混凝土抗硫酸盐侵蚀性能的研究

混凝土抗硫酸盐侵蚀性能的研究
混凝土抗硫酸盐侵蚀性能的研究

污水环境下混凝土腐蚀研究

污水环境下混凝土腐蚀研究 污水环境下混凝土要受多种因素的影响而劣化严重影响结构的耐久性。本文分析了不同结构所受的腐蚀及其腐蚀的机理,为防腐设计和维修提供参考。 在现实生活中,许多混凝土结构由于长期受酸碱等化学品、污水、工业废气、紫外线、固体颗粒的流动磨损、冲刷等作用,存在着磨蚀、渗透式涨裂等物理侵蚀,同时也存在着酸碱腐蚀、大气腐蚀、菌藻类微生物腐蚀等多种复杂的腐蚀形态,还要经历一年四季的温差变化,从而过早劣化。 污水环境下混凝土劣化因素分析: 污水主要有生活污水和工业废水。生活污水中含有大量的洗涤用品、粪便、化妆品、泔水等。工业废水主要来自化工、制药、石化造纸等行业含有大量的腐蚀性和有害性化学物质。这些废水如果不经过处理而直接与混凝土构筑物接触,将会直接对混凝土构筑物产生腐蚀。 混凝土属于非均质、多孔性物质表面布满了大量孔隙,腐蚀介质通过孔隙进入混凝土内部,与混凝土发生反应,使其结构松散,并为钢筋腐蚀创造了条件,同时液体流速、温度、干湿交替变化、环境、温差、冻胀等均可加剧混凝土的腐蚀进程。 宗上所诉,污水环境下混凝土的劣化因素主要有:物理破坏、化学破坏、微生物腐蚀。下面就对三种劣化因素分别详解。 一、物理破坏 1、盐结晶胀裂 在液面以上的部位(如桥墩在水面以上的部位),由于毛细作用混凝土孔隙中充满了液体,当水位及环境温度变化时,液体中的盐析出,在一定温度和湿度环境下转化为结晶水化物,体积膨胀,破坏混泥土结构。 2、冻融破坏 混凝土的饱水状态主要与所处的自然环境有关。在大气中使用的混凝土,其含水量未达到该极限值,从而几乎不存在冻融破坏的问题。而处在潮湿环境中的混凝土,其含水量明显增大,最不利的是水位变化区,混凝土的表面含水量通常大于其内部的含水量,且受冻时其表面温度均低于内部温度,因而冻害往往会从表层开始逐渐的深入发展。 二、化学破坏 1、中性化反应 混凝土是碱性物质,与酸发生反应导致其强度降低甚至丧失。最为常见的是碳化反应,空气中的CO2扩散到混凝土的毛细孔中,与水泥水化产生的氢氧化钙、水化硅酸钙、及未水化的硅酸三钙、硅酸二钙相互作用,形成碳酸钙,使混凝土碱度降低,影响其胶结能力,从而使混凝土的强度降低甚至丧失。且碳化过程释放出水化物中的结晶水,使混凝土产生不可逆的收缩,碳化过程若在约束条件下进行,往往引起混凝土表面微裂纹,因而又加剧了混凝土碳化过程。碳化过程使混凝土变脆,延展性变差。 2、硫酸盐侵蚀 硫酸盐侵蚀破坏是一个复杂的物理化学过程,其实质是外界侵蚀介质中的SO42- 进入混凝土的孔隙内部,与水泥石中的Ca(OH)2发生化学反应,生成石膏,由此导致水泥水化物(CSH)分解,生成不溶性且无胶结作用的S i O2胶体,石膏则与混凝土中

混凝土的耐久性研究

混凝土的耐久性研究 摘要:随着城市化建设力度加快,混凝土以价格低廉、性能优越在基础设施中成为了首选的施工材料,具有用量大、用途广等特点。对于混凝土结构,它的耐久性是施工质量以及安全的重要保障[1]。碳化、钢筋腐蚀、冻融及碱-骨料反应等构成混凝土耐久性的主要内容, 而耐久性与强度作为混凝土的两个重要指标,在施工与设计中,受各种因素影响,对混凝土耐久性的重视力度明显缺乏。针对这种情况,为了促进混凝土施工持续发展,必须在环境保护与基础设施上,提高混凝土施工的耐久性。本文从混凝土的抗冻性、混凝土的碳化、碱集料反应、耐磨性、钢筋锈蚀等5个方面对混凝土耐久性影响因素改善措施等方面进行了深度研究和探索,通过从结构形式、原材料、细节构造、工艺措施等方面进行综合对比,从施工、设计与维修上提升施工质量。 关键词:混凝土耐久性;抗冻性;碳化;钢筋锈蚀;碱骨料反应; Abstract:LiFePO4is an important cathode material for lithium-ion batteries. Regardless of the biphasic reaction between the insulating end members, Li x FePO4, optimization of the nanostructured architecture has substantially improved the power density of positive LiFePO4 electrode. The charge transport that occurs in the interphase region across the biphasic boundary is the primary stage of solid-state electrochemical reactions in which the Li concen-trations and the valence state of Fe deviate significantly from the equilibrium end members. Complex interactions among Li ions and charges at the Fe sites have made understanding stability and transport properties of the intermediate domains difficult. Long-range ordering at metastable intermediate eutectic composition of Li2/3FePO4has now been discovered and its superstructure determined, which reflected predomi-nant polaron crystallization at the Fe sites followed by Li+redistribution to optimize the Li Fe interactions. Keywords: cathode material; LiFePO4; lithium ion battery; metastable mesophase; Li2 / 3FePO4; solid material

混凝土抗腐蚀研究

混凝土抗腐蚀研究综述 工程造价2班201112079082 宋富阳 引言 混凝土和钢筋作为主要建筑材料,工业、民用、运输和其他建筑物、构筑物的建造中起了很大作用。用混凝土和钢筋混凝土建造的建筑物和构筑物中的很大一部分,在使用期间常常受到腐蚀介质的侵蚀。如果建筑物在建造时对结构材料不采取或不实施防腐措施,则腐蚀性介质就可能损坏建筑结构,甚至使其丧失使用价值。这对于工业构造物尤为密切,因为在工业构筑物中,建筑结构直接与液态、气态等介质接触,或者被产品和生产中排放的废料所污染。在有色冶金、化学、纸浆及其他工业部门中,约有20-70%的构筑物常常受到腐蚀性介质的作用,并由此引起结构材料的腐蚀。同样农业建筑物,它们会受到腐蚀性有机物的腐蚀。外部介质的腐蚀性越强,在建筑物进行设计、建造和使用是对其腐蚀作用考虑的越少,那么由腐蚀引起的结构损坏就越快和越深。据国外专家估计,由混凝土和钢筋的腐蚀造成的经济损失约占国民收入的1.25%。这些经济损失中不仅包括修复和重建建筑物的材料费用和工程造价,而且还包括产量上的损失,这是由于建筑结构不符合生产要求,或者在修理期间引起的正常生产的中断造成的。据调查,我国在五六十年代,由于要求早强或防冻而掺用过量氯盐的钢筋混凝土结构,因钢筋锈蚀引起混凝土顺筋开裂、剥落、构件破坏的事例屡有发生、八十年代,由于混凝上外加剂的应用不当或施工和原材料质量等原因,钢筋混凝士的腐蚀也不断出现。1981年调查的华南地区18座海港钢筋混凝土码头中,钢筋锈蚀破坏或不耐久的就占89 ,基本完好的只有2座。短的只使用七年,如珠江5万吨级油码头建于1974年,到1981己普遍出现顺筋裂缝,如珠江港一区码头建于1956年,到1981年己产生大面积的混凝土剥落,有资料表明,在英国因钢筋锈蚀需要更换钢筋或重建的钢筋混凝土结构占36 。美国仅州际公路网56万多座桥梁中,处于严重失效的就省9万多座,损坏率达16%,一般使用5年后就出现钢筋腐蚀破坏,每年损失数亿美元。混凝上中钢筋腐蚀引起结构过早的破坏,己愈来愈引起全世界工程界的严重关注。为了通过提高建筑结构在各种腐蚀性介质中的抗腐蚀性和耐久性,消除建筑结构局部的修复工作,以减少建筑中腐蚀给国民经济带来的损失。必须对于在各种腐蚀性介质作用卜混凝十的损坏及钢筋腐蚀过程的实质、钢筋混凝土结构的工作特性和受力状以及可以提供的防腐方法及其特性等,进行深入的研究 一混凝土腐蚀机理 与混凝土相接触的周围介质,如空气,水(海水,地下水)活土壤中含有不同浓度的额酸。盐,碱类侵蚀性物质时,当其进入混凝土内部,以之相关成分发生物理化学反应后,混凝土遭受腐蚀,逐渐发生绽裂剥落,进而引起钢筋腐蚀导致结构失效 混凝土腐蚀的原因和机理随侵蚀介质和环境条件而异,一般分为俩类 (1)溶蚀性腐蚀 水泥的水化物生成中,Ca(OH)2最容易被渗入的水溶解,又促使水花硅酸概等多碱性化合物发生水解,随后破坏低碱性水化产物(CaO,SiO2)等,最终完全破坏水泥石结构,某些酸盐溶液渗入混凝土,生成无凝胶型的松软物质,易被水溶蚀。水泥石的溶蚀程度随渗流速度增大溶蚀后,胶结能力减弱,混凝土材料的整体性被破 (2)结晶膨胀性腐蚀 含有硫酸盐的水渗如混凝土中,与水泥水化产物Ca(OH)2的化学作用生成石膏(CaSO4.2H2O)以溶液形式存在。石膏在和水化物铝硫酸盐起作用,形成多个结晶水的水化铝硫酸钙,体积膨胀,导致混凝土开列破坏

混凝土耐久性的主要因素与其提高的措施

混凝土耐久性的主要因素与其提高的措施 混凝土耐久性是指混凝土构件在长期使用条件下抵抗各种破坏因素作用而保持其原有性能的性质。近年来,随着混凝土技术的发展,高性能混凝土的研究与应用普遍得到人们的重视,混凝土耐久性的研究则是其核心的研究内容。 标签:混凝土耐久性;主要因素;提高措施 1.影响混凝土耐久性的主要因素 1.1混凝土的抗渗性 混凝土的抗渗性是指混凝土在压力水的作用下抵抗渗透的能力。如果混凝土的抗渗性不好、溶液性的物质能浸透混凝土、与混凝土的胶结材料发生化学反应而使混凝土的性能劣化。在钢筋混凝土中、由于水分与空气的渗透、会引起钢筋的锈蚀。钢筋的锈蚀导致其体积增大、造成钢筋周围的混凝土保护层的开裂与剥落、使钢筋混凝土结构失去其耐久性。渗透性对混凝土的抗冻性也有重要的影响。因为渗透性决定了混凝土可能为水饱和的程度。渗透性高的混凝土、其内部孔隙为水分充满、在水的冰冻压力作用下、混凝土内部结构更易于产生损伤与破坏。因此可以说、混凝土的抗渗性是其耐久性的第一道防线。混凝土与其微观结构的劣化和侵蚀性介质的传输有关、混凝土的渗透性取决于其自身的微结构和饱和水程度、是决定混凝土性能劣化的关键因素。因此可能通过检测混凝土的渗透性来评估其耐久性。 1.2混凝土的抗冻性 混凝土的抗冻性决定于水泥石的抗冻性和骨料的抗冻性。从冰冻对水泥石和骨料的作用可以看出诸多因素影响混凝土的抗冻性。这些因素包括:水分迁移路径的距离、混凝土的孔结构、混凝土的饱和度、混凝土的抗拉强度以及冷却速度等。提高混凝土的抗冻性可以采用以下措施; (1)引气:这是因为在水泥石受到冻融作用时、水分迁移所引起的压力、可以由引入的微细气泡得到释放。一般说来、混凝土的抗冻性随着阴气量的增加而增加。而当含气量一定时、气泡尺寸、气泡数量和气泡的间距都会影响混凝土的抗冻性能。 (2)控制水灰比:水泥石内的大孔隙量与水灰比和水化程度有关。一般说来、水灰比小、水化程度高则水泥石中的孔隙越少。由于表面张力的原因、大孔隙内的水比小孔隙内的水更易于結冰、因此、在同等条件下、水灰比大的水泥石内可结冰的水更多、发生冻融破坏的几率更大。 (3)降低饱和度:混凝土的饱和度对冻融破坏有很大的影响、干燥的或部分干燥的混凝土不容易受到冻融破坏。一般存在一个临界饱和度、当混凝土的含

混凝土抗硫酸盐类侵蚀防腐剂

混凝土抗硫酸盐类侵蚀 防腐剂 技 术 性 能 及 使 用

说 明 版权所有:北京海岩兴业混凝土外加剂有限公司 混凝土抗硫酸盐类侵蚀防腐剂技术性能及使用说明混凝土抗硫酸盐类侵蚀防腐剂Sulfate corrosion-resistance admixtures for concrete 在混凝土搅拌时加入的,用于抵抗硫酸盐、盐类侵蚀性物质作用,提高混凝土耐久性的外加剂,称为混凝土抗 硫酸盐类侵蚀防腐剂。简称抗硫酸盐类侵蚀防腐剂 执行标准:JC/T1011-2006 混凝土抗硫酸盐类侵蚀防腐剂以下简称“混凝土防腐剂”是新一代防止钢筋混凝土腐蚀的一种全新产品,它突破了钢筋混凝土防腐蚀的传统理念,开创了使用外加剂防腐的新方法,从根本上解决了传统防腐蚀方法的诸多不足和局限性。使用混凝土抗硫酸盐侵蚀防腐剂可以使混凝土具有抗盐类离子侵蚀、抗冻融循环破坏及高抗渗透等良好性能。特别适用对混凝土建筑物既要求防腐又要求抗渗的工程。掺入该产品还可以使混凝土收缩值减小,便于大体积混凝土施工。混凝土防腐剂应用简便,并不需要特殊施工工艺。同时这种防腐方法还综合利用了工业废料—粉煤灰,具有绿色环保的意义。 通过在普通硅酸盐水泥中加入适量的防腐剂(以粉煤灰或矿粉取代部分水泥),而制成一种新的胶凝材料,产品符合中华人民共和国建材行业标准JC/T1011-2006各项指标。这种胶凝材料的抗硫酸盐能力已超过《铁道混凝土及砌石工程规范》附录十三

中规定的AS高级抗硫酸盐水泥水平。对混凝土的耐久性能和施工性能有很大的提高。采用混凝土防腐剂生产的钢筋混凝土具有耐腐蚀、抗冻融、高强度、不渗透、收缩小、减水率高的优异性能。 混凝土防腐剂由北京海岩兴业混凝土外加剂有限公司独家根据用户需求研发生产,达到最基本的国家检测标准,目前混凝土防腐剂市场错综复杂,价位层次不齐,都会做混凝土防腐剂,真正满足客户需求的有几个,原应很简单,是我们的使用客户放纵了生产者,贪便宜所造成的后果是给建筑物带来安全隐患,我们的使用者没有受益。 混凝土防腐剂属于北京海岩兴业混凝土外加剂有限公司独家开发,发明人:于泳,在全国固定销售人员,无任何授权代理公司,工厂合同制生产,实地考察后,我司出示合理的产品质量保证文件,施工方案、实验样板得到客户一致认可后,签订有效合同后,按实际实验材料生产此产品,资料索取请联系我公司,此技术转让,任何剽窃行为举报者有奖! 北京海岩兴业混凝土外加剂有限公司对本产品每批出厂产品均配有防伪标识,批产品的出厂说明,批产品的性能,批产品的合格证,每批都不同.每批货可通过网站,通过客户的合格证中的“产品批号”查询真假,并下载相关施工技术及说明书。 查询登陆“百度”或其他搜索引擎输入“海岩兴业”进入官网即可,本文由北京海岩兴业混凝土外加剂有限公司独家诠释,版权所有:北京海岩兴业混凝土外加剂有限公司,网址:https://www.360docs.net/doc/ef5414453.html,。 一、产品的技术指标(掺量为胶凝材料的8%)

抗硫酸盐混凝土技术的应用

抗硫酸盐及防腐蚀混凝土的研发与应用 赵志刚 天津市中凝佳业混凝土有限公司 2006年7月

1.引言 混凝土的两大基本性能是强度和耐久性,以往的研究和设计都偏重于混凝土的强度,而往往忽视了混凝土的耐久性。以往由于对基础设施的耐久性认识不足或不够重视,使世界各国建筑物寿命大大缩短。在中国,1965年至1968年调查的华南、华东27座海港钢筋混凝土中,因钢筋锈蚀破坏而不耐久的占74%,在1981年调查的华南18座仅用7至25年海港钢筋混凝土中,基本完好的只有采取防护挫损的2座,仅占11%。 腐蚀对钢筋混凝土的破坏非常严重,随着我国社会经济的发展,城市建设技术的进步,大跨度结构和高层建筑已广泛应用,而在恶劣环境下的构筑物:海底隧道、海上采油平台与堤坝等被腐蚀得事例举不胜举。天津地处渤海之滨,地下水富含硫酸盐根和镁、氯离子等物质——对混凝土产生腐蚀的有害成分。因此,在天津地区研发抗腐蚀混凝土具有较大的实用价值。 2.硫酸盐、氯离子腐蚀机理 2.1硫酸盐腐蚀机理 硫酸盐侵蚀主要在混凝土硬化后由水泥中的C3A和周围环境中的硫酸盐之间的反应引起的。C3A与硫酸盐反应生成硫铝酸钙(钙矾石)引起膨胀,钙矾石生长需要空间,在固体材料内的封闭环境中,钙矾石晶体生长可产生高达240MPa的压力,足以引起周围材料的破坏。 根据硫酸盐来自来源的不同可以分为外部硫酸盐侵蚀和内部硫酸盐侵蚀两种。混凝土中含有富硫酸盐成分的材料引起的膨胀、开裂破坏称为内部硫酸盐侵蚀;混凝土暴露在硫酸盐环境中(如含硫酸盐的污水、地下水或土壤等)产生的侵蚀叫做外部硫酸盐侵蚀。一般所说的硫酸盐侵蚀均指外部硫

酸盐侵蚀。 不仅是石膏,许多硫酸盐能溶于水,与水泥石中氢氧化钙接触反应时,首先生成硫酸钙(此反应又称为石膏腐蚀——G盐侵蚀),产生约120%的膨胀。 CH + SO42-(aq) CSH2 + 2OH_(aq) (1) 随后,单硫型硫铝酸钙与硫酸钙生成钙矾石(也称E盐侵蚀)。 C4ASH12 + 2CSH2+ 16H C6AS3H32(2) 硫酸镁对混凝土更具有侵蚀性。 MS(aq) + CH + 2H CSH2 + MH (3) C3S2H3 + 3MS(aq) 3CSH2 + 3MH + 2SH x(4) C4ASH12 + 3MS(aq) 4CSH2 + 3MH + AH3(5) 由于MH的溶解度很小,从溶液中沉淀下来,使反应(3)(4)(5)不断向右进行,从而使水泥石中CH(氢氧化钙)、C-S-H和硫铝酸钙分解,尤其是反应(3)的不断向右进行,同时也增加了石膏侵蚀的速率。此种侵蚀也被称为M盐侵蚀。 总之,可以认为硫酸盐侵蚀是连续的三个过程。 1)硫酸盐离子扩散进入混凝土的孔中; 2)G盐侵蚀开始不断进行; 3)硫酸盐达到足够浓度后,引起E盐侵蚀反应。 2.2氯离子腐蚀机理 海水中的NaCl、MgCl2与水泥的水化产物Ca(OH)2作用,生成CaCl2、Mg(OH)2等物质。 MgCl2 + Ca(OH)2 CaCl2 + Mg(OH)2 NaCl + Ca(OH)2 CaCl2 + 2NaOH

普通混凝土耐久性研究

摘要 从上个世纪中期,混凝土结构因耐久性不良造成过早失效及崩塌破坏的事故在国内外都屡见不鲜,世界各国为此付出的代价十分沉重。由于工程安全因素更由于耗费巨资的经济因素,混凝土结构日益突出的耐久性问题,越来越受到世界各国学术界和工程界的广泛重视。提高混凝土的耐久性,对节约资源、能源及资金均有重大的意义。 通过阅读大量关于混凝土耐久性方面的文献资料,总结了国内外混凝土结构的耐久性状况和研究动态,明确了混凝土结构耐久性的意义和重要性。 本论文探讨了混凝土的腐蚀类型和腐蚀机理,包括了混凝土基材水泥的腐蚀类型和机理,钢筋的锈蚀机理和混凝土结构的腐蚀机理,总结了混凝土耐腐蚀性能的主要影响因素以及它与抗渗性能和抗冻性能之间的关系;讨论了原材料的选择,包括水泥品种、集料性质、拌合及养护用水的水质情况、外加剂的种类和掺合料对混凝土耐腐蚀性能的影响。 关键词:混凝土;耐久性;耐腐蚀性

目录 一、绪论 (2) (一)混凝土耐久性的含义 (2) (二)国内外混凝土耐久性研究动态 (2) 二、混凝土的腐蚀类型和腐蚀机理 (3) (一)腐蚀 (3) (二)水泥类材料的腐蚀机理 (3) (三)混凝土的耐腐蚀性与抗渗性和抗冻性之间的关系 (5) 三、原材料对混凝土耐腐蚀性能的影响 (5) (一)水泥 (5) (二)集料 (6) 四、普通混凝土高性能化 (6) (一)提高性能的技术途径 (6) (二)提高混凝土耐久性 (7) 五、结论与展望 (8) (一)结论 (8) (二)展望 (8)

普通混凝土耐久性研究 一、绪论 从19世纪20年代波特兰水泥价而成为土建工程中不可缺少的材料,广泛用于桥梁、大坝、高速公路、工业与民用建筑等结构中。据不完全统计,当今世界每年消耗的混凝土量不少于45亿立方米,并且随着逐步增长的城市化建设,年消耗量在不断增长。 混凝土材料经历了低强度、中等强度、高强度乃至超高强度的发展历程,似乎人们总是乐于追求强度的不断提高。但是近四五十年来,混凝土结构因材质劣化造成过早失效以及崩塌破坏的事故在国内外都屡见不鲜,并有愈演愈烈之势。这些混凝土工程的过早破坏,其原因不是强度不够,而是由于混凝土耐久性不良所造成。 (一)混凝土耐久性的含义 所谓的混凝土耐久性,是指其抵抗环境介质的作用,并长期保持良好的使用性能和外观完整性,从而维持混凝土结构的安全和正常使用的能力。 影响混凝土结构耐久性的因素很多,可分为内在因素和外在因素两大类。内在因素是指混凝土结构抵御环境的能力,由结构的设计形状和构造形式、选用的水泥和骨料的种类、外加剂的品种,钢筋保护层的厚度和直径的大小、混凝土的水灰比、浇注和养护的施工工艺等多种因素所决定。外在因素是环境对混凝土结构的物理和化学作用,包括干湿和冻融循环、碳化、化学介质侵蚀、磨损破坏等诸多方面,不同环境对混凝土结构耐久性的影响程度不尽相同,外在因素是通过内在因素而起作用的混凝土耐久性具体包括抗渗、抗冻、耐腐蚀、碳化、碱骨料反应及混凝土中的钢筋锈蚀等性能。虽然混凝土在遭受压力水、冰冻或侵蚀作用时的破坏过程各不相同,但影响因素却有许多相同之处。混凝土的密实度是最为关键的因素,其次是材料的性质、施工质量等。 (二)国内外混凝土耐久性研究动态 混凝土结构耐久性问题的日益突出,引起了世界各国学术机构、学者和工程技术人员对加强钢筋混凝土结构耐久性研究的重视,表现在各种结构耐久性学术

耐海水腐蚀混凝土的配制技术研究

耐海水腐蚀混凝土的配制技术研究不少海港码头、石油钻井平台等混凝土构筑物因海水腐蚀仅几年就已出现明显的混凝土剥蚀、开裂等现象。仅仅单方面考虑混凝土的腐蚀过程和构筑物的使用条件是不够的, 还要考虑混凝土与海洋环境的相互作用, 譬如水位变化、海流、生物等因素对海上混凝土构筑物的有害影响。所以在许多情况下必须对混凝土构筑物采取适当的应对措施, 亦即应在设计、施工及建筑物的使用过程中采取适当的预防措施, 否则, 海水及其环境可能损坏建筑结构, 甚至使其丧失使用价值。 海水腐蚀混凝土的机理包括:溶出性腐蚀、离子交换型腐蚀、膨胀性腐蚀 溶出性腐蚀: 在通常情况下, 与水泥石水化产物的溶解和迁移有关的溶出性腐蚀, 似乎不可能发生在海水中的混凝土结构上, 因为海水中所含的盐类首先会引起其它类型的腐蚀。但是, 由于水泥石与海水的相互作用, 同混凝土接触的海水, 特别是渗入混凝土内部的海水, 其成分发生了剧烈变化。在表层中的Mg2+和CO32- 呈结合状态, 从过饱和溶液中沉淀出来的大量CaSO4·2H2O, 也在发生交换反应的地方积聚。渗入混凝土深部的海水含有大量的NaCl, 以及一些CaCl2、CaSO4 和少量未直接参加反应的其它盐类, 这种成分的海水能够溶解水泥石的大多数组分, 亦即已经形成了发生溶出腐蚀过程的条件。然而, 只要海水不渗入混凝土,溶出性腐蚀就不可能发生。只有当单面压头造成海水的渗透时,溶出性腐蚀的潜在可能性才成为破坏混凝土的因素。 另外, 在海水中的混凝土, 其表面上会产生或积聚大量的丁酸细菌, 当这些丁酸细菌不能为其它种类的细菌所平衡时,就能迅速破坏水泥石。但在大多数情况下, 混凝土表面上的大量细菌能互相保持平衡, 即一种细菌的生命活动排泄物能被其它几种细菌所利用。天然条件下的海水在细菌生物区与混凝土相接触时, 呈弱碱性反应( pH=8.3~8.4) , 而不是酸性反应。仅在个别情况下, 当海水的条件有利于生物繁殖( 细菌类) , 或有利于植物( 藻类) 的生长, 并且两种情况不相混合时, 海水的性质才会有利于混凝土的腐蚀。 离子交换型腐蚀: 镁盐( MgCl2+MgSO4+MgBr2) 在海水中的含量仅次于NaCl,占海水总含盐量超过16.0%。镁盐能与硬化水泥石中的成分产生阳离子交换作用, 新生成物不再能起到“骨架”作用: Mg2++Ca( OH) 2→Ma( OH) 2↓+Ca2+ Mg2++ 3CaO·2SiO2·3H2O+2H2O→ 3Ca2++3Mg( OH) 2 ↓ +2SiO2·H2O Mg( OH) 2 和SiO2·H2O 均无凝胶特性, 从而使水泥石软化。所产生的Ca2+ 一部分形成可溶性CaCl2, 随扩散而被带出水泥石,使水泥石孔隙率和渗透性提高; 另一部分则形成石膏( CaSO4·2H2O) , 会进一步产生膨胀性腐蚀。 膨胀性腐蚀: 海水中的硫酸盐与水泥石中Ca( OH) 2 起置换作用而生成石膏: SO42-+Ca( OH) 2+2H2O→CaSO4·2H2O+2OH- 在水位变化区域, 石膏在水泥石中的毛细孔内沉积、结晶,引起体积膨胀, 使水泥石开裂, 最后材料转变成糊状物或无粘结力的物质。而处于水下的混凝土, 所生成的石膏会与水泥石固态单硫型水化硫铝酸钙和水化铝酸钙作用生成三硫型水化硫铝酸钙( 钙矾石) : 3CaO·Al2O3·CaSO4·12H2O+2CaSO4·2H2O+15H2O→3CaO·Al2O3·3CaSO4·31H2O 4CaO·Al2O3·12H2O+3CaSO4·2H2O+12H2O→3CaO·Al2O3·3CaSO4·31H2O+Ca( OH) 2 生成的三硫型水化硫铝酸钙含有大量的结晶水, 其体积比原来增加1.5 倍以上, 因此产生局部膨胀压力, 使水泥石结构胀裂, 强度下降而造成破坏。譬如原东德Magdeburg 城Elbe 河桥桩被硫酸盐严重侵蚀, 在4 年内由于混凝土膨胀, 将桩升高8cm造成广泛开裂,

抗硫酸盐腐蚀型混凝土.

混凝土抗硫酸盐侵蚀研究 作者 摘要:本文介绍了混凝土硫酸盐侵蚀破坏的机理和分类以及混凝土硫酸盐侵蚀的影响因素。主要综合说明了5种判断硫酸盐侵蚀混凝土的检验方法:快速法;膨胀法;干湿循环法I;干湿循环法II;氯离子渗透试验。提出了4种改善方法:合理选择水泥及掺合料品种;提高混凝土密实性;采用高压蒸汽养护;增设必要的保护层。 Summary:This paper introduces the mechanism and classification of erosion of concrete sulfate and influence factors of concrete sulfate attack.5 methods for the inspection of sulfate attack concrete are described:Express method;Plavini;dry wet cycling method I;Dry wet cycling method II;Chloride ion penetration test.4 improvement methods are proposed:Reasonable selection of varieties of cement and admixture;Improve the density of concrete;High pressure steam curing;Add the necessary protective layer. 关键词:硫酸盐侵蚀混凝土改善方法影响因素 Key word: Sulfate attack Concrete Improvement method Influential factors

普通C40混凝土抗硫酸盐侵蚀性能研究

广东建材2008年第8期表1C40混凝土配合比 材料水泥(kg/m3 )粉煤灰(kg/m3 )砂(kg/m3 )5~31.5mm碎石(kg/m3)水(kg/m3)减水剂(kg/m3)坍落度(mm)3/28d立方体抗压强度(MPa) 用量3309070511051686.72142/16934.9/50.2 硫酸盐侵蚀是混凝土化学侵蚀中最广泛和最普通的形式。硫酸钠、硫酸钾、硫酸钙、硫酸镁等硫酸盐均会 对混凝土产生侵蚀作用。在污水处理厂、化纤工业、制药、制皂业等厂房附近的地表水和地下水中由于硫酸盐浓度相对较高,混凝土结构物的硫酸盐侵蚀破坏现象较为常见。 硫酸盐侵蚀破坏是一个复杂的物理化学过程,多年以来,国内外许多学者在侵蚀机理方面作了大量的研究。其破坏实质是,环境水中的硫酸根离子进入其内部,与水泥石中一些固相组分发生化学反应,生成一些难溶的盐类矿物而引起。这些难溶的盐类矿物一方面可形成钙矾石、石膏等膨胀性产物而引起膨胀、开裂、剥落和解体,另一方面也可使硬化水泥石中CH和C-S-H等组分溶出或分解,导致水泥石强度和粘结性能损失。当硫酸盐浓度较高时干湿交替作用下会发生硫酸盐结晶破坏,结晶的硫酸盐会产生类似冻融的膨胀破坏,集料的坚固性实验就是直接用饱和Na2SO4溶液干湿交替5循环后的质量损失来衡量。 通常情况下,混凝土受硫酸盐侵蚀后表面泛白,风干后更为明显,损坏通常在棱角处开始,进而表面剥落,伴随着着裂缝发育层层推进,极端情况下有可能导致结构崩溃。 1原材料、试验方法及试验结果 选用佛山某混凝土搅拌站日常供应C40商混实际 使用的混凝土原材料。水泥为英德龙山水泥有限公司生产的海螺牌P.O42.5R水泥,广电Ⅱ级粉煤灰,细集料为 肇庆西江砂,细度模数2.9;粗集料为广州增城永和石场生产的5~31.5mm花岗岩碎石;减水剂采用佛山瑞安建材科技有限公司生产的LS-300缓凝高效减水剂。具体配比见表1。 按标准成型150mm×150mm×550mm的混凝土抗折试件6个,试件于20±2℃静停24小时,脱模。标准养护至28天,取出试件擦干后再用电吹风仔细吹干,再以环氧树脂涂覆部分表面,如图1所示。 将已涂覆部分表面的试件分成两组,其中一组的三 条试件在水中养护300天,另一组的三条试件在硫酸盐侵蚀溶液中浸泡300天。试件放在容器中浸泡时,浸泡液体积为试件体积的2倍,每个试件需有24.8升的侵蚀溶液。本实验将同组三条试件放在同一容器内浸泡,考虑到实验周期较长,可能存在蒸发等损失,浸泡溶液体积初始为75升,中途不补水,始终维持液面高出试件顶面40~60mm,采用化学纯无水硫酸钠配制5%的硫酸盐溶液。 在浸泡过程中,每隔7天用1NH2SO4(H+浓度1mol/L)滴定以中和试件在溶液中放出的Ca(OH)2,采用 普通C40混凝土抗硫酸盐侵蚀性能研究 梁汝恒 摘 要:硫酸盐侵蚀破坏是一个复杂的物理化学过程,同时也是混凝土化学侵蚀中最广泛和最普通 的形式。硫酸根离子与水泥石中一些固相组分发生化学反应,对混凝土结构的破坏通常始于棱角处,进而表面剥落,伴随着着裂缝发育层层推进,极端情况下有可能导致结构崩溃。本文通过普通C40混凝土在5%浓度的硫酸盐溶液中相对较长时间的浸泡,采用抗折强度的剩余来表征其抗蚀性能,并对侵蚀机理进行了初步的探讨,为类似环境下混凝土结构的抗硫酸盐侵蚀性能的研究提供了基础性参考资料。 关键词:普通C40混凝土;抗硫酸盐侵蚀;抗折强度;抗蚀系数 图1 水泥与混凝土 51--

混凝土结构耐久性研究

混凝土结构耐久性 1.1 混凝土结构耐久性问题的重要性 钢筋混凝土结构结合了钢筋与混凝土的优点,造价较低,且一直被认为是一种非常耐久性的结构形式,其应用范围非常广泛。 然而,从混凝土应用于建筑工程至今的150年间,大量的钢筋混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限。这其中有的是由于结构设计的抗力不足造成的,有的是由于使用荷载的不利变化造成的,但更多的是由于结构的耐久性不足导致的。特别是沿海及近海地区的混凝土结构,由于海洋环境对混凝土的腐蚀,尤其是钢筋的锈蚀而造成结构的早期损坏,丧失了结构的耐久性能,已成为实际工程中的重要问题。早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。耐久性失效是导致混凝土结构在正常使用状态下失效的最主要原因。 国内外统计资料表明,由于混凝土结构耐久性病害而导致的损失是巨大的,并且耐久性问题越来越严重。结构耐久性造成的损失大大超过了人们的估计。国外学者曾用“五倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元,那么就意味着:发现钢筋锈蚀时采取措施将追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时采取措施将追加维修费125美元。 因此,钢筋混凝土结构耐久性问题是一个十分重要也是迫切需要加以解决的问题,通过开展对钢筋混凝土结构耐久性的研究,一方面能对已有的建筑结构物进行科学的耐久性评定和剩余寿命预测,以选择对其正确的处理方法;另一方面可对新建项目进行耐久性设计,揭示影响结构寿命的内部与外部因素,从而提高工程的设计水平和施工质量。因此,它既有服务于服役结构的现实意义,又有指导待建结构进行耐久性设计的理论意义,同时,对于丰富和发展钢筋混凝土结构可靠度理论也具有一定的理论价值。 正因为混凝土结构耐久性的问题如此重要,近年来世界各国均越来越重视混凝土结构的耐久性问题,众多的研究者对混凝土结构耐久性展开了研究,取得了系列研究成果,而材料层面的成果尤为显著。迄今为止,已经形成了混凝土结构耐久性研究框架,如图1-1所示。本章将着重介绍混凝土结构耐久性研究中成熟的相关研究成果。 图1-1 混凝土结构耐久性研究框架 ?????????????????????????????????????????????????耐久性评估耐久性设计结构层次构件承载力的变化粘结性能衰退模型混凝土锈胀开裂模型构件层次钢筋锈蚀碱-集料反应冻融破坏氯盐腐蚀混凝土碳化材料层次工业环境土壤环境海洋环境大气环境环境层次混凝土结构耐久性

混凝土抗腐蚀研究

混凝土抗腐蚀研究综述 结构工程05171178 康丽萍 引言 混凝土和钢筋作为主要建筑材料,工业、民用、运输和其他建筑物、构筑物的建造中起了很大作用。用混凝土和钢筋混凝土建造的建筑物和构筑物中的很大一部分,在使用期间常常受到腐蚀介质的侵蚀。如果建筑物在建造时对结构材料不采取或不实施防腐措施,则腐蚀性介质就可能损坏建筑结构,甚至使其丧失使用价值。这对于工业构造物尤为密切,因为在工业构筑物中,建筑结构直接与液态、气态等介质接触,或者被产品和生产中排放的废料所污染。在有色冶金、化学、纸浆及其他工业部门中,约有20-70%的构筑物常常受到腐蚀性介质的作用,并由此引起结构材料的腐蚀。同样农业建筑物,它们会受到腐蚀性有机物的腐蚀。外部介质的腐蚀性越强,在建筑物进行设计、建造和使用是对其腐蚀作用考虑的越少,那么由腐蚀引起的结构损坏就越快和越深。据国外专家估计,由混凝土和钢筋的腐蚀造成的经济损失约占国民收入的1.25%。这些经济损失中不仅包括修复和重建建筑物的材料费用和工程造价,而且还包括产量上的损失,这是由于建筑结构不符合生产要求,或者在修理期间引起的正常生产的中断造成的。据调查,我国在五六十年代,由于要求早强或防冻而掺用过量氯盐的钢筋混凝土结构,因钢筋锈蚀引起混凝土顺筋开裂、剥落、构件破坏的事例屡有发生、八十年代,由于混凝上外加剂的应用不当或施工和原材料质量等原因,钢筋混凝士的腐蚀也不断出现。1981年调查的华南地区18座海港钢筋混凝土码头中,钢筋锈蚀破坏或不耐久的就占89 ,基本完好的只有2座。短的只使用七年,如珠江5万吨级油码头建于1974年,到1981己普遍出现顺筋裂缝,如珠江港一区码头建于1956年,到1981年己产生大面积的混凝土剥落,有资料表明,在英国因钢筋锈蚀需要更换钢筋或重建的钢筋混凝土结构占36 。美国仅州际公路网56万多座桥梁中,处于严重失效的就省9万多座,损坏率达16%,一般使用5年后就出现钢筋腐蚀破坏,每年损失数亿美元。混凝上中钢筋腐蚀引起结构过早的破坏,己愈来愈引起全世界工程界的严重关注。为了通过提高建筑结构在各种腐蚀性介质中的抗腐蚀性和耐久性,消除建筑结构局部的修复工作,以减少建筑中腐蚀给国民经济带来的损失。必须对于在各种腐蚀性介质作用卜混凝十的损坏及钢筋腐蚀过程的实质、钢筋混凝土结构的工作特性和受力状以及可以提供的防腐方法及其特性等,进行深入的研究 一混凝土腐蚀机理 与混凝土相接触的周围介质,如空气,水(海水,地下水)活土壤中含有不同浓度的额酸。盐,碱类侵蚀性物质时,当其进入混凝土内部,以之相关成分发生物理化学反应后,混凝土遭受腐蚀,逐渐发生绽裂剥落,进而引起钢筋腐蚀导致结构失效 混凝土腐蚀的原因和机理随侵蚀介质和环境条件而异,一般分为俩类 (1)溶蚀性腐蚀 水泥的水化物生成中,Ca(OH)2最容易被渗入的水溶解,又促使水花硅酸概等多碱性化合物发生水解,随后破坏低碱性水化产物(CaO,SiO2)等,最终完全破坏水泥石结构,某些酸盐溶液渗入混凝土,生成无凝胶型的松软物质,易被水溶蚀。水泥石的溶蚀程度随渗流速度增大溶蚀后,胶结能力减弱,混凝土材料的整体性被破 (2)结晶膨胀性腐蚀 含有硫酸盐的水渗如混凝土中,与水泥水化产物Ca(OH)2的化学作用生成石膏(CaSO4.2H2O)以溶液形式存在。石膏在和水化物铝硫酸盐起作用,形成多个结晶水的水化铝硫酸钙,体积膨胀,导致混凝土开列破坏

高抗硫酸盐混凝土配合比优化设计

高抗硫酸盐混凝土配合比优化设计 摘要:某工程引水隧洞地下水中SO42-总磷含量超标,对混凝土有强结晶型腐蚀和污染引水水体的风险。因此在混凝土施工前,对该引水隧洞混凝土进行抗硫酸盐侵蚀性试验。本文介绍了硫酸盐对混凝土的侵蚀影响,高抗硫酸盐混凝土原材料的选择,及通过掺粉煤灰的方式对高抗硫酸盐混凝土配合比进行优化设计。 关键词:配合比设计;抗腐蚀性;高抗硫酸盐混凝土 1.引言 某工程引水隧洞附近有一些化工企业,其中某集团磷石膏渣场距引水隧洞约1km,而该洞段位于岩溶极发育区域,存在有机物渗透对工程及水质带来较大危害的风险。根据对该区段地表和地下水体抽样检测,地下水中SO42-总磷等含量超标,因此对该区段采取有针对性的防渗和防腐处理措施。故进行混凝土抗硫酸盐侵蚀性试验,以确保工程质量。 2.混凝土受硫酸盐侵蚀的影响因素 硫酸盐对混凝土侵蚀作用非常复杂,其中包括物理方面和化学方面的侵蚀。受硫酸盐侵蚀的影响因素也有很多,主要体现在内部因素和外部因素。内部侵蚀是由于混凝土组分本身带有的硫酸盐引起,主要体现在混凝土自身的性质包括水泥、活性掺合料和水胶比,施工质量水平等;外部侵蚀是环境中的硫酸盐对混凝土的侵蚀,包括硫酸根离子浓度和环境PH值、混凝土的工作环境条件等。 3.原材料选用 3.1 水泥 水泥对混凝土的抗腐蚀性能起决定性的作用,混凝土中的硅酸三钙的含量过高,易于受到硫酸盐的侵蚀生成石膏。如果混凝土中铝酸三钙过多,则易于生成过多的钙矾石,在侵蚀环境下导致膨胀破坏。根据工程设计要求,结合高抗硫酸盐水泥的特性,本次试验混凝土选用P?HSR 42.5高抗硫酸盐水泥。 依据GB748标准要求,对高抗硫酸盐水泥进行标准稠度用水量、凝结时间、安定性、比表面积、密度、抗压强度、抗折强度、铝酸三钙(C3A)含量、抗硫酸盐性等指标检测,试验结果均满足标准要求,抗硫酸盐性14d≤0.04%。试验结果见表3.1。 4.混凝土配合比设计及试验方法 4.1 配合比基本参数选择试验 在配合比设计过程中充分利用粉煤灰对降低混凝土水化热和后期强度的贡献,以及对混凝土抗侵蚀的作用,选出粉煤灰的合理掺量,全面考虑合理的骨料级配对混凝土工作性和可泵性的影响和耐久性抗侵蚀能力。通过对减水剂不同掺量下的混凝土性能试验,泵送剂的最优掺量为1.0%、对石子级配组合进行容重试验,并结合工程经验,选用二级配粒径为 5mm~20mm:20mm~40mm比例为45:55。 4.2 水胶比与强度关系 当混凝土原材料、生产工艺以及工序既定的情况下,混凝土的性能主要取决于水胶比的大小。水胶比越大混凝土的强度越低,水胶比越小混凝土的强度越高,抗侵蚀能力就越强。配合比设计过程中首先进行基准用水量与砂率试验,然后进行水胶比与强度关系试验,对水胶比与强度统计计算回归方程,利用设计强度等级计算配制强度,将配制强度带入回归方程

硅灰对水泥净浆抗硫酸盐侵蚀性能的改善作用

!!文章编号:"###$%&’((%##&)#’$#"#’$#’ 硅灰对水泥净浆抗硫酸盐侵蚀性能的改善作用! 肖佳,邓德华,元强,潘武略,陈烽 (中南大学土木建筑学院,湖南长沙("##)*) 摘要:将水泥净浆试件在*+,- %./ ( 溶液中长期浸泡,用试件强度随浸泡时间的变化和试件中物相的012分析,研 究了硅灰对水泥净浆抗硫酸盐侵蚀性能的影响。在,- %./ ( 溶液侵蚀下,普通硅酸盐水泥净浆试件强度随浸泡时间 先增长,然后急剧降低;外观和012相分析表明,其原因是由于形成了膨胀性钙矾石,造成试件开裂破坏;加入硅灰的水泥净浆试件强度损失明显减小,尤其是抗折强度没有降低,其抵抗强度下降系数还略有增加;原因是由于硅灰的稀释作用和火山灰效应减少了水泥净浆中3-(/4) % 的量,从而降低了水泥净浆试件在硫酸盐溶液侵蚀下形成的膨胀性钙矾石的量。因而,硅灰对水泥混凝土抗硫酸盐侵蚀性能有改善作用。 关键词:水泥净浆;硫酸盐侵蚀;硅灰;钙矾石 中图分类号:56%*&78;!56%*9!!!!!!!!!文献标识码:: 引!言 从对工程混凝土结构侵蚀作用来看,在自然界 所有化合物中,硫酸盐是最主要的化合物["]。混凝 土遭受硫酸盐侵蚀后,将导致其性能和外观的严重 劣化,危及构筑物的使用寿命和安全。因此,混凝土 的硫酸盐侵蚀几乎是全球所有国家都面临的严重问 题之一[%]。正如;7.-<=>-<-?等人[’]指出,硫酸盐侵 蚀的研究已到了关键时期。尽管过去取得一些有意 义的进展,但该问题仍未很好解决,仍需进一步研究。 现场观测到混凝土受到硫酸盐介质侵蚀后,混 凝土外观和性能的劣化现象主要有’种形式[(]:酸 性类型、膨胀开裂类型和剥蚀破坏类型。造成这些 劣化现象的原因,一般认为是由于硫酸盐溶液与混 凝土中水泥水化产物之间化学反应形成的有害化合 物。其中主要化合物是钙矾石和石膏,它们导致混 凝土膨胀开裂,结构破坏。在*+,- %./ ( 溶液浸泡 下,普通硅酸盐水泥净浆试件因形成膨胀性产物而开裂破坏,究竟是石膏膨胀还是钙矾石膨胀造成的破坏是值得我们去研究的。在研究混凝土遭受硫酸盐侵蚀劣化机理的基础上进一步探讨改善混凝土抗硫酸盐侵蚀性能是一项很有意义的工作。因此,本文旨在水泥净浆中加入硅灰,研究硅灰对水泥混凝土抗硫酸盐侵蚀性能的改善作用。"!试验材料与试验方法 "7"!试验材料 水!泥:湖南韶峰集团产(%7*级普通硅酸盐水泥; 硅!灰:埃肯微硅粉,8%#@等级; 硫酸钠:市售,工业,- % ./ ( ; 硫酸(4 % ./ ( ):市售,化学分析纯; 水:普通自来水。 "7%!试件制备 用硅灰等量取代水泥,试验配合比见表"。制作尺寸为!"(??A)#??的水泥净浆圆柱体试件,%(根试模捆成一捆。制作试件时,首先将硅灰倒入搅拌锅,加一半水慢搅"?B<,再加水泥和余下的水,慢搅%?B<。净浆装入试模后用玻璃棒插捣,密实后再机振’#次。试件在标准养护条件下成型"(C后拆模。"7’!硫酸盐侵蚀试验 试件标养"(C后,分别在*+,- % ./ ( 溶液和清 表"!水泥净浆配合比 试件水泥D E硅灰D E水D E水胶比 .F"%*##"%*##7*# .F%%’)*"%*"%*##7*# .F’%%*#%*#"%*##7*# 第%9卷!第’期!!!!!!!!!西南石油学院学报!!!!!!!!!GHI7%9!,H7’!%##&年!&月!!!!!!!JHKL<-I HM.HK=>NOP=QO=LHIOK?R

相关文档
最新文档