一次函数选择最优方案教案.doc

一次函数选择最优方案教案.doc
一次函数选择最优方案教案.doc

19.3课题学习选择方案(第一课时)

学习目标:1、巩固一次函数知识,灵活运用变量关系解决相关实际问题.

2、有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.

3. 认识数学在现实生活中的意义, 发展运用数学知识解决实际问题的能力.

重点:一次函数的模型建立及应用

难点:如何选择合适的模型并应用

一.课前学习:阅读教材第102 页至103 页问题1:

1、教材第98 页练习题中的问题如改为何时选用何种计费方式最合算,应该怎

样作答?

2、问题1 怎样取上网收费方式? 下表给出A、B、C 三种上宽带网的收费

方式

收费方式月使用费/元包时上网时间/h 超时费/(元/min)

A 30 25 0.05

B 50 50 0.05

C 120 不限时

先取哪种方式能节省上网费?

(1)在方式A,B 中,上网时间是影响网费的量;在方式 C 中,上网费是量。

(2)当一月的上网时间分别如下表所示时,试算出对应的各种收费方式应缴的费用。

月通话时间/h A/元B/元C/元

20

30

50

220

3

100

(3)设月上网时间为xh,则方案A,B 的收费金额y1,y2 都是x 的函数。方式 A 中要把上网时间分为25h 以内和超过25h 两种情况,是一个分段函数,

y/元

180

160

140

120

100

80

60

40

20

O 20 40 60 80 100 x/h

y 即y1 __________________ ,同理:

1 __________________________________________

y ,

2 ______________________________

y3=_____________________________,在上图中画出它的图象。

(4)结合图象填空:当上网时间时,选择方式 A 最省钱;

当上网时间时,选择方式 B 最省钱;

当上网时间时,选择方式 C 最省钱;

二、课堂探究:问题 2 怎样租车?

某学校计划在总费用2300 元的限额内,租用汽车送234 名学生和 6 名教师集

体外出活动,每辆汽车上至少要有 1 名教师。现有甲、乙两种大客车,它们的载

客量和租金如下表:

甲种客车乙种客车载客量/(人/辆)45 30

租金/(元/辆)400 280

(1)共需租多少辆汽车?(2)给出最节省费用的租车方案。

解:(1)从人数上看,共有240人,若全部租大客车,要辆,全部租小客车,要辆;但由于每辆汽车上至少要有一名教师,故最多只能要辆车。

综合考虑,租车总数a= 辆。

(2)租车费用与所租车的种类有关。显然,当车辆总数确定时,尽可能少地租用种客车可以节省费用。设租用x 辆甲种客车,租车总费用y 元,则y 与x 的函数关系为:

y= ,化简得:

现在讨论x 的范围:为使240 名师生有车坐,应满足_________________ 240 ,

为使租车费用不超过2300 元,应满足_________________ 2300

故x 的取值为

(3)不同的租车方案

有,它们的租车费用分别为,为节省费用,应选

三、课堂检测:

(2004 年福州卷) 如图,L1,L2?分别表示一种白炽灯和一种节能灯的费用y( 费用

=灯的售价+电费,单位:元) 与照明时间x(h) 的函数图像,假设两种灯的使用寿命都是2000h,照明效果一样.

(1) 根据图像分别求出L1,L2 的函数关系式.

(2) 当照明时间为多少时,两种灯的费用相等?

(3) 小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他

设计最省钱的用灯方法( 直接给出答案,不必写出解答过程) .

四、归纳内化:

五、课外作业:

1、1、甲乙两个通信公司分别制定了一种移动电话的收费办法。甲公司规定:每月

收取月租费50 元,每通话1分钟再收0.4 元;乙公司规定:不收取月租费,每通话1分钟收费0.6元.那么,应当怎样选择通信公司才能节省电话费.(通话不到1分

钟按 1 分钟收费)

2、某社区活动中心为鼓励居民加强体育锻炼,准备购买10 副某种品

牌的羽毛球拍,每副球拍配(x x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每

副球拍的标价均为30 元,每个羽毛球的标价为3元,目前两家超市同

时在做促销活动:

A超市:所有商品均打九折(按标价的90%)销售;

B超市:买一副羽毛球拍送2个羽毛球.

设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:

(1)分别写出y A、y B与x之间的关系式;

(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划

算?

(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱

的购买方案

《函数的最大(小)值与导数》教案完美版

《函数的最大(小)值与导数》教案 §1.3.3 函数的最大(小)值与导数(1) 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习引入: 1.极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 2.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点. 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值. 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x ) 在这个根处无极值. 二、讲解新课: 1.函数的最大值和最小值

函数的值域和最值教案

函数的值域和最值教案 【教学目标】1.让学生了解求函数值域(最值)常用的方法; 2.让学生了解各种方法的适用题型,并能灵活运用各种方法解函数的值域. 【教学重点】直接法、利用函数单调性求值域(最值)、数形结合法 【教学难点】判别式法和数形结合方法的使用 【例题设置】例1(强调定义域的重要性),其它例题主要指出各种方法适用的题型及 注意点. 【教学过程】 第一课时 〖例1〗已知函数3()2log f x x =+(19x ≤≤),求函数22()[()]()g x f x f x =+的最值. 错解:令3log [0,2]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当2t =时,max 2()()|22t g x g x ===. 错因分析:当2t =时,9x =,2(9)[(9)](81)g f f =+无意义.产生错误的原因主要是忽略了定义域这个前提条件. 正解:由2 1919 x x ≤≤??≤≤?,得()g x 的定义域为[1,3],3log [0,1]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当1t =时,max 2()()|13t g x g x ===. ★点评:1.求函数的值域(最值)同样得在定义域上进行; 2.运用换元法解题时,一定要注意元的取值范围,这步较容易被忽略; 3.配方法是求“二次函数类”值域的基本方法,形如2()()()F x af x bf x c =++的函数的值域问题,均可用此法解决.该法常与换元法结合使用. 〖例2〗 求下列函数的值域: ⑴ 121 21 x x y ++=+; 法一:(直接法)1212(21)11 2212121 x x x x x y +++-===-+++ 由20x >,211x +>,1 0121 x < <+,故12y <<,即原函数的值域为(1,2)

《函数的单调性和最大(小)值》教学设计【高中数学人教A版必修1(新课标)】

《函数的单调性与最大(小)值》教学设计 第一课时函数的单调性 通过观察一些函数图像的特征,形成增(减)函数的直观认识。再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义。掌握用定义证明函数单调性的步骤。函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。 【知识与能力目标】 1、结合具体函数,了解函数的单调性及其几何意义; 2、学会运用函数图像理解和研究函数的性质; 3、能够应用定义判断函数在某区间上的单调性。 【过程与方法目标】 借助二次函数体验单调性概念的形成过程,领会数形结合的思想,运用定义进行判断推理,养成细心观察,严谨论证的良好的思维习惯。 【情感态度价值观目标】 通过直观的图像体会抽象的概念,通过交流合作培养学生善于思考的习惯。 【教学重点】 函数单调性的概念。 【教学难点】 判断、证明函数单调性。 从观察具体函数图像引入,直观认识增减函数,利用这定义证明函数单调性。通过练习、交流反馈,巩固从而完成本节课的教学目标。

(一)创设情景,揭示课题 德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究。他经过测试,得到了以下一些数据: 以上数据表明,记忆量y 是时间间隔t 的函数。艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”, 如图: 思考1:当时间间隔t 逐渐增大你能看出对应的函数值y 有什么变化趋势?通过这个 试验,你打算以后如何对待刚学过的知识? 思考2:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学观点进行解释? (二)研探新知 观察下列各个函数的图像,并说说它们分别反映了相应函数的哪些变化规律:

一次函数,方案选择

课题学习选择方案教学设计 教学目标 一、知识技能 1、能根据所列函数的表达式的性质,选择合理的方案解决问题。 2、进一步巩固一次函数的相关知识,初步学会从数学的角度提出问题,理解问题,并能综合运用所学知识和技能解决问题,发展应用意识。 二、过程方法 结合实际问题的讲解,培养学生收集、选择、处理数学信息,并作出合理的推断或大担的猜测的能力,提高学生在实际问题情景中,建立数学模型的能力。 三、情感态度价值观 1.经历提出问题,收集和整理数据,获取信息,处理信息(画出函数的图象)形成如何决策的具体方案。 2.让学生感受一次函数的图象及性质在日常生活当中的妙用,从而提高学生学习兴趣,在数学学习中获得成功体验,建立自信心。教学重点 建立数学模型,得出相关的一次函数的图象。 教学难点 如何从一次函数图象中收集、处理实际问题中的数学信息。教学过程 教学过程 一、出示问题情境,导入新课 做一件事情,有时有不同的实施方案.比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.在选择方案时,往往需要从数学的角度分析,涉及变量的问题常用到函数.同学们通过讨论下面两个问题,体会如何运用一次函数选择最佳方案. 二、自主学习,探究新知(一)

多媒体展示问题一:下表给出A ,B ,C 三种上宽带网的收费方式: 选取哪种方式能节省上网费? 学生带着以下问题,自主学习,不解之处进行讨论: 1.哪种方式上网费是会变化的?哪种不变? A 、B 会变化,C 不变 2.在A 、B 两种方式中,上网费由哪些部分组成? 上网费=月使用费+超时费 3.影响超时费的变量是什么?所以设 上网时间为x 小时 . 上网时间 4.这三种方式中有一定最优惠的方式吗? 没有一定最优惠的方式,与上网的时间有关 5请同学们填写下表,思考如何用函数关系式表示方式A ,B 的总费用? 设 , 表示方案的收费金额. 表示方案的收费金额. 表示方案C 的收费金额. ? ??=1y 化简,得 ??? =2y 130, (025)345. (25)x y x x ≤≤?=? -?>30 当0≤x ≤25时, 30+0.05×60(x -25) 50当0≤x ≤50时, 50+0.05×60(x -50)

函数的最值问题教案

知识点单调性的应用,最值问题 使学生理解函数的最值是在整个定义域上来研究的,是函数单调性的应用. 教学目标 通过渗透数形结合的思想方法,掌握求函数最值的方法. I ■ ■ 教学重点函数最大(小)值的定义和求法. 教学难点如何求一个具体函数的最值. 函数的最大(小)值的定义,是借助于二次函数及其图像引出的,概念的出现仍然是遵循特殊到一般的原则?鉴于学生对于二次函数已经有了一个初步的了解,因此本节课多从学生接触过的二次函数入手,这样能使学生容易找到最高点和最低点?但这只是感性上的认识,要培养学生能用数学语言描述函数最值的概念,通过对概念的辨析,真正让学生理解最值概念的内涵,同时,在做题时多培养学生画图的能力,体会到数形结合的魅力 【知识导图】 教学过程 「、导入 【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状^态。 导入的方法很多,仅举两种方法: ①情境导入,比如讲一个和本讲内容有关的生活现象; ②温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学 生建立知识网络。 提供一个教学设计供讲师参考: ⑴由于某种原因,2019年北京奥运会开幕式时间由原定的7月25日推迟到8月8 日, 请查阅资料说明做出这个决定的主要原因

⑵通过查阅历史资料研究北京奥运会开幕式当天气温变化情况. 课上通过交流,可以了解到开幕式推迟主要是天气的原因, 北京的天气到8月中旬,平 均气温、平均降雨量和平均降雨天数等均开始下降, 比较适宜举办大型国际体育赛事. 下图 是北京市某年8月8日一天24小时内气温随时间变化的曲线图. 问题:观察图形,能 息? 预案:(1)当天最高温 多少以及何时达到; (2) 在某时刻 (3) 某些时段 时 段温度降低. 在生活中,我们关心很多数据的变化规律, 了解这些数据的变化规律, 对我们的生活是 很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 设计意图:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小?从而引入 最大值、最小值的概念. 二、知识讲解 【教学建议】通过前面的引导,得到函数最值的定义,建议老师在引导学生得到最大值的定 义以后,可以让学生来类比写出最小值的定义: 前提 设函数y = f (x)的定义域为1,如果存在实数 M 满足 条件 ① 对于任意X",都有f (x)兰M ; ② 存在x^ I ,使得f (x 0) = M ① 对于任意x",都有f (X) A M ; ② 存在x ^e I ,使得f(xj = M 结论 M 为最大值 M 为最小值 考点数图I 数的意点大值P 的坐标 (x,y)的意义:横坐标x 是自变量的取值,纵坐标y 是自变 量为x 时对应的函数值的大小. (1)图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值. 得到什么信 度、最低温度是 的温度; 温度升高,某些

最大值与最小值教案

班级:高二( )班 姓名:____________ 教学目标: 1.使学生理解函数的最大值和最小值的概念,掌握可导函数f (x )在闭区间上所有点(包括端点a ,b )处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 教学重点: 利用导数求函数的最大值和最小值的方法. 教学过程: 一、问题情境 1.问题情境.函数极值的定义是什么? 2.探究活动.求函数f (x )的极值的步骤. 二、建构数学 1.函数的最大值和最小值. 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象. 图中)(1x f ,35(),()f x f x 是极小值,24(),()f x f x 是极大值. 函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明: (1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 如函数x x f 1)(=在),0(+∞内连续,但没有最大值与最小值; (2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的; (3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 2.利用导数求函数的最值步骤: 由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了. 设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:

一次函数方案选择问题

利用一次函数选择最佳方案 (1)根据自变量的取值范围选择最佳方案: A 、列出所有方案,写出每种方案的函数关系式; B 、画出函数的图象,求出交点坐标,利用图象来讨论自变量在哪个范围内取哪种方案最佳。 (2)根据一次函数的增减性来确定最佳方案: A 、首先弄清最佳方案量与其他量之间的关系,设出最佳方案量和另外一个量,建立函数关系式。 B 、根据条件列出不等式组,求出自变量的取值范围。 C 、根据一次函数的增减性,确定最佳方案。 根据自变量的取值范围选择最佳方案: 例1、某校实行学案式教学,需印制若干份数学学案。印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。两种印刷方式的费用y (元)与印刷份数x (份)之间的函数关系如图所示: (1)填空:甲种收费方式的函数关系式是_______ ____。 乙种收费方式的函数关系式是_______ ____。 (2)该校某年级每次需印制100∽450(含100和450)份学案, 选择哪种印刷方式较合算。 例2、某校一名老师将在假期带领学生去北京旅游,甲旅行社说:“如果老师买全票,其他人全部半价优惠,”乙旅行社说:“所有人按全票价的6折优惠,”已知全票价为240元,设学生人数为x ,甲旅行社的收费为甲y (元),乙旅行社的收费为乙y (元)。 (1)分别表示两家旅行社的收费甲y ,乙y 与x 的函数关系式; (2)就学生人数讨论哪家旅行社更优惠; (2)根据一次函数的增减性来确定最佳方案: 例3、博雅书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预计这100本图书全部售完的利润 甲种图书 乙种图书 进价(元/本) 16 28 售价(元/本) 26 40

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

函数的最大值和最小值教案

函数的最大值和最小值教案 1.本节教材的地位与作用 本节主要研究闭区间上的持续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f是闭区间[a,b]上的持续函数,那么f在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等严重的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为严重的意义. 2.教学重点 会求闭区间上持续开区间上可导的函数的最值. 3.教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不烂熟,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法. 4.教学关键 本节课突破难点的关键是:理解方程f′=0的解,包含有指定区间内全部可能的极值点. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: .知识和技能目标 理解函数的最值与极值的区别和联系.

进一步明确闭区间[a,b]上的持续函数f,在[a,b]上必有最大、最小值. 掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 了解开区间内的持续函数或闭区间上的不持续函数不一定有最大、最小值. 理解闭区间上的持续函数最值存在的可能位置:极值点处或区间端点处. 会求闭区间上持续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 认识事物之间的的区别和联系. 培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间上的持续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的持续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行合适的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 【学法指导】 对于求函数的最值,高三学生已经具备了优良的知识基础,剩下的问题就是有没有一种更大凡的方法,能运用于更多更繁复函数的求最值问题?教学设计中注意激发起学生剧烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

示范教案(单调性与最大(小)值第课时)

示范教案(1.3.1 单调性与最大(小)值 第2课时) 导入新课 思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m 2的矩形新厂址,新厂址的长为x m ,则宽为x 10000m ,所建围墙ym ,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y 最短? 学生先思考或讨论,教师指出此题意在求函数y=2(x+ x 10000),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题. 思路 2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①f(x)=-x+3;②f(x)=-x+3,x ∈[-1,2]; ③f(x)=x 2+2x+1;④f(x)=x 2+2x+1,x ∈[-2,2]. 学生回答后,教师引出课题:函数的最值. 推进新课 新知探究 提出问题 ①如图1-3-1-11所示,是函数y=-x 2-2x 、y=-2x+1,x ∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征. 图1-3-1-11 ②函数图象上任意点P(x,y)的坐标与函数有什么关系? ③你是怎样理解函数图象最高点的? ④问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图1-3-1-12所示,设点C 的坐标为(x 0,y 0),谁能用数学符号解释:函数y=f(x)的图象有最高点C ? 图1-3-1-12 ⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C 的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义? ⑥函数最大值的定义中f(x)≤M 即f(x)≤f(x 0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征? ⑦函数最大值的几何意义是什么?

一次函数(方案选取)练习题与解答

一次函数(方案选取)练习题与解答2018.5 1.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生。为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择: 方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元。 方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费。 (1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为元;用方案二处理废渣时,每月利润为元(利润=总收人-总支出)。 (2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元? (3)如何根据月生产量选择处理方案,既可达到环保要求又最划算? — 2.汛期来临,水库水位不断上涨,经勘测发现,水库现在超过警戒线水量640万米3,设水流入水库的速度是固定的,每个泄洪闸速度也是固定的,泄洪时,每小时流入水库的水量16万米3,每小时每个泄洪闸泄洪14万米3,已知泄洪的前a小时只打开了两个泄洪闸,水库超过警戒线的水量y(万米3)与泄洪时间s(小时)的关系如图所示,根据图象解答问题: (1)求a的值; (2)求泄洪20小时,水库现超过警戒线水量; (3)若在开始泄洪后15小时内将水库降到警戒线水量,问泄洪一开始至少需要同时打

开几个泄洪闸? 3.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。 (1)问小李分别购买精品盒与普通盒多少盒? (2)小李经营着甲、乙两家店铺,每家店铺每天部能售出精品盒与普通盒共30盒,并且每售出一盒精品盒与普通盒,在甲店获利分别为30元和40元,在乙店获利分别为24元和35元.现在小李要将购进的60盒弥猴桃分配给每个店铺各30盒,设分配给甲店精品盒a盒,请你根据题意填写下表: 小李希望在甲店获利不少于1000元的前提下,使自己获取的总利润W最大,应该如何分配?最大的总利润是多少? 、 4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B 县8辆,已知调运一辆农用车的费用如表:

高等数学(上册)教案15 函数的极值与最值

第3章 导数的应用 函数的极值与最值 【教学目的】: 1. 理解函数的极值的概念; 2. 掌握求函数的极值的方法; 3. 了解最大值和最小值的定义; 4. 掌握求函数的最值的方法; 5. 会求简单实际问题中的最值。 【教学重点】: 1. 函数极值的第一充分条件,第二充分条件; 2. 导数不存在情况下极值的判定; 3. 函数最值的求解方法; 4. 函数的最值的应用。 【教学难点】: 1. 导数不存在情况下极值的判定; 2. 区分函数的驻点、拐点、极值点以及最值点; 3. 区分极值点与极值,最值点与最值; 4. 函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3.3.1函数的极值 从图3-7可以看出,函数)(x f y =在点2x 、5x 处的函数值2y 、5y 比它们近旁各点的函数值都大;在点1x 、4x 、6x 处的函数值1y 、4y 、6y 比它们近旁各点的函数值都小,因此,给出函数极值的如下定义: 一般地, 设函数)(x f y =在0x 的某邻域内有定义,若对 于0x 邻域内不同于0x 的所有x ,均有)()(0x f x f <,则称)(0x f 是函数)(x f y =的一个极大值,0x 称为极大值点;若对于0x 邻域内不同于0x 的所有x ,均有 )()(0x f x f >,则称)(0x f 是函数)(x f y =的一个极小值,0x 称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意 可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分条件 设函数)(x f y =在点0x 的邻域内可导且0)(0='x f ,则 (1)如果当x 取0x 左侧邻近的值时,0)(0>'x f ;当x 取0x 右侧邻近的值时, 图3-7 y O x a 1 x 2 x 3x 4x 5 x b

总复习教案:函数的单调性与最值(教师版)

第三节 函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说函 数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12

“一次函数实施方案选择“教学设计

“一次函数实施方案选择“教学设计

————————————————————————————————作者:————————————————————————————————日期:

“一次函数”教学设计 “聚焦教与学转型难点”的高效课堂教学设计 课题名称:一次函数与方案选择问题 姓名张发文工作单位墨江县文武镇初级中学年级学科八年级数学教材版本人教版 一、教学难点内容分析(简要说明课题来源、学习内容、知识结构图以及学习内容的重要性) 本课时内容为人教版八年级数学下册第十九章一次函数19.3节课题学习《选择方案》,是一次函数知识的综合运用,是运用函数知识解决实际问题。同时是对一次函数知识的巩固。其重点是学会利用一次函数知识解决实际问题,同时培养学生数学建模思想。掌握一次函数的建模思想,体验数学源于生活,用于生活。能够用数学知识解决生活中的实际问题。难点是建立数学模型解决实际问题。 二、教学目标(从学段课程标准中找到要求,并细化为本节课的具体要求,目标要明晰、具体、可操作,并说明本课题的重难点) 1.初步掌握一次函数解决实际问题——选择方案,培养学生初步建立数学模型思想。 2.通过问题探究,利用函数表示变量间的关系,利用方程、不等式反映相等或不等关系。利用函数图像直观解决问题。 3.利用函数模型解决实际问题。 4.培养学生的建模思想,体会数学的实用性,渗透数形结合的思想,培养严谨科学的学习习惯。 三、学习者特征分析(学生对预备知识的掌握了解情况,学生在新课的学习方法的掌握情况,如何设计预习)

1.学生已经掌握了一次函数的基本知识,具有一定的分析能力,大部分学生会用方程、不等式表示相等不等关系,本章开始认识函数表示变量之间的关系。 2.大部分学生能自主预习,会独立思考问题,能依据学案自主学习。 四、教学过程(设计本课的学习环节,明确各环节的子目标) 本节课教学结合“1215”模式进行教学,分为四个阶段,六个环节: 1.复习引入 2.问题引 3.依案自学 4.反馈交流 5.练习巩固 6.小结提升 五、教学策略选择与高效课堂融合的设计(针对学习流程,设计教与学的方式的变革,配置学习资源和数字化工具,设计高效课堂融合点) 教师活动预设学生活动设计意图 一、教师出示复习题组: 1.一次函数解析式: 2.一次函数的图像及性质有 哪些? 学生思考解答问题,并反馈。忆旧引新, 二、问题引入 做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的。应用数学的知识和方法对各种方案进行比较分析,可以帮助我们清楚地认识各种方案,作出合理的选择。 问题:你能说说生活中需要选择方案的例子吗? 学生各抒已见,引出如何选择 上网收费方式的问题 通过这一环节,让 学生体会到选择 方案问题在生活 中普遍存在,对各 种方案运用数学 方法作出分析,理 性选择最佳方案 是必要的,具有现 实意义。 三自主学习:教师分发但学案,(导学案附件)依案自学(10分钟),阅读课本 完成学案。 培养学生自主 学习能力。 四、反馈点拨(20分钟) 1.教师收集问题, 2.反馈点拨1.学生反馈,提出问题 2.小组交流讨论。 3.形成知识建模。 帮助学生发现 问题,互帮互 学,建立模型,

高一数学《函数的单调性与最值》第二课时教案

1 函数的单调性与最值 学习目标: 1. 使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用。 2. 会用单调性求最值。 3. 掌握基本函数的单调性及最值。 知识重现 1、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x ∈I ,都有f(x)≤M ; (2) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最大值(maximum value ) 2、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (3) 对于任意的x ∈I ,都有f(x)≥ M ; (4) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最小值(minimum value ) 理论迁移 例1 “菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h 米与时间t 秒之间的关系为h(t )=-4.9t 2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1米)? 例2 已知函数f(x)= 1 x 2-(x ∈[2,6]),求函数的最大值和最小值。 归纳基本初等函数的单调性及最值 1. 正比例函数:f(x)=kx(k ≠0),当k 0时,f(x)在定义域R 上为增函数;当k 0时,f(x)在 定义域R 上为减函数,在定义域R 上不存在最值,在闭区间[a,b ]上存在最值,当k 0时函数f(x)的最大值为f(b)=kb,最小值为f(a)=ka, 当k 0时, ,最大值为f(a)=ka ,函数f(x)的最小值为f(b)=kb 。 2. 反比例函数:f(x)=x k (k ≠0),在定义域(-∞,0) (0,+∞)上无单调性,也不存在最值。当k 0时,在(-∞,0),(0,+∞)为减函数;当k 0时,在(-∞,0),(0,+∞)

函数的最大值与最小值 说课稿 教案 教学设计

函数的最大值与最小值 一、教学目标:理解并掌握函数最大值与最小值的意义及其求法.弄请函数极值与最值的区别 与联系.养成“整体思维”的习惯,提高应用知识解决实际问题的能力. 二、教学重点:求函数的最值及求实际问题的最值. 教学难点:求实际问题的最值.掌握求最值的方法关键是严格套用求最值的步骤,突破难 点要把实际问题“数学化”,即建立数学模型. 三、教学过程: (一)复习引入 1、问题1:观察函数f (x )在区间[a ,b ] 的极大值、极小值和最大值、最小值. 2、问题2:观察函数f (x )在区间 [a ,b ]的极大值、极小值和最大值、最小值. (见教材P30面图1.3-14与1.3-15) 3、思考:⑴ 极值与最值有何关系? ⑵ 最大值与最小值可能在何处取得? ⑶ 怎样求最大值与最小值? 4、求函数y = 44313+-x x 在区间[0, 3]上的最大值与最小值. (二)讲授新课 1、函数的最大值与最小值 一般地,设y =f (x )是定义在[a ,b ]上的函数,在[a ,b ]上y =f (x )的图象是一条连续不断的曲线,那么它必有最大值与最小值。 函数的极值是从局部考察的,函数的最大值与最小值是从整体考察的。 2、求y =f (x )在[a ,b ]上的最大值与最小值,可分为两步进行: ⑴ 求y =f (x )在(a ,b )内的极值; ⑵ 将y =f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 例1.求函数y =x 4-2x 2+5在区间[-2, 2]上的最大值与最小值. 解: y'=4x 3-4x =4x (x +1)(x -1)令y'=0,即 4x (x +1)(x -1)=0, 解得x =-1,0,1.当x 变化时,y',y 的变化情况如下表: 故 当x =±2时,函数有最大值13,当x =±1时,函数有最小值4. 练习 例2.求函数y =5363423+-+x x x 在区间[-2, ∞+]上的最大值与最小值. 例3. 求函数]4,0[,2)(∈+=x x x x f 的最大值和最小值.

函数最值教案

函数最值教案 教学目标 理解函数最大(小)值的定义,强调最值是函数的整体性质; 掌握简单的求函数最值的方法(图象法、配方法、单调性法); 会利用求函数最值的方法解决一些简单的实际问题,如:用料最省、利润最大、效率最高等最值问题. 教学重难点 教学重点: 函数最大值、最小值定义的理解; 掌握求函数最值的三种基本方法:图象法、配方法、单调性法; 会利用求函数最值的方法解决一些简单的实际问题. 教学难点: 利用单调性法求函数的最值; 利用求函数最值的方法解决现实生活中的最值问题. 教学过程 (一)观察图象,导入新课 让学生自己动手画出函数2 y x =-和函数||y x =-的图象,引导学生观察两个函数图象的共同点,引导启发学生发现这两个函数的图象都有一个最高点(0,0),并告诉学生在数学上将这个最高点称为函数在定义域上的最大值.进一步提出问题:根据你对图象的观察,能否试着归纳出函数最大值的定义. 根据学生对函数最大值定义的归纳情况,给出函数最大值的准确定义. 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,就称M 是函数()y f x =的最大值. (二)列举实例,理解内涵 问题一:

2是函数的最大值吗?为什么? [设计意图]强调概念中的“任意”二字. 问题二:4是问题一中函数的最大值吗?为什么? [设计意图]强调最大值必须能取到. 问题三:常值函数1y =有没有最大值?如果有最大值是多少? [设计意图]强调函数的最大值虽然是唯一的,但与最大值对应的自变量的值并不一定是唯一的. 引导学生归纳出函数的最大值就是函数图象最高点所对应的纵坐标. (三) 自己动手,类比研究 让学生根据研究函数最大值的方法、手段、过程,给出函数最小值的概念及对概念内涵的理解. (四)实际应用,巩固提高 讲解课本30页例3(图象法,配方法) 题后小结: (1)函数最值的图形特征:函数的最大(小)值是函数图像上最高(低)点的纵坐标; (2)二次函数2(0)y ax bx c a =++≠的最值: ①0a <,当2b x a =-时,2 max 44ac b y a -=. ②0a >,当2b x a =-时,2 max 44ac b y a -=. (3)若()f x 在[,]a b 上为增函数,则min max ()(),()()f x f a f x f b ==; 若()f x 在[,]a b 上为减函数,则min max ()(),()()f x f b f x f a ==. (4)若()f x 值域为[,]a b ,则min max (),()f x a f x b ==. 31页例4(图象法,单调性法,其中详细讲解单调性法的推理过程及解题步骤). 课堂练习:课本32页第5题,39页第5题 小结 学生自己作小结,教师归纳: 函数最大(小)值定义的理解;求函数最值的三种方法 作业 1.39P B 组1 已知函数22 ()2,()2([2,4])f x x x g x x x x =-=-∈. (1)求(),()f x g x 的单调区间; (2)求(),()f x g x 的最小值. 2.39P B 组2 如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建

高三数学教案函数的最大值和最小值(第1课时

2006年江西省高中青年教师优质课比赛参赛教案§3.8 函数的最大值和最小值(第1课时)江西省临川第一中学游建龙(344100) 二OO六年九月十三日 E-mail:lcyz_yjl@https://www.360docs.net/doc/a613326623.html,

§3.8 函数的最大值和最小值 【教材分析】 1.本节教材的地位与作用 本节是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使用料最省、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,对于完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义. 2.教学重点 会求闭区间上连续开区间上可导的函数的最值. 3.教学难点 确定函数最值的方法,并会求函数的最值. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1.知识和技能目标 (1)理解函数的最值与极值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)了解开区间内的连续函数不一定有最大、最小值. (2)会求闭区间上连续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 (1)认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课引导学生自己通过观察函数的图象,归纳、总结出最大值、最小值求解的方法与步骤,让学生自己主动地获得知识,老师只是进行适当的引导,而不是进行全部的灌输.【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下问题是有没有一种更一般的方法,能运用于更多更复杂的函数求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发

函数的最大(小)值优秀教案 新人教A版必修1

§1.3.1函数的最大(小)值 一.教学目标 1.知识与技能: 理解函数的最大(小)值及其几何意义. 学会运用函数图象理解和研究函数的性质. 2.过程与方法: 通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 二.教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 三.学法与教学用具 1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 2.教学用具:多媒体手段 四.教学思路 (一)创设情景,揭示课题. 画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2 ()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈- (二)研探新知 1.函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意: ①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥.

相关文档
最新文档