基于数据自然规律的不同拟合方法比较研究

基于数据自然规律的不同拟合方法比较研究
基于数据自然规律的不同拟合方法比较研究

基于数据自然规律的不同拟合方法比较研究

目的:寻找最优的数据拟合方法;方法:以数据为基础,分别用统计方法中的趋势法、分段法、AID法(Automatic Interaction Detection)进行拟合,通过比较拟合值与实际值,并计算各方法的均方误差,分析上述3种方法的拟合精度;结果:分段法所拟合的数据误差最小,拟合精度最高;结论:对于收集的可靠数据进行拟合时,须采用多个适用的拟合方法分别拟合,并进行比较后选择一个模型显著,精度高的作为最终决策模型,效果会更好。

标签:拟合方法比较;趋势法;分段法;AID法;应用条件;拟合精度

1 概述

拟合方法是统计预测的前提,拟合模型建立的不好,何谈预测效果?鉴于近30年来的各种规划涉及的预测方法应有尽有,但这些预测存在的一个严重问题是相差几百万、几千万都丝毫没有影响到“规划”的所谓科学性、合理性,这正是做课题人员的统计预测知识缺乏,而导致规划中预测结果的“宽范围”特殊性,使的规划检查执行进度时出现预测结果与后期实际结果相差得经过很长的时间才有可能,甚至永远不可能实现的困境。这里基于数据本身的特征进行拟合效果比较,进而达到拟合效果高精度实现。关于数据本身的规律大体上表现为两大类,一类是横截面数据的拟合,这一类大多涉及到多元回归问题,更多的是对所建模型利用样本区间以外的影响因素数据进行预测;另一类是时间序列数据的预测,更注重于趋势预测。本文主要研究时间序列数据的拟合问题。

在时间序列预测中,当序列存在明显的趋势成分时,需要使用趋势预测法[1]进行预测。然而有时候单一形式曲线的预测效果并不是很好。对此,李武选通过对旅游外汇收入数据采用分段拟合技术[2]建立模型进行预测,取得比单一形式曲线更好的拟合精度;方开泰使用AID法[3]将数据分区间进行拟合,发现AID 法在有异常数据的预测中比单一形式曲线有更好的效果。钱晓莉[4]将AID法应用于通过企业的广告费用预测销售收入的实例中,指出该法适宜于对含有特异值的样本进行预测。本文通过对某地的有关预报数据进行实证分析,用这3种拟合方法进行拟合,并比较三者的拟合效果。

2 研究方法及其应用条件

2.1 趋势拟合法

在趋势拟合法中主要有线性趋势和非线性趋势两种方法。线性趋势是指研究现象随着时间的推移而呈现出稳定增长或下降的线性变化规律,其线性拟合方程为yt=b1+b1t,其中待定系数和可根据最小二乘法求解。当所要研究现象呈现出某种非线性趋势,则需要拟合适当的趋势曲线。这种方法应用要求时间序列数据本身具有明显的趋势特征,如线性或者非线性特征。

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

第三章_曲线拟合算法的研究汇总

第三章 曲线拟合算法的研究 3.1 引言 随着航空、汽车等现代工业与计算机技术的发展,圆锥曲线与列表点曲线已经成为形状数学描述的常用方法,得到了广泛的应用。为了满足激光切割加工任务的需要,自动编程系统集成了多种曲线拟合算法,这样利用现有的激光切割机,即可实现特殊曲线的插补功能,极大地丰富系统的插补能力,满足复杂的生产要求。 3.2 圆锥曲线拟合算法的研究 在经济型数控系统中,对于圆锥曲线即平面二次曲线的加工是数控加工中经常遇到的问题,随着数控加工对圆锥曲线插补的需求,近年来有关各种圆锥曲线的插补算法应运而生[26]。常用的解决方法是先用低次的有理参数曲线拟合或将其离散,再用直线、圆弧逼近,然后才能进行数控加工[28]。本章从一个新的视角利用双圆弧方法,提出先对圆锥曲线进行标准化处理,再用双圆弧拟合逼近,然后再进行数控加工。这样的优点是:圆弧样条的等距曲线还是圆弧;双圆弧样条能达到C 1连续,基本上能满足要求;所有数控系统都具有直线插补和圆弧插补功能,无需增加额外负担。 由于工程应用不同,对曲线拟合的要求也不同。有的只要求拟合曲线光滑,有的要求光顺[9-10]。本章中开发的软件要求是:支持多种常用圆锥曲线的拟合;拟合曲线要求光滑;拟合曲线与函数曲线间的误差应控制在允许的范围之内,且拟合圆弧段数较少。 本章提出的对圆锥曲线的插补,是建立在对平面任意二次曲线可以进行分类的基础上,先将二次曲线进行分类,然后对各类曲线分别进行双圆弧拟合,这样就可以直接利用数控系统的圆弧插补功能进行插补。 3.2.1 圆锥曲线的一般理论[9] 在平面直角坐标系中,二元二次方程所表示的曲线称为二次曲线。其中系数A 、B 、 C 、 D 、 E 、 F 为实常数,且A 、B 、C 不同时为零。 022=+++++F Ey Dx Cy Bxy Ax (3.1) 式(3.1)称为圆锥曲线的隐式方程。令 AC B 42-=? (3.2) 称上式为二元二次方程(3.1)的判别式。 0

数据拟合文献综述

一、前言部分 本文首先指明了数据拟合的研究背景和意义,以及关于数据拟合问题所做的相关工作和当前的研究现状。二次拟合曲线由于有着良好的几何特性、较低的次数及灵活的控制参数,成为基本的体素模型之一,在计算机图形学和计算机辅助几何设计等领域中起着重要的作用。 解决数据拟合问题的基本思想是最小二乘法,本文中给出了最小二乘法的基本思想。分析解决数据拟合问题所采用的算法,并对典型性的算法进行了较为详细的求解。 关键词数据拟合;最小二乘法;多项式拟合; 二、主题部分 2.1 国内外研究动态,背景及意义 数学分有很多学科,而它主要的学科大致产生于商业计算的需要、了解数字间的关系、测量土地及预测天文事件。而在科技飞速发展的今天数学也早已成为众多研究的基础学科。尤其是在这个信息量巨大的时代,实际问题中国得到的中离散数据的处理也成为数学研究和应用领域中的重要的课题。 比如科学实验中,我们经常要从一组试验数据(,) i i x y,i = 0,1,...,n中来寻找自变量x和因变量y之间的函数关系,通常可以用一个近似函数y = f (x)表示。而函数y = f (x)的产生方法会因为观测数据和具体要求不同而不同,通常我们可以采用数据拟合和函数插值两种方法来实现。 数据拟合主要考虑到了观测数据会受到随机观测误差的影响,需要寻求整体误差最小、能够较好的反映出观测数据的近似函数y = f (x),这时并不要求得 到的近似函数y = f (x)必须满足y i = () i f x,i = 0,1,…,n。 函数插值则要求近似函数y = f (x)在每一个观测点 i x处一定要满足y i= () i f x,i = 0,1,…,n。在这种情况下,通常要求观测数据相对比较准确,即不考虑观测误差的影响。 所以,可以通过比如采样、实验等方法而得到若干的离散的数据,根据这些离散的数据,我们往往希望能得到一个连续函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合。这个过程叫做拟合。也就是说,如果数据不能满足某一个特定的函数的时候,而要求我们所要求的逼近函数“最优的” 靠近那些数据点,按照误差最小的原则为最优标准来构造出函数。我们称这个函数为拟合函数。 2.1.1 国内外研究现状 在通过对国内外有关的学术刊物、国际国内有关学术会议和网站的论文进行参阅。数据拟合的研究和应用主要是面对各种工程问题,有着系统的研究和很大的发展。通过研究发展使得数据拟合有着一定的理论研究基础。尤其是关于数据

曲线拟合的方法及过程

一、课程设计题目: 对于函数 x e x x f --=)( 从00=x 开始,取步长1.0=h 的20个数据点,求五次最小二乘拟合多项式 5522105)()()()(x x a x x a x x a a x P -++-+-+= 其中 ∑ ===19 95.020 i i x x 二、原理分析 (1)最小二乘法的提法 当数据量大且由实验提供时,不宜要求近似曲线)(x y φ=严格地经过所有数据点),(i i y x ,亦即不应要求拟合函数)(x ?在i x 处的偏差(又称残差) i i i y x -=)(φδ (i=1,2,…,m) 都严格的等于零,但是,为了使近似曲线能尽量反应所给数据点的变化趋势,要求偏差i δ适当的小还是必要的,达到这一目标的途径很多,例如,可以通过使最大偏差i δmax 最小来实现,也可以通过使偏差绝对值之和∑i i δ最小来实 现……,考虑到计算方便等因素,通常用使得偏差平方和∑i i 2δ最小(成为最小 二乘原则)来实现。 按最小二乘原则选择近似函数的方法称为最小二乘法。 用最小二乘法求近似函数的问题可以归结为:对于给定数据),(i i y x (i=1,2,…,m),要求在某个函数类Φ中寻求一个函数)(x * ?,使 [][]2 1 )(2 1 * )()(mi n ∑∑=Φ∈=-=-m i i i x m i i i y x y x ??? (1-1) 其中)(x ?为函数类Φ中任意函数。 (1)确定函数类Φ,即确定)(x ?的形式。这不是一个单纯的数学问题,还与其他领域的一些专业知识有关。在数学上,通常的做法是将数据点),(i i y x 描

实验数据与曲线拟合

实验数据与曲线拟合 1. 曲线拟合 1. 曲线拟合的定义 2. 简单线性数据拟合的例子 2. 最小二乘法曲线拟合 1. 最小二乘法原理 2. 高斯消元法求解方程组 3. 最小二乘法解决速度与加速度实验 3. 三次样条曲线拟合 1. 插值函数 2. 样条函数的定义 3. 边界条件 4. 推导三次样条函数 5. 追赶法求解方程组 6. 三次样条曲线拟合算法实现 7. 三次样条曲线拟合的效果 4. 12.1 曲线拟合 5. 12.1.1 曲线拟合的定义 6. 曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐 标之间的函数关系,是一种用解析表达式逼近离散数据的方法。曲线拟合通俗的说法就是“拉曲线”,也就是将现有数据透过数学方法来代入一条数学方程式的表示方法。科学和工程遇到的很多问题,往往只能通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,如果能够找到一个连续的函数(也就是曲线)或者更加密集的离散方程,使得实验数据与方程的曲线能够在最大程度上近似吻合,就可以根据曲线方程对数据进行数学计算,对实验结果进行理论分析,甚至对某些不具备测量条件的位置的结果进行估算。 7. 12.1.2 简单线性数据拟合的例子 8. 回想一下中学物理课的“速度与加速度”实验:假设某物体正在做加速运动,加速度未知,某实验人员 从时间t0 = 3秒时刻开始,以1秒时间间隔对这个物体连续进行了12次测速,得到一组速度和时间的离散数据,请根据实验结果推算该物体的加速度。 9. 表 12 – 1 物体速度和时间的测量关系表 10. 在选择了合适的坐标刻度之后,我们就可以在坐标纸上画出这些点。如图12–1所示,排除偏差明显 偏大的测量值后,可以看出测量结果呈现典型的线性特征。沿着该线性特征画一条直线,使尽量多的测量点能够位于直线上,或与直线的偏差尽量小,这条直线就是我们根据测量结果拟合的速度与时间的函数关系。最后在坐标纸上测量出直线的斜率K,K就是被测物体的加速度,经过测量,我们实验测到的物体加速度值是1.48米/秒2。

如何用EXCEL做数据线性拟合和回归分析

如何用Excel做数据线性拟合和回归分析 我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。 在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。它们虽很专业,但其实使用Excel 就完全够用了。我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。 注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘支持下加载“分析数据库”。加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项 实例某溶液浓度正比对应于色谱仪器中的峰面积,现欲建立不同浓度下对应峰面积的标准曲线以供测试未知样品的实际浓度。已知8组对应数据,建立标准曲线,并且对此曲线进行评价,给出残差等分析数据。 这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。 选择成对的数据列,将它们使用“X、Y散点图”制成散点图。

在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。 拟合的直线是y=15620x+6606.1,R2的值为0.9994。 因为R2>0.99,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于99.99%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。 为了进一步使用更多的指标来描述这一个模型,我们使用数据分析中的“回归”工具来详细分析这组数据。 在选项卡中显然详细多了,注意选择X、Y对应的数据列。“常数为零”就是指明该模型是严格的正比例模型,本例确实是这样,因为在浓度为零时相应峰面积肯定为零。先前得出的回归方程虽然拟合程度相当高,但是在x=0时,仍然有对应的数值,这显然是一个可笑的结论。所以我们选择“常数为零”。 “回归”工具为我们提供了三张图,分别是残差图、线性拟合图和正态概率图。重点来看残差图和线性拟合图。 在线性拟合图中可以看到,不但有根据要求生成的数据点,而且还有经过拟和处理的预测数据点,拟合直线的参数会在数据表格中详细显示。本实例旨在提供更多信息以起到抛砖引玉的作用,由于涉及到过多的专业术语,请各位读者根据实际,在具体使用

一种分段曲线拟合方法研究

一种分段曲线拟合方法研究 摘要:分段曲线拟合是一种常用的数据处理方法,但在分段点处往往不能满足连续与光滑.针对这一问题,本文给出了一种能使分段点处连续的方法.该方法首先利用分段曲线拟合对数据进行处理;然后在相邻两段曲线采用两点三次Hermite插值的方法,构造一条连结两条分段曲线的插值曲线,从而使分段点处满足一阶连续.最后通过几个实例表明该方法简单、实用、效果较好. 关键词:分段曲线拟合Hermite插值分段点连续 Study on A Method of Sub-Curve Fitting Abstract:Sub-curve fitting is a commonly used processing method of data, but at sub-points it often does not meet the continuation and smooth, in allusion to to solve this problem, this paper presents a way for making sub-point method continuous. Firstly, this method of sub-curve fitting deals with the data; and then uses the way of t wo points’ cubic Hermite interpolation in the adjacent, structures a interpolation curve that links the two sub-curves, so the sub-point meets first-order continuation; lastly, gives several examples shows that this method is simple, practical and effective. Key words:sub-curve fitting Hermite interpolation sub-point continuous

计算方法_数据拟合回顾

第三章数据拟合回顾 keywords 最小二乘法 转化的思想

使误差的平方和为最小: 按最小二乘法, 作直线拟合应使 ∑=+-=N i i i x y b a b a Q 1 2 )]([),(为最小,极小值点一阶导数为0:0,0=??=??b Q a Q 最小二乘法(least squares method ) 2min, ()i i e e y a bx i i i =∑=-+2i i i i i i aN b x y a x b x x y ?+=??+=??∑∑∑∑∑得正规方程组: 2i i i i i i i i i i i i a b x y a x b x x y ωωωωωω?+=??+=??∑∑∑∑∑∑加权正规方程组: IF Y*=a0+a1X1+a2X2+a3X3+……+akXk (n>k ),THEN?

最小二乘法的几何意义(p51) y=a0x0+a1x1+a2x2+a3x3+……+akxk(n>k)其中x0=(1,1,1,.....1),x i=(xi1,xi2,xi3,.....,xin),i=1,2,3.....n

数据拟合方法一览表 线性关系直线拟合非线性关系曲线拟合 单变量直线拟合多 变 量 直 线 拟 合 多项式拟合非多项式拟合 变量 替换 转换 为直 线拟 合 多项 式拟 合的 最小 二乘 法 变量 替换 为多 变量 直线 拟合 方程 两边 取对 数转 换为 直线 拟合 正 交 多 项 式 拟 合 Y*=a0+a1X1+a2X2+a3X3+……+akXk(n>k)本

thank u

实验数据曲线拟合方法研究

本科毕业设计论文题目实验数据曲线拟合方法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 一、题目 实验数据曲线拟合方法研究 二、指导思想和目的要求 通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的实验数据曲线拟合方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。 要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。 三、主要技术指标 设计系统满足以下要求: 数据拟合误差要尽量的小的同时保证曲线的线形形状最佳。 四、进度和要求 1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内外研 究现状及研究意义;(第1、2周) 2、撰写开题报告;(第 3、4周) 3、应用最小二乘法进行曲线拟合;(第5、6周) 4、应用Matlab命令曲线拟合;(第7、8周) 5、应用Matlab图形用户界面曲线拟合;(第9、10周) 6、研究其他曲线拟合方法;(第11周) 7、整理资料撰写毕业论文; (1)初稿;(第12、13周)(2)二稿;(第14周)

8、准备答辩和答辩。(第15周) 五、主要参考书及参考资料 [1]卢京潮,《自动控制原理》,西北工业大学出版社,2010.6 [2]胡寿松,《自动控制原理》,科学出版社,2008,6 [3]薛定宇,陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4 [4]王正林,《Matlab/Simulink与控制系统仿真》,电子工业出版社,2009.7 [5]李桂成,《计算方法》,电子工业出版社,2013.8 [6]蒋建飞,胡良剑,唐俭.数值分析及其Matlab实验【M】.北京:科学出版社,2008 学生指导教师系主任

数据分布拟合

数据分布拟合检验的数学模型 摘 要 假设检验的基本思想,讨论当总体分布为正态时,关于其中未知参数的假设 检验问题,可能遇到这样的情形,总体服从何种理论分布并不知道,要求我们直 接对总体分布提出一个假设 。 一般的各种检验法, 是在总体分布类型已知的情况下, 对其中的未知参数 进行检验, 这类统计检验法统称为参数检验. 在实际问题中, 有时我们并不能 确切预知总体服从何种分布, 这时就需要根据来自总体的样本对总体的分布进 行推断, 以判断总体服从何种分布。 这类统计检验称为非参数检验. 解决这类问题的工具之一是英国统计学家 K. 皮尔逊在1900年发表的一篇文章中引进的——2χ检验法。 关键词:数据检验 分布拟合 2χ检验法 一、问题重述 ①、问题背景: 自1965年1月1日至1971年2月9日共2231天中,全世界记录到里氏震 级4级和4级以上地震计162次,统计如下: 相继两次地震记录表: 8 6681017263150403935343029252420191514109540出现的频率间隔天数--------x 试检验相继两次地震间隔的天数X 服从指数分布(=α0.05)。

在概率论中,大家对泊松分布产生的一般条件已有所了解,容易想到,每年 的次数,可以用一个泊松随机变量来近似描述。也就是说,我们可以假设每年爆 发战争次数分布X 近似泊松分布。 现在的问题是:上面的数据能否证实X 具有泊松分布的假设是正确的? ②、检验法的基本思想 检验法是在总体X 的分布未知时, 根据来自总体的样本, 检验总体分布的 假设的一2χ种检验方法。具体进行检验时,先提出原假设: 0H : 总体X 的分布函数为)(x F 然后根据样本经验分布和所假设的理论分布之间的吻合程度来决定是否接 受原假设。 这种检验通常称作拟合优度检验. 它是一种非参数检验. 一般地, 我们总 是根据样本观察值用直方图和经验分布函数, 推断出总体可能服从的分布, 然 后作检验. 1、 通过提出的方案和计算来决定给出数据分布拟合检验的数学模型的的 情况。 2、 对此模型和方案进行评价和推广。 二、模型的假设 ①、检验法的基本原理和步骤 1) 提出原假设: 0H :总体X 的分布函数为)(x F 如果总体分布为离散型, 则假设具体为 0H :总体X 的分布律为 ,2,1,}{===i p x X P i i 如果总体分布为连续型, 则假设具体为 0H :总体X 的概率密度函数).(x f 2) 将总体X 的取值范围分成k 个互不相交的小区间, 记为k A A A ,,2,1 ,如可 取为: );,(],(,],,(],,(11,22110k k k k a a a a a a a a ---

数据拟合法

第四章 数据拟合法 在科学实验和生产实践中,有许多函数关系仅能用由实验或观测得到的一组数据表 (,)(0,1, ,)i i x y i m =来表示,例如某种物质的化学反应,能够测得生成物的浓度与时间关 系的一组数据表.而它们的解析表达式)(t f y =是不知道的。但是为了要知道化学反应速度,必须要利用已知数据给出它的近似表达式,有了近似表达式,通过求导数便可知道化学反应速度。可见已知一组数据求它的近似表达式是非常有意义的.如何求它的近似表达式呢?第二章介绍的插值方法是一种有效的方法.但是由于数据(,)(0,1, ,)i i x y i m =是由测量或观测得 到的,它本身就有误差,作插值时一定要通过型值点),(i i y x 似乎没有必要;其次当m 很大时,采用插值(特别是多项式插值)很不理想(会出现龙格现象),非多项式插值计算又很复杂。为此,本章介绍一种“整体”近似的方法,即对于给定的数据(,),0,1,,i i x y i n =,选一个 线性无关函数系)(,),(),(10x x x n ??? ,以它们为基底构成的线性空间为 {}0span (), ,()n x x ??=Φ. 在此空间内选择函数 ()()n j j j x x ?α?==∑ 其中(0,1,,)j j n α=为待定常数。要求它逼近真实函数)(x f y =的误差尽可能小,这就是 数据拟合问题. §1 最小二乘法 一、最小二乘法 设有数据(,),0,1, ,i i x y i m =,令 ()(),0,1, ,n i i i i j j i j r y x y x i m ?α?==-=-=∑. 并称T m r r r r ),,,(10 =为残向量,用)(x ?去拟合)(x f y =的好坏问题变成残量的大小问题。 判断残量大小的标准,常用的有下面几种: (1) 确定参数(0,1, ,)j j n α=,使残量绝对值中最大的一个达到最小,即 i m i r ≤≤0max 为最小。 (2) 确定参数(0,1, ,)j j n α=,使残量绝对值之和达到最小,即 ∑=m i i r 为最小。 (3) 确定参数(0,1, ,)j j n α=,使残量的平方和达到最小,即

数据拟合方法研究气温变化规律

《数值计算》实验报告 学院:软件学院专业:软件工程班级:12级4班 实验名称 数据拟合方法研究气温变化规律 姓名罗光光学号1402120418 成绩 实验报告内容要求: 实验三:编写多项式拟合程序。并用该程序解决下列问题:假定某天的气温变化记录如下表,试用最小二乘方法找出这一天的气温变化规律。 h t/ 1 2 3 4 5 6 7 8 9 10 11 12 13 C T?/14 14 14 14 15 16 18 20 22 23 25 28 31 h t/14 15 16 17 18 19 20 21 22 23 24 C T?/32 31 29 27 25 24 22 20 18 17 16 考虑下列类型函数,计算误差平方和,并作图比较效果。 1.二次函数 2.三次函数 3.四次函数 4.函数 ) ) ( (2 c t b ae C- - =(提高:非线性拟合问题) 一.实验目的: 1.理解数据拟合的基本概念,基本方法; 2.掌握最小二乘法的基本原理,并学会通过计算机解决实际问题. 二.实验原理: 利用最小二乘法来解决实际遇到的问题,并解决问题 三.实验环境: PC机,MATLAB程序 四.实验过程(编写的程序) (1)二次函数 >> fun2=inline('c(1)*x.^2+c(2)*x+c(3)','c','x') fun2 = Inline function: fun2(c,x) = c(1)*x.^2+c(2)*x+c(3) >> x=0:24; >> y=[15 14 14 14 14 15 16 18 20 22 23 25 28 31 32 31 29 27 25 24 22 20 18 17 16];

实验6 曲线拟合与数据分析

实验6 曲线拟合与数据分析 【实验目的】 1.掌握利用Origin进行(非)线性拟合的方法。 2.掌握如何由自定义函数对数据拟合。 3.掌握利用Origin对数据进行插值与外推。 4.掌握如何实现重叠图形的分离。 实验6.1非线性拟合 【实验内容】 1.利用安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Polynomial Fit.dat数据文件进行二次 多项式拟合,拟合结果如下图。 图6- 1二次多项式拟合结果 2.利用安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Gaussian.dat文件进行非线性拟合, 拟合结果如下图 图6- 2非线性拟合结果 3.分析分析报表,评估上面两题的拟合效果。 【实验步骤】 1)多项式拟合

1. 导入数据,通过【File 】→【Import 】命令打开安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Polynomial Fit.dat 文件。 2. 选中A 、B 列数据,生成散点图。 3. 通过【Analysis 】→【Fitting 】→【Fit Polynomial 】命令打开Polynomial Fit 对话框。 图6- 3多项式拟合对话框 4. 如图6-3示,输入输出数据关系Recalculate 选为Manual ,多项式次数Polynomial Order 设置为2。 单击OK 即可得6-1结果。 2) 非线性拟合 1. 导入数据,通过【File 】→【Import 】命令打开安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Gaussian.dat 文件。 2. 选中A 、B 列数据,生成散点图。 3. 通过【Analysis 】→【Fitting 】→【NonLinear Curve Fit 】命令打开NLFit 对话框。 4. 如图6-4示,拟合函数选择Gauss 函数,单击OK ,得6-2所示结果。 图6- 4非线性拟合对话框 实验6.2自定义函数拟合 【实验内容】 1. 有自定义函数 0bx y y ae =+ 利用安装目录D:\OriginLab\Origin8\Samples\Curve Fitting 下的Exponential Decay.dat 数据文件拟合出函数参数y0,a,b 。

数据拟合方法

第二讲 数据拟合方法 在实验中,实验和戡测常常会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。数据拟合方法求拟合函数,插值方法求插值函数。这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。例如,在某化学反应中,测得生成物的质量浓度y (10 –3 g/cm 3)与时间t (min )的关系如表所示 显然,连续函数关系 y (t )是客观存在的。但 是通过表中的数据不可能确切地得到这种关系。何况,由于仪器和环境的影响,测量数据难免有误差。因此只能寻求一个近拟表达式 y = (t )

寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ?作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。 数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。为了问题叙述的方 假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。则下一步是确定函数 y= a + b x 中系数a 和b 各等于多少从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即 a + b x k = y k 如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为 k k y bx a -+的差异(残差) 。于是全部点处的总误差是 ∑=-+10 1 k k k y bx a 这是关于a 和b 的一个二元函数,合理的做法是选取a 和b ,使得这个函 数取极小值。但是在实际求解问题时为了操作上的方便,常常是求a 和b 使得函数 ∑=-+=10 12)(),(k k k y bx a b a F 达到极小。为了求该函数的极小值点,令 0=??a F ,0=??b F , 得

数据拟合方法研究

数据拟合方法研究 中文摘要 在我们实际的实验和勘探中,都会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。 本文介绍了几种常用的数据拟合方法,线性拟合、二次函数拟合、数据的n次多项式拟合等。并着重对曲线拟合进行了研究,介绍了线性与非线性模型的曲线拟合方法,最小二乘法、牛顿迭代法等。在传统的曲线拟合基础上,为了提高曲线拟合精度,本文还研究了多项式的摆动问题,从实践的角度分析了产生这些摆动及偏差的因素和特点,总结了在实践中减小这些偏差的处理方法。采用最小二乘法使变量转换后所得新变量离均差平方和最小,并不一定能使原响应变量的离均差平方和最小,所以其模型的拟合精度仍有提高的空间。本文以残数法与最小二乘法相结合,采用非线性最小二乘法来得到拟合效果更好的曲线模型。随着计算机技术的发展,实验数据处理越来越方便。但也提出了新的课题,就是在选择数据处理方法时应该比以往更为慎重。因为稍有不慎,就会非常方便地根据正确的实验数据得出不确切的乃至错误的结论。所以提高拟合的准确度是非常有必要的 关键词:数据拟合、最小二乘法、曲线拟合、多项式摆动、残数法

Data Fitting Method Abstract In our experiments and exploration, it will produce large amounts of data. In order to explain these data to make predictions based on these data to determine, provide an important basis for policy makers .Need to fit the measured data to find a function to reflect data changes in the law.This article describes several commonly used data fitting methods, and focused on a nonlinear curve fitting of the model. This paper introduces some commonly used data fitting method, linear fitting, secondary function fitting, data n times polynomial fitting etc. T And focuses on the curve fitting, introduced the linear and nonlinear model of curve fitting method, the least square method, Newton iterative method, etc. In the traditional curve fitting basis, in order to improve the curve fitting precision, this paper also studies the polynomial swing, from the perspective of the practice the oscillation and deviation of factors and characteristics, and summarizes the decrease in practice the treatment method of these deviations. The least square method to variable after converting from new variables are the sum of squared residuals minimum, not necessarily make the original response from all the variables of the sum of squared residuals minimum, so the model fitting precision still has room to improve.Based on the number of residual method and least square method, and the combination of nonlinear least square method to get better fitting effect of curve model.With the development of computer technology, the experiment

曲线拟合方法浅析

曲线拟合方法概述 工业设计张静1014201056 引言:在现代图形造型技术中,曲线拟合是一个重要的部分,是曲面拟合的基础。现着重对最小二乘法、移动最小二乘法、NURBS 三次曲线拟合法和基于RBF 曲线拟合法进行 比较,论述这几种方法的原理及其算法,基于实例分析了上述几种拟合方法的特性,以分析拟合方法的适用场合,从而为图形造型中曲线拟合的方法选用作出更好的选择。 1 曲线拟合的概念 在许多对实验数据处理的问题中,经常需要寻找自变量和对应因变量之间的函数关系,有的变量关系可以根据问题的物理背景,通过理论推导的方法加以求解,得到相应关系式。但绝大多数的函数关系却很复杂,不容易通过理论推导得到相关的表达式,在这种情况下,就需要采用曲线拟合的方法来求解变量之间的函数关系式。 曲线拟合(Curve Fitting) ,是用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之问的函数关系的一种数据处理方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,y i), i=1 , 2, 3…,m,其中各X i是彼此不同的。人们希望用一类与数据的规律相吻合的解析表达式y=f(x)来反映量x与y之间的依赖关系。即在一定意义下“最佳”地逼近或拟合已知数据。f(x)称作拟合函数,似的图 像称作拟合曲线。 2 曲线拟合的方法 2.1 最小二乘法 最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配,是进行曲线拟合的一种早期使用的方法一般最小二乘法的拟合函数是一元二次,可一元多次,也可多元多次。该方法是通过求出数据点到拟合函数的距离和 最小的拟合函数进行拟合的方法令f(x)=ax 2+bx+c ,计算数据点到该函数 所表示的曲线的距离和最小即:

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据

图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1) 其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足

数据拟合方法研究毕业论文

数据拟合方法研究毕业论文 目录 中文摘要.................................................... I Abstract ....................................................II 第一章绪论.. (1) 1.1数据简介 (1) 1.1.1名词解释 (1) 1.1.2数据属性 (1) 1.2 曲线拟合简介 (2) 第二章数据拟合方法分类 (3) 2.1 线性拟合 (4) 2.2 二次函数拟合 (6) 2.3 数据的n次多项式拟合 (8) 2.4 点集{x1,x2,......,x m}上的正交多项式系.. (9) 2.5 用正交多项式系组成拟合函数的多项式拟合 (10) 2.6 指数函数的数据拟合 (11) 2.7 多元线性函数的数据拟合 (12)

第三章曲线拟合特性 (14) 3.1 线性模型的曲线拟合 (14) 3.1.1 最小二乘法及其计算 (14) 3.1.2 用正交多项式作最小二乘拟合 (20) 3.2 非线性模型的曲线拟合 (23) 3.2.1 牛顿迭代 (23) 3.2.2 常见非线性模型 (24) 第四章多项式的摆动 (29) 4.1 多项式摆动介绍 (29) 4.2 影响多项式拟合偏差的因素 (32) 4.2.1 实验数据的不均匀性 (32) 4.2.2 数据的密度 (33) 4.2.3 拟合曲线的适用区间 (33) 4.3 使用多项式拟合的注意事项 (33) 4.3.1尽量避免高阶多项式的拟合 (33) 4.3.2保持密度 (34) 4.3.3在实验数据走向比较明确的前提下,可以考虑其他的非线性拟 合方法 (34)

在Matlab中数据拟合的研究应用

在Matlab 中数据拟合的研究应用 而解决数据拟合问题最重要的方法变是最小二乘法,矛盾方程组和回归分析。而本论文主要研究的就是最小二乘法。 在科学实验,统计研究以及一切日常应用中,人们常常需要从一组测定的数据(例如N 个点((,)(0,1,,)i i x y i m =)去求得自变量x 和因变量y 的一个近似解表达式()y x ?=,这就是由给定的N 个点(,)(0,1,,)i i x y i m =求数据拟合的问题. 插值法虽然是函数逼近的一种重要方法,但他还存在以下的缺陷:一是由于测量数据的往往不可避免地带有测试误差,而插值多项式又通过所有的点(,)i i x y ,这样就使插值多项式保留了这些误差,从而影响了逼近精度。此时显然插值效果是不理想的。二是如果由实验提供的数据较多,则必然得到次数较高的插值多项式,这样近似程度往往既不稳定又明显缺乏实用价值.因此,怎样从给定的一组实验数据出发,寻求已知函数的一个逼近函数()y x ?=,使得逼近函数从总体上来说与已知函数的偏差按某种方法度量能达到最小而又不一定过全部的点(,)i i x y ,这就需要介绍本论文主要研究的最小二乘法曲线拟合法。 一.数据拟合的原理及依据 1.最小二乘法的基本原理 从整体上考虑近似函数()p x 同所给数据点(,)i i x y (,)(0,1,,)i i x y i m =误差()(0,1, ,)i i i r p x y i m =-=的大小,常用的方法有以下三种:一是误差()(0,1,,)i i i r p x y i m =-=绝对值的最大值0max i i m r ≤≤,即误差向量01(,, ,)t m r r r r =的∞ -的范数;二是误差绝对值的和0m i i r =∑,即误差向量r 的1—范数;前两种方法简单,自然, 但不便于微分运算,后一种方法相当于考虑2-的范数的平方,因此在曲线拟合中常采用误 差平方和20m i i r =∑来度量误差01(,,,)m r r r r =的整体大小。 数据拟合的具体作法是:对给定的数据(,)(0,1, ,)i i x y i m =,在取定的函数类φ中,求

相关文档
最新文档