OH)

2+ Al

2

O

3

+ nH2O= yCaO·Al

2

O

3

·nH

2

O

使混凝土中氢氧化钙浓度降低,石膏及钙矾石生成数量相应减少,缓解了结晶膨胀,随着掺量的增加,这种缓解作用越发明显;同时,此反应消耗了混凝土中薄弱的Ca(OH)

2

结晶,大大降低了混凝土内部孔隙率,改善了混凝土孔结构,提高了混凝土的密实性。

形态效应: 粉煤灰由大小不等的球状玻璃体组成, 其表面光滑致密,在混凝土中具有滚珠轴承的作用;同时,粉煤灰微细颗粒均匀分布在水泥颗粒之中,阻止了水泥颗粒粘聚,减少用水量,提高混凝土的密实度。

微集料效应:粉煤灰微细颗粒填充到未水化水泥颗粒之间,改善混凝土的微观结构,增强混凝土的密实性。

(二)提高混凝土密实性

水泥水化需水量仅为水泥质量的10~15%左右,而实际需水量(由于施工等因素的要求) 高达40~70% ,多余的水分蒸发后形成连通的孔隙,侵蚀介质就容易渗入水泥石的内部,从而加速了侵蚀。大量事实证明降低W/C ,提高密实度可显著提高混凝土的抗硫酸盐侵蚀能力。因此,在施工中应合理设计混凝土的配合比,降低W/C ,改善集料的级配,掺适当的外加剂及改善施工方法等措施均能提高混凝土的密实度。

混凝土的孔隙系统也是混凝土抗硫酸盐侵蚀的重要影响因素,混凝土出现硫酸盐侵蚀破坏现象主要是由于外部环境中的硫酸根离子通过与外界连通的孔道进入混凝土并与水泥的水化产物反应生成膨胀性物质或结晶出现结晶应力,当膨胀应力或结晶应力超过混凝土的抗拉强度时就会引起破坏。致密性好,孔隙含量少且连通孔少的混凝土可以较好地抵抗硫酸盐侵蚀。而混凝土的孔隙率及孔分布又与混凝土各原材料及其配比、混凝土密实成型工艺、养护制度等多种因素有关。掺入适量的粉煤灰和矿粉,优化了胶凝材料的微级配,同时粉煤灰的微集料效应得以显现,粉煤灰的微细颗粒均匀分布在水泥浆体内,填充孔隙和毛细孔,大大改善了混凝土的孔结构,增大了混凝土的密实度,使得外界的硫酸盐进入混凝土内部的速度大大降低,从而增加了混凝土的抗硫酸盐性能,这一点也是粉煤灰比矿粉更能够提高混凝土抗硫酸盐腐蚀性能的原因。

(三)采用高压蒸汽养护

采用高压蒸汽养护能消除游离的Ca(OH)

2,同时C

2

S 和C

3

S都形成晶体水化物,比

常温下形成的水化硅酸钙要稳定得多,而C

3A则水化成稳定的立方晶系的C

3

AH

6

代替

了活泼得多的六方晶系的C

4AH

12

,变成低活性状态,改善了混凝土抗硫酸盐性能。

(四)增设必要的保护层

当侵蚀作用较强上述措施不能奏效时,可在混凝土表面加上耐腐蚀性强且不透水的保护层(如沥青、塑料、玻璃等)。在实际工程中应用最多的是硅烷防水剂。

硅烷防水剂是一种透明、无味、无毒、无腐蚀的液体。与基材作用时,释放出乙醇并与基材结合转化为有机硅树脂聚合物,最终在基材的毛细孔表面形成一层憎水的硅树脂膜,从而阻止水份和有害物离子渗透到基材内部,达到防水保护的目的,提高建筑建材的强度,延长建筑的使用寿命,降低建筑的维修成本,缩短防水的施工周期。该产品是目前国际市场上的一种新型、环保、高效、理想的防水保护材料。

(1)极佳的渗透度

硅烷防水剂含有独特的硅烷小分子,能迅速渗透基材内部的毛细孔壁上。化学反应速度适中,从而拥有极佳的渗透能力和渗透深度。对表面处理过其它防水材料的基材。

(2)刚柔的防水层

硅烷防水剂与空气中的水汽和基材的中水分反应生成的憎水硅树脂,能与基材牢固有机结合,形成坚固、刚柔的防水层。

(3)优异的抗开裂能力

硅烷防水剂与基材反应形成的硅酮高分子,是一种胶状物质有着优异的弹性和

拉伸强度,能够防止开裂且能够弥补0.2mm的裂缝。

(4)独特的自我修复能力

当防水层表面由于非正常原因导致破损(如外力作用),其破损面上的硅烷与水分继续发生新的反应,使破损表面的防水层得到自我修复。

(5)独特的透气性能

处理后的基材形成了远低于水的表面张力,并产生毛细逆气压现象,形成单向透气防止水分浸入的特殊防水层。

(6)防水基材的表面不留任何涂层膜

涂刷基材后,不改变基材摩擦系数,有助于提高基材强度,保持原有外观,环保,安全、健康。

参考文献

[1]金雁南,周双喜.混凝土硫酸盐侵蚀的类型及作用机理[J].华东交通大学学报,2006,23卷5期:4-8.

[2]程云虹,蒋卫东,尹正风,刘斌,赵文.粉煤灰对混凝土抗硫酸盐侵蚀性能影响的试验研究[J].公路,2006年11月,第11期:128-130.

[3]向小龙,彭超,曾敏,陈强,何正斌.粉煤灰和矿粉对混凝土抗硫酸盐侵蚀性能的影响研究[J].商品混凝土,2012年,第十二期:39-41.

[4]李琳 ,王宇, 盛超 ,左工.混凝土抗硫酸盐侵蚀的试验研究[J].博士·专家论坛

[5]彭一春,马守才,张粉芹.混凝土抗硫酸盐侵蚀性能的研究[J].城市道桥与防洪,2011 年3月第3期:130-132

[6]高立强,李固华.西南交通大学硕士学位论文[D],2008年.

浅谈如何提高混凝土的硫酸盐的腐蚀性

浅谈如何提高混凝土的耐硫酸盐腐蚀性 中铁大桥局集团有限公司兰武二线项目部二工区施忠张家升 提要:我国的西北、西南和沿海的许多地区地下含硫酸盐的水对混凝土有侵蚀性。分析原因,导致混凝土被侵蚀破坏主要有物理性侵蚀和化学性侵蚀两个方面。在施工黄河特大桥时,我们采取在混凝土中掺WQ系列的防腐剂以及其他相关措施,提高混凝土耐硫酸盐的腐蚀,取得较好的效果。可以推广使用WQ系列防腐剂,提高混凝土工程耐侵蚀性和工程质量。 关键词:混凝土环境地下水硫酸盐耐腐蚀 一、概述 1、自然界中使用的混凝土,由于受环境条件的影响,可能引起混凝土性能的变化,我国的西北、西南和沿海的许多地区,地下水和土壤中含有大量硫酸盐、镁盐和氯化物。由于混凝土在这种环境中使用遭受这些有害离子的侵蚀,引起硬化后水泥成分的变化,使其强度降低而遭破坏。如干湿循环、高温、低温的交替,都能使多孔结构的混凝土产生破坏,甚至导致完全崩溃。 2、我们施工的兰武铁路二线工程河口黄河特大桥地处我国的西北,位于黄河的上游段兰州西固区河口乡境内,桥位上游 1.5公里为八盘峡水库大坝,本桥处于水库影响区内。水库的畜、放水对桥位处流量影响很大,水位涨落幅度在 1.5-2.5米之间。桥位处于西北寒冷干燥地区,冬季最冷月月平均气温在-10℃,日温差较大,一般10—20℃之间。据水文地质勘测显示沿桥向有一跨越黄河支沟,该沟汇水面积较大,常年流水,水量平时不大,水质对混凝土工具硫酸盐强腐蚀性,黄河支沟从桥的22号墩、23号墩中间穿过,因此对22号、23号墩砼影响最大。本桥其它墩台处于硫酸盐中等腐蚀性区。在这种环境中使用的混凝土很容易遭受这些不利因素的影响,使混凝土的强度降低而破坏,甚至完全崩溃。 3、为了防止混凝土遭受硫酸盐侵蚀我们采取了选择C3A含量较低、水泥标号较高的水泥、严格控制骨料的级配、尽量掺入磨细粉料、在混凝

钢筋混凝土结构的腐蚀及防护措施

钢筋混凝土结构的腐蚀及防护措施 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,结构强度降低等,从而导致结构耐久性的降低。 据调查,我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50年代至70年代建的海港工程,高桩码头不到20年,甚至7~8年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外,环境的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建筑物达到预期的使用寿命是国内外学术界、工程界极为关切的热点。 二.钢筋的锈蚀原理及分类 1.钢筋的锈蚀条件: 钢筋混凝土构件内钢筋的锈蚀需要三个条件: (1)钢筋表面碱性钝化膜破坏。正常情况下钢筋是包裹在砼之内的,砼则由于水泥的水化反应造成其初始碱性(含有一定Ca(OH)2)较强,正常情况下钢筋在这种碱性环境下不会发生氧化腐蚀。当PH值大于1O时,钢筋腐蚀的速度很慢,当PH值小于5时,其锈蚀的速度就快。由此可见,只有当钢筋混凝土构件内的钢筋周围碱性钝化膜因砼碳化或其它原因导致破坏后,才可能出现腐蚀。

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

普通水泥混凝土配合比参考表

合比没有区分。 2、当掺和掺合料时,釆用内掺法可等量或超量取代,最大取代量应根据掺 合料性能进行强度对比实验结果而定。 3、配制流态性混凝土时,参考配比试验所采用的是减水率在15%以上的高效 减水剂。 4、参考配比试验所有砂石为丨丨区中砂,石子为5-31. 5mm的连续级配的碎 石。 水泥标号 百科名片 水泥的标号是水泥“强度”的指标。水泥的强度是表示单位面积受力的大小,是指水泥加水拌和后,经凝结、硬化后的坚实程度(水泥的强度与组成水泥的矿物成分、颗粒细度、硬化时的温度、湿度、以及水泥中加水的比例等因素有关)。水泥的强度是确定水泥标号的指标,也是选用水泥的主要依据。测定水泥强度的方法用前是“软练法”。目录 展开 基本信息 此法是将1: 3的水泥、(福建平潭白石英砂)及规定的水,按照规定的方法与

水泥拌制成软练胶砂,制成7. 07 X 7. 07 X 7. 07厘米的立方体抗压试块与8字形抗拉试块,在标准条件下进行养护,分别测定其3天、7天及28天的抗压强度和抗拉强度,以分组试块的28天平均抗压强度来确定水泥的标号,但3天、7天的技压强度也必须满足规定的要求。 目前我国生产的水泥一般有225#、325#、425#、525#等儿种标号。生产不同标号的水泥,是为了适应制做不同标号的混凝土的需要。 水泥的标号 标准 水泥的标号是水泥强度大小的标志,测定水泥标号的抗压强度,系指水泥砂浆硬结28d后的强度。例如检测得到28d后的抗压强度为310 kg∕cm2, 则水泥的标号定为300号。抗压强度为300-400 kg∕cm2者均算为300号。普通水泥有:200、250、300、400、500> 600六种标号。200号-300号的可用于一些房屋建筑。400号以上的可用于建筑较大的桥梁或厂房,以及一些重要路面和制造预制构件。 关于水泥标号的用法,其实并没有非常精细的规定,一般来说,设计图纸中会给出明确的规定。 在民用建筑工程中,一般用的比较多的是普通硅酸盐水泥和矿渣硅酸盐水泥。 标号一般常用的有,。 有325的和425的325的250元一300元425的360—450元品牌,地区不一样价格就不一样 关于水泥标号

最新整理钢筋混凝土结构的腐蚀及防护措施.docx

最新整理钢筋混凝土结构的腐蚀及防护措施 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,结构强度降低等,从而导致结构耐久性的降低。 据调查, 我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50 年代至70年代建的海港工程,高桩码头不到20年,甚至7~8 年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性, 即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外, 环境

的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建筑物达到预期的使用寿命是国内外学术界、工程界极为关切的热点。 二.钢筋的锈蚀原理及分类 1.钢筋的锈蚀条件: 钢筋混凝土构件内钢筋的锈蚀需要三个条件: (1)钢筋表面碱性钝化膜破坏。正常情况下钢筋是包裹在砼之内的,砼则于水泥的水化反应造成其初始碱性(含有一定Ca(OH)2)较强,正常情况:下钢筋在这种碱性环境下不会发生氧化腐蚀。当PH值大于1O时,钢筋腐蚀的速度很慢,当PH值小于5时,其锈蚀的速度就快。此可见,只有当钢筋混凝土构件内的钢筋周围碱性钝化膜因砼碳化或其它原因导致破坏后,才可能出现腐蚀。 (2)必须产生电位差,使钢筋产生微电池腐蚀式大电池腐蚀。钢筋腐蚀,是于钢筋表面不同部分之间产生电位差引起的,其作用和电池一样,在钢筋表面有微弱的电流流动。当在钢筋表面构成了许多微小电池,其电化学反应,按下式进行: 阳极反应(活化区):Fe Fe2+ +2e 阴极反应区:2H20+O2+4e 4(OH)- 综合反应式就是:Fe2 +2(OH)一 Fe(OH)2

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

硫酸盐侵蚀环境因素对混凝土性能影响

硫酸盐侵蚀环境因素对混凝土性能影响 硫酸盐的侵蚀环境给混凝土的耐久性能带来严重的影响,在工程施工中应用的混凝土原料一般处在各种硫酸盐的环境中,如浓度、温度、干湿循环等。基于此,本文分析了硫酸盐对混凝土结构产生腐蚀的原理,展开了抗硫酸盐腐蚀性能方面的实验,为更好地提升混凝土的性能打下了基础。 标签:硫酸盐;侵蚀环境;混凝土;性能影响;研究 硫酸盐的侵蚀主要指在硫酸盐如硫酸钙、硫酸钠、硫酸镁等侵入水泥的混凝土时,会和水泥里的氢氧化钙与水化铝酸钙生成化学反应,而且因为氢氧化钙的浓度逐渐下降,导致水化矿物发生分解,进而生成硫铝酸钙和石膏,使体积变大,混凝土瓦解。 1、硫酸盐侵蚀对混凝土构造的腐蚀原理分析 1.1硫酸钠对混凝土的侵蚀原理 硫酸钠最先侵蚀的是Na2S04;和水泥的水化产物Ca(OH)发生化学反应,生成石膏(CaS042H20),再和单硫式的硫铝酸钙与含铝的胶体发生化学反应并生成次生钙矾石,因为钙矾石带有较强的膨胀性,因此会导致混凝土表面产生较大的裂痕。其化学反应式见下: Ca(OH)2+Na2S04 ·10H2O CaSO4 ·2H2O + 2NaOH+8H2O 2(3Cao·Al2O3·12H2O)+ 3(Na2SO4·10 H2O) 3CaO·Al2O3·3CaSO4·32 H2O + 2Al(OH)3+6NaOH+16H2O硫酸钙只会和水化的铝酸钙发生化学反应,生成硫铝酸钙。若侵蚀溶液里的S042-浓度超过1000mg/L的时候,水泥石的毛细孔如果被饱和的石灰溶液填满,既会生成钙矾石,又会在水泥石中析出二水石膏的结晶。从氢氧化钙变化成石膏,体积会扩大到原来的二倍,导致混凝土由于内应力太大而膨胀。石膏膨胀破坏的特征是试件没有产生粗大的裂纹,但是全体溃散。 1.2硫酸镁对混凝土的侵蚀原理 硫酸镁除了可以侵害水化的铝酸钙与氢氧化钙,还可以与水化的硅酸钙发生化学反应,其化学反应式为:3CaO·2SiO2·aq + MgS04 · 7H2O CaSO4·2H2O+Mg (OH)2+SiO2·aq 上面的化学式生成的Mg(0H)2和NaOH不一样,其溶解度较低(0.01g/L),而Ca(OH)2为1.37g/L,饱和溶液的PH值为10.5,而Ca(OH)2为12.4 ,NaOH为13.5,在这种情况下,钙矾石与C-S-H都是很不稳定的,较低PH值的

钢筋混凝土结构的腐蚀及防护措施(标准版)

钢筋混凝土结构的腐蚀及防护 措施(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0623

钢筋混凝土结构的腐蚀及防护措施(标准 版) 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,

结构强度降低等,从而导致结构耐久性的降低。 据调查,我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50年代至70年代建的海港工程,高桩码头不到20年,甚至7~8年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外,环境的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建

材料的腐蚀与防护

姓名:贾永乐学号:201224190602 班级:机械6班 检索主题:材料的腐蚀与防护 数据库:中国知识资源总库——中国期刊全文数据库 检索方法:用高级检索,主题词:腐蚀与防护关键词:材料相与检索结果:1456篇,其中关于航空材料的13篇;金属材料的腐蚀的183篇;材料的防护的522篇,其余为腐蚀与防护相关 的其它技术和方法。 文献综述 1材料腐蚀与防护的发展史: 所有的材料都有一定的使用寿命,在使用过程中将遭受断裂、磨损、腐蚀等损坏。其中,腐蚀失效的危害最为严重,它所造成的经济损失超过了各种自然灾害所造成的损失总和,造成许多灾难性的事故,造成了资源浪费和环境污染。因此,研究与解决材料的腐蚀问题,与防止环境污染、保护人民健康息息相关。在现代工程结构中,特别足在高温、高压、多相流作用下,以及在磨损、断裂等的协同作用下,腐蚀损坏格外严重。据统计,材料腐蚀带来的经济损失约占国民生产总值的1.8%~4.2%。而常用金属材料最容易遭受腐蚀,因此金属腐蚀的研究受到广泛的重视【1】。我们只有在搞清楚材料腐蚀的原因的基础上,才能研制适宜的耐腐蚀材料、涂层及采取合理的保护措施,以达到防止或控制腐蚀的目的。从而减少经济损失和事故,保护环境保障人类健康。 每年由于腐蚀引起的材料失效给人类社会带来了巨大的损失。航

空材料的腐蚀损失尤为巨大。我国针对航空产品的腐蚀与防护的研究和应用起始于上世纪五十年代,经过几十年的曲折发展,取得了很大进步。目前在航空产品的常温腐蚀与防护上,已经进入了向国际接轨的发展阶段。航空材料由于服役环境复杂多变, 不同构成材料相互配合影响, 导致航空材料在飞行器的留空阶段、停放阶段遭受多种不同种类的腐蚀, 增加了飞行器的运营成本, 对飞行器的功能完整性和使用安全性造成严重的危害。英美空军每架飞机每年因腐蚀造成的直接修理费用为11 000~ 55 000美元之间【2】。1985年8月12日,日本一架B747客机因应力腐蚀断裂而坠毁,死亡500余人。因此航空材料的腐蚀防护技术研究对航空业的发展具有举足轻重的作用。 1978.10国家科委主任方毅在全国聘任27位科学家组建了我国《腐蚀科学》学科组,笔者作为学科组成员,第三专业组(大气腐蚀专业组)副组长,承担了航空航天部分的调查任务。1980.1—1982.6广泛函调一百多个工厂,并深入26个厂、所、部队,机场进行了实地考查,发现了大量的腐蚀问题,笔者1985年在我国首次出版了《航空产品腐蚀故障事例集》,汇集了数据比较周全,二十世纪六、七十年代的46个腐蚀故障【3】。 1990年前,铁道车辆车体结构通常采用普碳钢制造,加之使用涂料档次低,对表面处理和涂装工艺不够重视,车辆锈蚀严重,修理时车体钢板的更换率相当高,有些客车甚至仅使用1个厂修期就报废。1985年,耐大气腐蚀钢(即Corten钢,又称耐候钢)开始用于车辆,到1990年,已在全部新造车辆上采用。由于这类钢材含有(0.2%~0.4%

混凝土配合比

混凝土配合比 轻混凝土是指表观密度小于1950kg/m3的混凝土。可分为轻集料混凝土、多孔混凝土和无砂大孔混凝土三类。轻混凝土的主要特点为: 1.表观密度小。轻混凝土与普通混凝土相比,其表观密度一般可减小1/4~3/4,使上部结构的自重明显减轻,从而显著地减少地基处理费用,并且可减小柱子的截面尺寸。又由于构件自重产生的恒载减小,因此可减少梁板的钢筋用量。此外,还可降低材料运输费用,加快施工进度。 2.保温性能良好。材料的表观密度是决定其导热系数的最主要因素,因此轻混凝土通常具有良好的保温性能,降低建筑物使用能耗。 3.耐火性能良好。轻混凝土具有保温性能好、热膨胀系数小等特点,遇火强度损失小,故特别适用于耐火等级要求高的高层建筑和工业建筑。 4.力学性能良好。轻混凝土的弹性模量较小、受力变形较大,抗裂性较好,能有效吸收地震能,提高建筑物的抗震能力,故适用于有抗震要求的建筑。 5.易于加工。轻混凝土中,尤其是多孔混凝土,易于打入钉子和进行锯切加工。这对于施工中固定门窗框、安装管道和电线等带来很大方便。 轻混凝土在主体结构的中应用尚不多,主要原因是价格较高。但是,若对建筑物进行综合经济分析,则可收到显著的技术和经济效益,尤其是考虑建筑物使用阶段的节能效益,其技术经济效益更佳。 一、轻骨料混凝土 用轻粗骨料、轻细骨料(或普通砂)和水泥配制而成的混凝土,其干表观密度不大于1950kg/m3,称为轻骨料混凝土。当粗细骨料均为轻骨料时,称为全轻混凝土;当细骨料为普通砂时,称砂轻混凝土。 (一)轻骨料的种类及技术性质 1.轻骨料的种类。凡是骨料粒径为5mm以上,堆积密度小于1000kg/m3的轻质骨料,称为轻粗骨料。粒径小于5mm,堆积密度小于1200kg/m3的轻质骨料,称为轻细骨料。 轻骨料按来源不同分为三类:①天然轻骨料(如浮石、火山渣及轻砂等);②工业废料轻骨料(如粉煤灰陶粒、膨胀矿渣、自燃煤矸石等);③人造轻骨料(如膨胀珍珠岩、页岩陶粒、粘土陶粒等)。 2.轻骨料的技术性质。轻骨料的技术性质主要有松堆密度、强度、颗粒级配和吸水率等,此外,还有耐久性、体积安定性、有害成分含量等。

混凝土抗硫酸盐类侵蚀防腐剂

混凝土抗硫酸盐类侵蚀 防腐剂 技 术 性 能 及 使 用

说 明 版权所有:北京海岩兴业混凝土外加剂有限公司 混凝土抗硫酸盐类侵蚀防腐剂技术性能及使用说明混凝土抗硫酸盐类侵蚀防腐剂Sulfate corrosion-resistance admixtures for concrete 在混凝土搅拌时加入的,用于抵抗硫酸盐、盐类侵蚀性物质作用,提高混凝土耐久性的外加剂,称为混凝土抗 硫酸盐类侵蚀防腐剂。简称抗硫酸盐类侵蚀防腐剂 执行标准:JC/T1011-2006 混凝土抗硫酸盐类侵蚀防腐剂以下简称“混凝土防腐剂”是新一代防止钢筋混凝土腐蚀的一种全新产品,它突破了钢筋混凝土防腐蚀的传统理念,开创了使用外加剂防腐的新方法,从根本上解决了传统防腐蚀方法的诸多不足和局限性。使用混凝土抗硫酸盐侵蚀防腐剂可以使混凝土具有抗盐类离子侵蚀、抗冻融循环破坏及高抗渗透等良好性能。特别适用对混凝土建筑物既要求防腐又要求抗渗的工程。掺入该产品还可以使混凝土收缩值减小,便于大体积混凝土施工。混凝土防腐剂应用简便,并不需要特殊施工工艺。同时这种防腐方法还综合利用了工业废料—粉煤灰,具有绿色环保的意义。 通过在普通硅酸盐水泥中加入适量的防腐剂(以粉煤灰或矿粉取代部分水泥),而制成一种新的胶凝材料,产品符合中华人民共和国建材行业标准JC/T1011-2006各项指标。这种胶凝材料的抗硫酸盐能力已超过《铁道混凝土及砌石工程规范》附录十三

中规定的AS高级抗硫酸盐水泥水平。对混凝土的耐久性能和施工性能有很大的提高。采用混凝土防腐剂生产的钢筋混凝土具有耐腐蚀、抗冻融、高强度、不渗透、收缩小、减水率高的优异性能。 混凝土防腐剂由北京海岩兴业混凝土外加剂有限公司独家根据用户需求研发生产,达到最基本的国家检测标准,目前混凝土防腐剂市场错综复杂,价位层次不齐,都会做混凝土防腐剂,真正满足客户需求的有几个,原应很简单,是我们的使用客户放纵了生产者,贪便宜所造成的后果是给建筑物带来安全隐患,我们的使用者没有受益。 混凝土防腐剂属于北京海岩兴业混凝土外加剂有限公司独家开发,发明人:于泳,在全国固定销售人员,无任何授权代理公司,工厂合同制生产,实地考察后,我司出示合理的产品质量保证文件,施工方案、实验样板得到客户一致认可后,签订有效合同后,按实际实验材料生产此产品,资料索取请联系我公司,此技术转让,任何剽窃行为举报者有奖! 北京海岩兴业混凝土外加剂有限公司对本产品每批出厂产品均配有防伪标识,批产品的出厂说明,批产品的性能,批产品的合格证,每批都不同.每批货可通过网站,通过客户的合格证中的“产品批号”查询真假,并下载相关施工技术及说明书。 查询登陆“百度”或其他搜索引擎输入“海岩兴业”进入官网即可,本文由北京海岩兴业混凝土外加剂有限公司独家诠释,版权所有:北京海岩兴业混凝土外加剂有限公司,网址:https://www.360docs.net/doc/a16044618.html,。 一、产品的技术指标(掺量为胶凝材料的8%)

钢筋混凝土结构的腐蚀及防护措施(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 钢筋混凝土结构的腐蚀及防护 措施(通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

钢筋混凝土结构的腐蚀及防护措施(通用 版) 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,

结构强度降低等,从而导致结构耐久性的降低。 据调查,我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50年代至70年代建的海港工程,高桩码头不到20年,甚至7~8年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外,环境的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建

普通水泥混凝土配合比参考表

普通水泥混凝土配合比参考表

水泥标号 水泥的标号是水泥“强度”的指标。水泥的强度是表示单位面积受力的大小,是指水泥加水拌和后,经凝结、硬化后的坚实程度(水泥的强度与组成水泥的矿物成分、颗粒细度、硬化时的温度、湿度、以及水泥中加水的比例等因素有关)。水泥的强度是确定水泥标号的指标,也是选用水泥的主要依据。测定水泥强度的方法用前是“软练法”。 目录

此法是将1:3的水泥、标准砂(福建平潭白石英砂)及规定的水,按照规定的方法与水泥拌制成软练胶砂,制成7.07 X 7.07 X 7.07厘米的立方体抗压试块与8字形抗拉试块,在标准条件下进行养护,分别测定其3天、7天及28天的抗压强度和抗拉强度,以分组试块的28天平均抗压强度来确定水泥的标号,但3天、7天的技压强度也必须满足规定的要求。 目前我国生产的水泥一般有225#、325#、425#、525#等几种标号。生产不同标号的水泥,是为了适应制做不同标号的混凝土的需要。 标准 水泥的标号是水泥强度大小的标志,测定水泥标号的抗压强度,系指水泥砂浆硬结28d后的强度。例如检测得到28d后的抗压强度为310 kg/cm2,则水泥的标号定为300号。抗压强度为300-400 kg/cm2者均算为300号。普通水泥有:200、250、300、400、500、600六种标号。200号-300号的可用于一些房屋建筑。400号以上的可用于建筑较大的桥梁或厂房,以及一些重要路面和制造预制构件。 关于水泥标号的用法,其实并没有非常精细的规定,一般来说,设计图纸中会给出明确的规定。 在民用建筑工程中,一般用的比较多的是普通硅酸盐水泥和矿渣硅酸盐水泥。 标号一般常用的有P.O 32.5/42.5,P.S 32.5/42.5。 有325的和425的 325的250元--300元 425的360--450元品牌,地区不一样价格就不一样 关于水泥标号 通用水泥新标准是:GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰硅酸盐水泥及粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》。从2001年4月1日起正式实施。 与旧标准的区别 (1)六大水泥产品标准均引用GB/T17671-1999方法为该标准的强度检验方法,不再采用GB177-85方法。 (2)水泥标号改为强度等级

抗硫酸盐腐蚀型混凝土.

混凝土抗硫酸盐侵蚀研究 作者 摘要:本文介绍了混凝土硫酸盐侵蚀破坏的机理和分类以及混凝土硫酸盐侵蚀的影响因素。主要综合说明了5种判断硫酸盐侵蚀混凝土的检验方法:快速法;膨胀法;干湿循环法I;干湿循环法II;氯离子渗透试验。提出了4种改善方法:合理选择水泥及掺合料品种;提高混凝土密实性;采用高压蒸汽养护;增设必要的保护层。 Summary:This paper introduces the mechanism and classification of erosion of concrete sulfate and influence factors of concrete sulfate attack.5 methods for the inspection of sulfate attack concrete are described:Express method;Plavini;dry wet cycling method I;Dry wet cycling method II;Chloride ion penetration test.4 improvement methods are proposed:Reasonable selection of varieties of cement and admixture;Improve the density of concrete;High pressure steam curing;Add the necessary protective layer. 关键词:硫酸盐侵蚀混凝土改善方法影响因素 Key word: Sulfate attack Concrete Improvement method Influential factors

东北大学 材料腐蚀与防护 复习

第一章 耐蚀性:指材料抵抗环境介质腐蚀的能力。 腐蚀性:指环境介质腐蚀材料的强弱程度。 高温氧化:在高温条件下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程称高温氧化,亦称高温腐蚀。 毕林—彼得沃尔斯原理或P-B 比:氧化时所生成的金属氧化膜的体积2MeO V 与生成这些氧化膜所消耗的金属的体积Me V 之比。 腐蚀过程的本质:金属 → 金属化合物 (高温)热腐蚀:指金属材料在高温工作时,基体金属与沉积在其工作表面上的沉积盐及周围工作气体发生总和作用而产生的腐蚀现象称为热腐蚀. p 型半导体:通过电子的迁移而导电的半导体; n 型半导体:通过空穴的迁移而导电的半导体。 n 型:加Li (低价),导电率减小,氧化速度增加;加Al (高价),导电率增加,氧化速度降低。 p 型:加Li (低价),导电率增加,氧化速度降低;加Cr (高价),导电率减小,氧化度增加。 腐蚀的危害 1)造成巨大的经济损失;2)造成金属资源和能源的浪费造成设备破坏事故,危及人身安全;3)引起环境污染。 金属一旦形成氧化膜,氧化过程的继续进行将取决于两个因素 1)界面反应速度,包括金属/氧化物界面以及氧化物/气体两个界面上的反应速度;2)参加反应物质通过氧化膜的扩散速度。(这两个因素实际上控制了继续氧化的整个过程,也就是控制了进一步氧化速度。在氧化初期,氧化控制因素是界面反应速度,随着氧化膜的增厚,扩散过程起着愈来愈重要的作用,成为继续氧化的速度控制因素)反映物质通过氧化膜的扩散,一般可有三种传输形式 1)金属离子单向向外扩散;2)氧单向向内扩散;3)两个方向的扩散。 反应物质在氧化膜内的传输途径 1)通过晶格扩散:温度较高,氧化膜致密,而且氧化膜内部存在高浓度的空位缺陷的情况下,如钴的氧化;2)通过晶界扩散。在较低的温度下,由于晶界扩散的激活能小东北大学 材料腐蚀与防护 整理人 围安 E-mail jr_lee@https://www.360docs.net/doc/a16044618.html, 2016.1.2

水泥混凝土配合比参考表

精心整理 精心整理 水泥混凝土配合比参考表水泥强度等级 混凝土强度等级 每立方米混凝土材料用量(KG/m2) 配比适用于配置的混凝土类别 水泥 水 沙子 石子 32.5 32.5R C15 300 185 730 1165 适用于配料混凝土坍落度在30mm-70mm 的塑性混凝土 C20 350 185 690 1160 C25 400 185 650 1180 C30 450 183 600 1192 C35 480 180 580 1230 C40 520 178 525 1220 C20 350 185 795 1055 掺入适当高效减水剂,适用于配置混凝土坍落 度大于80mm 流态性混凝土 C25 405 185 758 1061 C30 450 183 752 1045 C35 480 180 705 1040 C40 520 180 655 1070 42.5 42.5R C20 290 185 725 1180 适用于配料混凝土坍落度在30mm-70mm 的塑 性混凝土 C25 345 185 670 1195 C30 380 185 648 1198 C35 430 185 615 1205 C40 460 185 590 1210

精心整理 精心整理C454801805701215 C505101785451220 C203001858301056 掺入适当高效减水剂,适用于配置混凝土坍落 度大于80mm流态性混凝土 C253401858001045 C303851847751050 C354201857501060 C404601837301065 C454851807001080 C505151806751085 62.5 625.R C303401856751200 适用于配料混凝土坍落度在30mm-70mm的塑 性混凝土 C353751856501205 C404051856251215 C454401855951220 C503681835601240 C605251805301250 C303501908001045 掺入适当高效减水剂,适用于配置混凝土坍落 度大于80mm流态性混凝土 C353851887801050 C404201857651055 C454501857501060

钢筋混凝土结构的氯盐腐蚀与防护

钢筋混凝土结构的氯盐腐蚀与防护 摘要:氯盐对钢筋混凝土结构的腐蚀问题越来越严重,必须引起重视。文章分析了氯盐对钢筋混凝土结构的腐蚀机理。最后,对氯盐腐蚀的防护提出了一些措施及建议。 关键词: 钢筋;混凝土结构;氯盐;腐蚀;机理;防腐措施 Abstract: To chlorine salt of reinforced concrete structure corrosion problem more and more serious, must pay attention. This paper analyzes the chlorine to salt of reinforced concrete structure, the corrosion mechanism. Finally, the corrosion protection of chlorine salt puts forward some measures and suggestions. Key Words: Reinforced; Concrete structure; Chlorine salt; Corrosion; Mechanism; Anticorrosion measures 钢筋混凝土结构结合了钢筋与混凝土的优点,造价较低,是土木工程结构设计中的首选形式,应用十分广泛。然而随着结构物的老化和环境污染的加剧,钢筋混凝土结构的耐久性问题越来越引起人们的重视。在1991年召开的第二届混凝土耐久性国际会议上,Mehta教授在题为《混凝土耐久性—五十年进展》的报告中指出:“当今世界,混凝土破坏的原因,按重要性递降顺序排列是:钢筋锈蚀、寒冷气候下的冻害、侵蚀环境的物理化学作用。”可见,钢筋锈蚀问题已被公认为影响钢筋混凝土结构耐久性的第一因素,而氯离子的侵蚀又是引起钢筋锈蚀的首要因素。所以,重视氯盐腐蚀问题已显得迫不及待。 1 氯盐引起的钢筋混凝土结构腐蚀破坏状况 最近几十年来,氯盐引起的混凝土中钢筋腐蚀问题越来越普遍,已成为全球性问题。在英国,根据运输部门1989年的报告:英格兰和威尔士有75%钢筋混凝土桥梁受到氯离子的侵蚀,维护修理费用是原造价的200%。我国南京水利科学研究院在20世纪60年代对华南和华东地区27座海港钢筋混凝土结构的调查发现,74%因钢筋腐蚀而导致结构破坏。在瑞士,由于使用除冰盐导致钢筋锈蚀,每20年就有3000座桥梁需要维修。 2氯盐对钢筋混凝土结构的腐蚀机理 2.1 氯盐对钢筋的腐蚀机理 最近几十年来,人们对氯离子腐蚀钢筋的机理存在不同的观点。但总体认为,氯离子能破坏钢筋表面的钝化膜,使钢筋发生电化学腐蚀。

论文-金属材料的腐蚀与防护

金属材料的腐蚀和防护 罗--(学号:1230060054) (-----大学物理与材料科学学院物理学1202班) 专题授课老师:---- 摘要:自从人类发现并使用金属到如今已有5000年的历史,然而人类在享受金属材料的使用带来便利的同时,也在苦恼着金属腐蚀带来的烦恼。人类在使用金属的同时,也在尽最大的努力对金属进行防护。金属的有效防护,一方面可以降低成本,提高劳动生产率,赢得最大的经济效应;另一方面对加强国防建设也有重要的意义。 关键词:金属材料腐蚀防护 引言:当金属和周围气态或液态介质接触时常常由于发生化学作用或电化学作用而逐渐损坏的过程成为金属腐蚀,每年金属腐蚀给国家带来巨大的经济损失,所以金属的有效防护对于一个企业和国家是至关重要的。 1.金属材料的腐蚀机理 1.1金属腐蚀的分类 按照金属的腐蚀机理可以将金属腐蚀分为化学腐蚀与电化学腐蚀两大类。化学腐蚀就是金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程;电化学腐蚀就是铁和氧形成两个电极,组成腐蚀原电池。金属腐蚀的实质都是金属原子被氧化转化成金属阳离子的过程。 1.2金属腐蚀的发生

自然界中只有极少数金属(例如金、铂等)能以游离状态存在,而大多数金属都需要从它们的矿石中用不同的能量冶炼出来。因此,金属受周围介质的化学及电化学作用而被破坏,这种现象叫做金属的腐蚀。 1.3金属腐蚀的危害 金属腐蚀的危害首先在于腐蚀造成了巨大的经济损失。这种损失可分为直接损失和间接损失。直接损失包括材料的损耗、设备的失效、能源的消耗。由于腐蚀,使大量有用材料变为废料,估计全世界每年因腐蚀报废的钢铁设备约为其年产量的10% 。间接损失包括因腐蚀引起的停工停产,产品质量下降,大量有用有毒物质的泄漏、爆炸,以及大规模的环境污染等。一些腐蚀破坏事故还造成了人员伤亡,直接威胁着人民群众的生命安全。 2.金属腐蚀防护的方法 2.1 改变金属的组成 这种方法最常见的是不锈钢材料。通过在钢铁中加入12-30%的金属铬而改变钢铁原有的组成,从而改善性能,不易腐蚀。如目前迅速发展起来的不锈钢炊具,餐具等就是以此为材料的。2.2 形成保护层 在金属表面覆盖各种保护层,把被保护金属与腐蚀性介质隔开,是防止金属腐蚀的有效方法。可以形成以下几种保护层来对金属腐蚀进行防护: (1)磷化处理: 钢铁制品去油、除锈后,放入特定组成的磷酸

相关文档
最新文档