2020版高考数学一轮复习第七章不等式第4讲基本不等式教案(理)(含解析)新人教A版

2020版高考数学一轮复习第七章不等式第4讲基本不等式教案(理)(含解析)新人教A版
2020版高考数学一轮复习第七章不等式第4讲基本不等式教案(理)(含解析)新人教A版

第4讲 基本不等式

基础知识整合

1.重要不等式

a 2+

b 2≥□

012ab (a ,b ∈R )(当且仅当□02a =b 时等号成立). 2.基本不等式ab ≤

a +b

2

(1)基本不等式成立的条件:□

03a >0,b >0; (2)等号成立的条件:当且仅当□04a =b 时等号成立; (3)其中

a +b

2

叫做正数a ,b 的□

05算术平均数,ab 叫做正数a ,b 的□06几何平均数. 3.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值),

那么当□

07x =y 时,x +y 简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值),

那么当□

09x =y 时,xy 有□10最大值S 2

4

.(简记:“和定积最大”)

常用的几个重要不等式 (1)a +b ≥2ab (a >0,b >0); (2)ab ≤?

??

??a +b 22(a ,b ∈R );

(3)? ??

??a +b 22≤a 2

+b 2

2(a ,b ∈R ); (4)b a +a b

≥2(a ,b 同号).

以上不等式等号成立的条件均为a =b .

1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为( ) A.1 B.14 C.12 D.22

答案 B

解析 ∵a ,b ∈R +,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =1

2时等号成立.故

选B.

2.(2019·山西模拟)已知a >0,b >0,a +b =2,则y =1a +4

b

的最小值是( )

A.72

B.4

C.92

D.5

答案 C

解析 y =12(a +b )? ????1a +4b =12? ????5+4a b +b a ≥92? ????当且仅当a =23,b =43时等号成立.故选C.

3.

3-a

a +6(-6≤a ≤3)的最大值为( )

A.9

B.9

2 C.

3 D.32

2

答案 B

解析 当a =-6或a =3时,3-a a +6=0;当-6

3-a

a +6≤

3-a +a +62=9

2

, 当且仅当3-a =a +6,即a =-3

2时取等号.

4.(2019·南昌摸考)已知函数y =x +m x -2

(x >2)的最小值为6,则正数m 的值为

________.

答案 4

解析 ∵x >2,m >0,∴y =x -2+

m

x -2

+2≥2x -2·m

x -2

+2=2m +2,当且仅

当x =2+m 时取等号,又函数y =x +

m

x -2

(x >2)的最小值为6,

∴2m +2=6,解得m =4.

5.(2019·大连模拟)函数y =2x +2

x

(x <0)的最大值为________.

答案 -4

解析 ∵x <0,∴-x >0,∴(-2x )+? ??

??-2x ≥2

-2x ·? ??

??-2x =4,即y =2x +2x

-4(当且仅当-2x =-2

x

,即x =-1时等号成立).

6.(2018·天津高考)已知a ,b ∈R ,且a -3b +6=0,则2a

+18

b 的最小值为________.

答案 14

解析 由a -3b +6=0可得a -3b =-6, 又∵2a

+1

8

b ≥2

2a

8b =22

a -3

b =22-6

=14

(当且仅当a =-3,b =1时取等号), ∴2a

+18b 的最小值为14

.

核心考向突破

考向一 利用基本不等式求最值

角度1 利用配凑法求最值

例1 (1)已知0

答案 B

解析 ∵0

4,当3x =3-3x ,即x =1

2

时,x (3-3x )取得最大值.故选B.

(2)设x >0,则函数y =x +22x +1-3

2的最小值为________.

答案 0 解析 y =x +

22x +1-32=? ????x +12+1

x +1

2

-2≥2? ??

??x +12·1x +

12

-2=0,当且仅当x +12=1x +12

,即x =1

2时等号成立.所以函数的最小值为0.

触类旁通

通过拼凑法利用基本不等式求最值的策略

拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:

1

拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到

等价变形.

2代数式的变形以拼凑出和或积的定值为目标. 3拆项、添项应注意检验利用基本不等式的前提.

即时训练 1.已知x ,y 都是非负实数,且x +y =2,则8

x +2y +4

的最小值为

________.

答案 12

解析 ∵x ,y 都是非负实数,且x +y =2,∴x +2+y +4=8,∴8≥2x +2y +4,

1

x +2

y +4≥116,当且仅当x =2,y =0时取等号,则8x +2y +4≥816=1

2

. 角度2 利用常数代换法求最值

例2 (1)(2019·绵阳诊断)若θ∈?

????0,π2,则y =1sin 2θ+9cos 2

θ的取值范围为( )

A .[6,+∞)

B .[10,+∞)

C .[12,+∞)

D .[16,+∞)

答案 D

解析 ∵θ∈?

????0,π2,∴sin 2θ,cos 2

θ∈(0,1),∴y =1sin 2θ+9cos 2

θ=? ??

??1sin 2θ+9cos 2θ(sin 2θ+cos 2θ)=10+cos 2θsin 2θ+9sin 2

θcos 2

θ≥10+2

cos 2θsin 2θ·9sin 2

θ

cos 2

θ

=16,当且仅当cos 2

θsin 2θ=9sin 2

θcos 2

θ,即θ=π

6

时等号成立.故选D. (2)(2017·山东高考)若直线x a +y b

=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.

答案 8

解析 ∵直线x a +y b

=1(a >0,b >0)过点(1,2), ∴1a +2

b

=1,

∴2a +b =(2a +b )? ??

??1a +2b

=4+4a b +b a ≥4+2

4a

b

·b a

=8,

当且仅当b a =

4a

b

,即a =2,b =4时,等号成立. 故2a +b 的最小值为8.

触类旁通

常数代换法求最值的步骤

常数代换法适用于求解条件最值问题.应用此种方法求解最值的基本步骤为: 1根据已知条件或其变形确定定值常数. 2把确定的定值常数变形为1.

3把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式. 4利用基本不等式求解最值.

即时训练 2.(2019·正定模拟)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.

答案 5

解析 由x +3y =5xy ,可得

15y +3

5x

=1, 所以3x +4y =(3x +4y )? ??

??15y +35x =95+45+3x 5y +12y 5x ≥135+2 3x 5y ·12y 5x =135+125=5,当且仅当x =1,y =12

时取等号,故3x +4y 的最小值是5.

角度3 利用消元法求最值

例3 (1)(2019·江西上饶联考)已知正数a ,b ,c 满足2a -b +c =0,则ac

b

2的最大值为( )

A .8

B .2

C .18

D .1

6

答案 C

解析 因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以ac b 2=ac 2a +c

2

ac 4a 2

+4ac +c 2=

1

4a c +c

a

+4≤1

24a c ·c

a

+4

=1

8,当且仅当c =2a >0时等号成立.故选C. (2)已知正数x ,y 满足x 2

+2xy -3=0,则2x +y 的最小值是________. 答案 3

解析 由x 2

+2xy -3=0,得y =3-x 2

2x =32x -12x ,则2x +y =2x +32x -12x =3x 2+

3

2x

≥2

3x 2·3

2x

=3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.

触类旁通

通过消元法利用基本不等式求最值的方法

消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.

即时训练 3.(2019·安徽阜阳模拟)若直线x a +y b

=1(a >0,b >0)过点(1,1),则a +b +

3b a

的最小值为________.

答案 6

解析 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b =1,所以b =a a -1

>0,所以

a >1,所以a +

b +3b a =(a -1)+4

a -1+2≥4+2=6,当且仅当a =3时等号成立,所以a +b

+3b

a

的最小值是6.

考向二 求参数值或取值范围

例4 (1)(2019·山西模拟)已知不等式(x +y )·?

??

??1x +a y

≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )

A .2

B .4

C .6

D .8

答案 B

解析 (x +y )? ??

??1x +a y =1+a ·x y +y x +a ≥1+a +2a =(a +1)2

,当且仅当a ·x y =y x

,即

ax 2=y 2时“=”成立.

∵(x +y )? ????1x +a y ≥9,

∴(x +y )? ??

??1x +a y 的最小值为(a +1)2

≥9.

∴a ≥4.故选B.

(2)(2019·珠海模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为( ) A .2 B .4 C .6 D .8

答案 C

解析 解法一:由已知得xy =9-(x +3y ),即3xy =27-3(x +3y )≤?

??

??x +3y 22,当且仅

当x =3y ,即x =3,y =1时取等号,令x +3y =t ,则t >0,且t 2

+12t -108≥0,解得t ≥6,即x +3y ≥6.

解法二:∵x +3y =9-xy ≥23xy ,∴(xy )2

+23·xy -9≤0,∴(xy +

33)·(xy -3)≤0,

∴0

触类旁通

1要敏锐地洞察到已知条件与所求式子的联系,并能灵活的进行转化. 2利用基本不等式确立相关成立条件,从而得到参数的值或范围.

即时训练 4.设a >0,b >0且不等式1a +1b +k

a +

b ≥0恒成立,则实数k 的最小值等于

( )

A .0

B .4

C .-4

D .-2

答案 C

解析 由1a +1b +k

a +b

≥0得k ≥-

a +

b 2

ab

,又

a +

b 2

ab

=a b +b a

+2≥4(a =b 时取等

号),所以-

a +b

2

ab

≤-4,因此要使k ≥-

a +b

2

ab

恒成立,应有k ≥-4,即实数k 的

最小值等于-4.故选C.

5.(2019·上海模拟)设x ,y 均为正实数,且32+x +3

2+y =1,则xy 的最小值为( )

A .4

B .4 3

C .9

D .16

答案 D 解析

32+x +32+y

=1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.故选D.

考向三 基本不等式的实际应用

例5 (2019·西安模拟)某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.

(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?

(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?

解 (1)设第n 年获取利润为y 万元.

n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n n -12

×2=n 2

,又投资81万元,n 年共收入租金30n 万元,

∴利润y =30n -n 2

-81(n ∈N *

).

令y >0,即30n -n 2

-81>0,∴n 2

-30n +81<0,

解得3

),∴从第4年开始获取纯利润. (2)方案①:年平均利润t =30n -81+n

2

n

=30-

81

n

-n =30-? ??

??81n

+n ≤30-

2

81n ·n =12(当且仅当81

n

=n ,即 n =9时取等号),

∴年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元). 方案②:纯利润总和y =30n -n 2

-81=-(n -15)2

+144(n ∈N *

), 当n =15时,纯利润总和最大,为144万元,

∴纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元), 两种方案盈利相同,但方案①时间比较短,所以选择方案①.

触类旁通

有关函数最值的实际问题的解题技巧

(1)根据实际问题建立函数的解析式,再利用基本不等式求得函数的最值. 2设变量时一般要把求最大值或最小值的变量定义为函数. 3解应用题时,一定要注意变量的实际意义及其取值范围.

4在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.

即时训练 6.某厂家拟在2018年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-

k

m +1

(k 为常数),如果不搞促销

活动,则该产品的年销售量只能是1万件.已知2018年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将2018年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2018年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1, ∴1=3-k ?k =2,∴x =3-

2

m +1

, 每件产品的销售价格为1.5×8+16x

x

(元),

∴2018年的利润y =1.5x ×8+16x

x

-8-16x -m

=4+8x -m =4+8?

??

??3-2m +1-m =-??

??

?

?16m +1+m +1+29(m ≥0). (2)∵m ≥0时,

16

m +1

+(m +1)≥216=8, ∴y ≤-8+29=21,

当且仅当16

m+1

=m+1?m=3(万元)时,y max=21(万元).

故该厂家2018年的促销费用投入3万元时,厂家的利润最大为21万元.

(2017·天津高考)若a ,b ∈R ,ab >0,则a 4

+4b 4

+1

ab

的最小值为________.

答案 4

解析 ∵a 4

+4b 4

≥2a 2

·2b 2

=4a 2b 2

(当且仅当a 2

=2b 2

时“=”成立),

∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab

由于ab >0,∴4ab +1ab

≥2

4ab ·

1

ab

=4

? ??

??当且仅当4ab =1ab 时“=”成立, 故当且仅当?

????

a 2

=2b 2

,4ab =1

ab 时,a 4+4b 4+1

ab

的最小值为4.

答题启示

利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一

致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.

对点训练

已知a >b >0,求a 2

16

b

a -b

的最小值. 解 ∵a >b >0,∴a -b >0.

∴b (a -b )≤????

??b +a -b 22=a 24.

∴a 2

16b a -b ≥a 2

+64a

2≥2a 2·64

a

2=16.

当a 2

=64a

2且b =a -b ,即a =22,b =2时等号成立. ∴a 2

+16

b

a -b

的最小值为16.

不等式选讲-2019年高考理科数学解读考纲

16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1). (2). (3)会利用绝对值的几何意义求解以下类型的不等式: . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)柯西不等式的向量形式: (2). (3). (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n为大于1的实数时伯努利不等式也成立. 7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等. 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解 样题1 (2018新课标全国Ⅱ理科)设函数 . (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 样题2 (2018新课标全国Ⅲ理科)设函数 . (1)画出()y f x =的图象;

(2)当[)0x +∞∈,,,求a b +的最小值. 【解析】(1)()y f x =的图象如图所示.

绝对值不等式的解法 教案 (1)

绝对值不等式的解法教案 教学目标 (1)掌握与()型的绝对值不等式的解法. (2)掌握与()型的绝对值不等式的解法. (3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力。 (4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力。 教学重点:型的不等式的解法; 教学难点:利用绝对值的意义分析、解决问题. 教学过程设计 教师活动 一、导入新课 【提问】正数的绝对值什么负数的绝对值是什么零的绝对值是什么举例说明【概括】 【不等式的代数意义及几何意义】 学生活动 口答:代数意义 几何意义 |a|的意义是a在数轴上的相应点到原点的距离。

设计意图 绝对值的概念是解与()型绝对值不等式的概念,为解这种类型的绝对值不等式做好铺垫. 【不等式的性质】: ①若a>b ;c∈R 则 a+c>b+c ②若a>b ;c>0 则 ac>bc ③若a>b ;c<0 则 ac

不等式的解集表示为 【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗这个绝对值不等式的解集怎样表示 【质疑】的解集有几部分为什么也是它的解集 【讲述】这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一部分.在解时容易出现只求出这部分解集,而丢掉这部解集的错误. 画出数轴思考答案 不等式的解集为或表示为,或 2、自主演练:解下列不等式 1) | x | < 4 | x | < -1 | x | ≤ 0 2) | x | > 4 | x | > -3 | x | >0 3、抽象概括绝对值不等式的解集答案:{ x | -4 < x < 4 } Ф 答案:{ x | x>4,或x<-4 } R

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高考数学《不等式选讲》专项复习

高考数学《不等式选讲》专项复习 一、考纲解读 1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值. 2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位. 3.了解基本不等式,会用它来证明不等式和求最值. 4.会用综合法、分析法、反证法及数学归纳法证明不等式. 二、命题趋势探究 本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档. 三、知识点精讲 (一).不等式的性质 1.同向合成 (1), >>?>; a b b c a c (2),c >>?+>+; a b d a c b d (3)0,c0 >>>>?>. a b d ac bd (合成后为必要条件) 2.同解变形 >?+>+; (1)a b a c b c (2)0,0, >?>>?<<; a b c ac bc c ac bc

(3)11 000a b b a >>? >>?>>. (变形后为充要条件) 3.作差比较法 0,0a b a b a b a b >?>->-<<;0,||,a x a x a x a >>?>><-或 (2)22||||a b a b >?> (3)||||x a x b c +++<零点分段讨论 (三).基本不等式 (1)222a b ab +>(当且仅当等号成立条件为a b =) (2)0,0, 2 a b a b +>>≥a b =) ; 0,0,0, 3 a b c a b c ++>>>≥a b c ==时等号成立) (3)柯西不等式 22222()()()a b c d ac bd ++≥+(当且仅当ad bc =时取等号) ①几何意义:||ad bc ??+≤a b a b ||||||≤②推广:22222 2 212 121122()()()n n n n a a a b b b a b a b a b +++++ +≥++ +.当且仅当向量 12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.

最新高中数学-含绝对值的不等式的解法教案

收集于网络,如有侵权请联系管理员删除 一.课题:含绝对值的不等式的解法 二.教学目标:掌握一些简单的含绝对值的不等式的解法. 三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次) 不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间 的交、并等各种运算. 四.教学过程: (一)主要知识: 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2.当0c >时,||ax b c ax b c +>?+>或ax b c +<-,||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. (三)例题分析: 例1.解下列不等式: (1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->. 解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为17[2,) (,5]22--. (2)原不等式可化为22(2)(1)x x -<+,即12x > ,∴原不等式解集为1[,)2+∞. (3)当12x ≤- 时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122 x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53 x >,此时2x ≥. 综上可得:原不等式的解集为(,1)(1,)-∞-+∞. 例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞; (2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞. 解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|3x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <; (2)与(1)同理可得|1||3|4x x --+≤,∴4a >. 例3.(《高考A 计划》考点3“智能训练第13题”)设0,0a b >>,解关于x 的不等式:|2|ax bx -≥. 解:原不等式可化为2ax bx -≥或2ax bx -≤-,即()2a b x -≥①或2()2a b x x a b +≤?≤ +②,

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考数学复习+不等式选讲大题-(文)

专题十五不等式选讲大题 (一)命题特点和预测: 分析近8年全国新课标1不等式选讲大题,发现8年8考,主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题.2019年不等式选讲大题仍将主要考查绝对值不等式的解法(出现频率太高了,应当高度重视)、不等式恒成立或有解求参数的范围,考查利用不等式的性质、基本不等式、绝对值不等式性质求最值或证明不等式,难度为基础题. (二)历年试题比较: . 时,求不等式 时不等式成立,求的取值范围. 已知函数, 的解集; 的解集包含

已知函数 ?并说明文由 ( )≤ 【解析与点睛】 (2018年)【解析】(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立.若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. (2017年)【解析】 x>时,①式化为,从而. 当1 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题. (2016年)【解析】(I) y=的图像如图所示. f ) (x

(II )由)(x f 的表达式及图像,当1)(=x f 时,可得1=x 或3=x ; 当1)(-=x f 时,可得3 1 = x 或5=x , 故1)(>x f 的解集为{} 31<x f 的解集为 . 【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式. 以△ABC 的面积为22 (1)3 a +. 由题设得 22 (1)3 a +>6,解得2a >.

湘教版八年级数学上册《一元一次不等式的解法》教案

《一元一次不等式的解法》教案 第1课时 教学目标 知识与技能:知道一元一次不等式的标准形式,理解不等式的解与解集的概念,了解什么是一元一次不等式. 过程与方法:理解用不等式的性质解一元一次不等式的基本方法,会熟练的解一元一次不等式. 情感态度与价值观:培养学生的分析能力.训练学生的动手能力,提高综合分析解题能力、转化的数学思想.通过本节的学习,进一步渗透化归的数学美. 教学重难点 重点:一元一次不等式的解法. 难点:不等式的两边同乘以(或除以)一个负数. 教学过程 一、创设情境,导入新课 动脑筋: 水果批发市场的梨每千克3元,苹果每千克4元,小王购进50千克梨后还想购进些苹果,但他只有350元,他最多能买多少千克苹果? 思考: 1、买梨子用去的钱和买苹果用去的钱以及身上有的350元钱有什么关系? 买梨子用去的钱_____买苹果用去的钱_____身上有的350元钱. 2、若设他买了x千克苹果可以列出关系式:_____________________ 3、这个关系式有什么特点呢?(含有___个未知数,且未知数的次数为____)这样的不等式叫什么不等式?你认为呢? 含有___个未知数,且未知数的次数为____的不等式叫_______不等式. 4、请你把一元一次不等式的概念与一元一次方程的概念对比,看看它们有什么异同? 5、什么叫一元一次方程的标准形式?_________,__________,由此请你猜想什么是一元一次不等式的标准形式? ________________________叫一元一次不等式的标准形式. 怎样求出小王最多能买多少千克苹果呢?只需要解上面的一元一次不等式,这节课我们来研究一元一次不等式的解法. 二、合作交流,探究新知 1、不等式的解和解集的概念

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

2018年高考数学考试大纲解读专题16不等式选讲理版含答案

专题16 不等式选讲 选考内容 (二)不等式选讲 1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1) a b a b . (2)a b a c c b . (3)会利用绝对值的几何意义求解以下类型的不等式: ; ;ax b c ax b c x a x b c . 2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明 . (1)柯西不等式的向量形式: ||||||.(2) 22222()(+)()a b c d ac bd . (3)222222121223231313()()()()()()x x y y x x y y x x y y . (此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形: 4.会用向量递归方法讨论排序不等式. 5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题. 6.会用数学归纳法证明伯努利不等式: 了解当n 为大于1的实数时伯努利不等式也成立 . 7.会用上述不等式证明一些简单问题 .能够利用平均值不等式、 柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.

1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等. 2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等 . 3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注. 考向一 绝对值不等式的求解样题1 (2017新课标全国Ⅰ理科)已知函数 2–4()x ax f x ,11()x x g x ||||. (1)当a =1时,求不等式 ()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围. 所以a 的取值范围为[1,1]. 【名师点睛】零点分段法是解答绝对值不等式问题常用的方法, 也可以将绝对值函数转化为分段函数,借助图象解题.

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

2019高考数学不等式:基本不等式

基本不等式 【考点梳理】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号且不为零); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)? ?? ??a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【考点突破】 考点一、配凑法求最值 【例1】(1)若x < 54,则f (x )=4x -2+145 x -的最大值为________. (2)函数y = x -1 x +3+x -1 的最大值为________. [答案] (1) 1 (2) 1 5 [解析] (1)因为x <5 4 ,所以5-4x >0,

=-2+3=1. 当且仅当5-4x =1 5-4x ,即x =1时,等号成立. 故f (x )=4x -2+1 4x -5的最大值为1. (2)令t =x -1≥0,则x =t 2 +1, 所以y = t t 2 +1+3+t = t t 2 +t +4 . 当t =0,即x =1时,y =0; 当t >0,即x >1时,y = 1 t +4t +1 , 因为t +4 t ≥24=4(当且仅当t =2时取等号), 所以y = 1t +4t +1 ≤1 5, 即y 的最大值为1 5(当t =2,即x =5时y 取得最大值). 【类题通法】 1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. 2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C [解析] 当x >2时,x -2>0,f (x )=(x -2)+ 1 x -2 +2≥2(x -2)× 1 x -2 +2=4,当

一元一次不等式的解法 优秀课教案

2.4一元一次不等式 第1课时一元一次不等式的解法 1.理解一元一次不等式、不等式的解 集、解不等式等概念; 2.掌握一元一次不等式的解法.(重点, 难点) 一、情境导入 1.什么叫一元一次方程? 2.解一元一次方程的一般步骤是什 么?要注意什么? 3.如果把一元一次方程中的等号改为 不等号,怎样求解? 二、合作探究 探究点一:一元一次不等式的概念 【类型一】一元一次不等式的识别 下列不等式中,是一元一次不等 式的是() A.5x-2>0 B.-3<2+ 1 x C.6x-3y≤-2 D.y2+1>2 解析:选项A是一元一次不等式,选项 B中含未知数的项不是整式,选项C中含有 两个未知数,选项D中未知数的次数是2, 故选项B,C,D都不是一元一次不等式, 所以选A. 方法总结:如果一个不等式是一元一次 不等式,必须满足三个条件:①含有一个未 知数,②未知数的最高次数为1,③不等号 的两边都是整式. 【类型二】根据一元一次不等式的概 念求值 已知- 1 3x 2a-1+5>0是关于x的一 元一次不等式,则a的值是________. 解析:由- 1 3x 2a-1+5>0是关于x的一 元一次不等式得2a-1=1,计算即可求出a 的值,故a=1. 方法总结:利用一元一次不等式的概念 列出相应的方程求解即可.注意:如果未知 数的系数中有字母,要检验此系数可不可能 为零. 探究点二:一元一次不等式的解法 【类型一】一元一次不等式的解或解 集 下列说法:①x=0是2x-1<0的 一个解;②x=-3不是3x-2>0的解;③ -2x+1<0的解集是x>2.其中正确的个数 是() A.0个B.1个 C.2个D.3个 解析:①x=0时,2x-1<0成立,所 以x=0是2x-1<0的一个解;②x=-3时, 3x-2>0不成立,所以x=-3不是3x-2 >0的解;③-2x+1<0的解集是x> 1 2,所 以不正确.故选C. 方法总结:判断一个数是不是不等式的 解,只要把这个数代入不等式,看是否成 立.判断一个不等式的解集是否正确,可把 这个不等式化为“x>a”或“x<a”的形 式,再进行比较即可. 【类型二】解一元一次不等式 解下列一元一次不等式,并在数 轴上表示: (1)2(x+ 1 2)-1≤-x+9; (2) x-3 2-1> x-5 3. 解析:按照解一元一次不等式的基本步

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

高三数学第二轮复习 不等式选讲

第2讲 不等式选讲 [考情考向分析] 本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围、不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点一 含绝对值不等式的解法 含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)?f (x )>a 或f (x )<-a . (2)|f (x )|0)?-a 1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集; (2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=|x -2|+|x -4|=????? -2x +6,x ≤2,2,2

八年级数学下册 一元一次不等式的解法教案

2.4 一元一次不等式 第1课时 一元一次不等式的解法 1.理解一元一次不等式、不等式的解 集、解不等式等概念; 2.掌握一元一次不等式的解法.(重点,难点) 一、情境导入 1.什么叫一元一次方程? 2.解一元一次方程的一般步骤是什么?要注意什么? 3.如果把一元一次方程中的等号改为不等号,怎样求解? 二、合作探究 探究点一:一元一次不等式的概念 【类型一】 一元一次不等式的识别 下列不等式中,是一元一次不等 式的是( ) A .5x -2>0 B .-3<2+1 x C .6x -3y ≤-2 D .y 2+1>2 解析:选项A 是一元一次不等式,选项B 中含未知数的项不是整式,选项C 中含有两个未知数,选项D 中未知数的次数是2,故选项B ,C ,D 都不是一元一次不等式,所以选A. 方法总结:如果一个不等式是一元一次不等式,必须满足三个条件:①含有一个未知数,②未知数的最高次数为1,③不等号的两边都是整式. 【类型二】 根据一元一次不等式的概念求值 已知-13 x 2a - 1+5>0是关于x 的一 元一次不等式,则a 的值是________. 解析:由-13x 2a - 1+5>0是关于x 的一 元一次不等式得2a -1=1,计算即可求出a 的值,故a =1. 方法总结:利用一元一次不等式的概念列出相应的方程求解即可.注意:如果未知数的系数中有字母,要检验此系数可不可能为零. 探究点二:一元一次不等式的解法 【类型一】 一元一次不等式的解或解集 下列说法:①x =0是2x -1<0的 一个解;②x =-3不是3x -2>0的解;③-2x +1<0的解集是x >2.其中正确的个数是( ) A .0个 B .1个 C .2个 D .3个 解析:①x =0时,2x -1<0成立,所以x =0是2x -1<0的一个解;②x =-3时,3x -2>0不成立,所以x =-3不是3x -2>0的解;③-2x +1<0的解集是x >1 2,所 以不正确.故选C. 方法总结:判断一个数是不是不等式的解,只要把这个数代入不等式,看是否成立.判断一个不等式的解集是否正确,可把这个不等式化为“x >a ”或“x <a ”的形式,再进行比较即可. 【类型二】 解一元一次不等式 解下列一元一次不等式,并在数 轴上表示: (1)2(x +1 2)-1≤-x +9; (2)x -32-1>x -53 . 解析:按照解一元一次不等式的基本步

相关文档
最新文档