电力设备带电检测技术规范(试行)

电力设备带电检测技术规范(试行)
电力设备带电检测技术规范(试行)

电力设备带电检测技术规范(试行)

国家电网公司

2010年1月

目录

前言 ..............................................................................................................................I 1范围 .. (1)

2规范性引用文件 (1)

3定义 (1)

5变压器检测项目、周期和标准 (4)

6套管检测项目、周期和标准 (5)

7电流互感器检测项目、周期和标准 (6)

8电压互感器、耦合电容器检测项目、周期和标准 (8)

9避雷器检测项目、周期和标准 (9)

10 GIS本体检测项目、周期和标准 (10)

11开关柜检测项目、周期和标准 (12)

12敞开式SF6断路器检测项目、周期和标准 (12)

13高压电缆带电检测项目、周期和标准 (13)

附录A高频局部放电检测标准 (17)

附录B 高频局部放电检测典型图谱 (18)

附录C GIS超高频局部放电检测典型图谱 (21)

附录D 高压电缆局部放电典型图谱 (29)

附录E 编制说明 (30)

Q/GDW ××××-2009

前言

电力设备带电检测是发现设备潜伏性运行隐患的有效手段,是电力设备安全、稳定运行的重要保障。为规范和有效开展电力设备带电检测工作,参考国内外有关标准,结合实际情况,制订本规范。

本标准附录A为规范性附录,附录B、附录C、附录D为资料性附录。

本标准由国家电网公司生产技术部提出。

本标准由国家电网公司科技部归口。

本标准主要起草单位:北京市电力公司、中国电力科学研究院、国网电力科学研究院

本标准参加起草单位:江苏省电力公司、福建省电力公司、湖北省电力公司

本标准的主要起草人:刘庆时、张国强、丁屹峰、韩晓昆、黄鹤鸣、杨清华、赵颖、闫春雨、毛光辉、彭江、牛进仓、孙白、王承玉

本标准由国家电网公司生产部负责解释。

本标准自发布之日起实施。

1 范围

本规范规定了主要电力设备带电检测的项目、周期和判断标准,用以判断在运设备是否

存在缺陷,从而预防设备发生故障或损坏,保障设备安全运行。

本规范适用于10kV及以上交流电力设备的带电检测。

2 规范性引用文件

下列文件中的条款通过本规范的引用而成为本规范的条款,其最新版本适用于本规范。

GB50150电气装置安装工程电气设备交接试验标准

GB/T7354 局部放电测量

GB/T7252 变压器油中溶解气体分析和判断标准

GB7674六氟化硫封闭式组合电器

GB/T8905六氟化硫设备中气体管理和检验导则

GB/T 5654 液体绝缘材料工频相对介电常数、介质损耗因数和体积电阻率的测量

DL/T596 电力设备预防性试验规程

DL/T664 带电设备红外诊断应用规范

DL 419电力用油名词术语

DL 429.9 绝缘油介电强度测定法

Q/GDW 168 输变电设备状态检修试验规程

Q/GDW 169 油浸式变压器(电抗器)状态评价导则

Q/GDW 170 油浸式变压器(电抗器)状态检修导则

Q/GDW 171 SF6高压断路器状态评价导则

Q/GDW 172 SF6高压断路器状态检修导则

3 定义

3.1带电检测

一般采用便携式检测设备,在运行状态下,对设备状态量进行的现场检测,其检测方式为带电短时间内检测,有别于长期连续的在线监测。

3.2高频局部放电检测

高频局部放电检测技术是指对频率介于3MHz-30MHz区间的局部放电信号进行采集、分析、判断的一种检测方法。

3.3红外热像检测

利用红外热像技术,对电力系统中具有电流、电压致热效应或其他致热效应的带电设备进行检测和诊断。

3.4超声波信号检测

超声波检测技术是指对频率介于20kHz-200kHz区间的声信号进行采集、分析、判断的一种检测方法。

3.5超高频局部放电检测

超高频检测技术是指对频率介于300MHz-3000MHz区间的局部放电信号进行采集、分析、判断的一种检测方法。

3.6暂态地电压检测

局部放电发生时,在接地的金属表面将产生瞬时地电压,这个地电压将沿金属的表面向各个方向传播。通过检测地电压实现对电力设备局部放电的判别和定位。

3.7接地电流测量

通过电流互感器或钳形电流表对设备接地回路的接地电流进行检测。

3.8相对介质介质损耗因数

两个电容型设备在并联情况下或异相相同电压下在电容末端测得两个电流矢量差,对该差值进行正切换算,换算所得数值叫做相对介质介质损耗因数。

3.9SF6气体分解物检测

在电弧、局部放电或其他不正常工作条件作用下,SF6气体将生成SO2、H2S等分解产物。通过对SF6气体分解物的检测,达到判断设备运行状态的目的。

3.10SF6气体泄漏成像法检测

通过利用成像法技术(如:激光成像法、红外成像法),可实现SF6设备的带电检漏和泄漏点的精确定位。

3.11金属护套接地系统

为限制电缆金属护套感应电压,将电缆金属护套通过不同方式与地电位连接构成的完整系统。

4 总则

4.1对电力设备的带电检测是判断运行设备是否存在缺陷,预防设备损坏并保证安全运行的重要措施之一。

4.2带电检测实施原则

带电检测的实施,应以保证人员、设备安全、电网可靠性为前提,安排设备的带电检测工作。在具体实施时,应根据本地区实际情况(设备运行情况、电磁环境、检测仪器设备等),依据本规范,制定适合本地区的实施细则或补充规定。

4.2.1带电局部放电检测判定

带电局部放电检测中缺陷的判定应排除干扰,综合考虑信号的幅值、大小、波形等因素,确定是否具备局部放电特征。

4.2.2缺陷定位

电力设备互相关联,在某设备上检测到缺陷时,应当对相邻设备进行检测,正确定位缺陷。同时,采用多种检测技术进行联合分析定位。

4.2.3与设备状态评价相结合

状态检测是开展设备状态评价的基础,为消隐除患、更新改造提供必要的依据。同时,状态评价为较差的设备、家族缺陷设备等是下一周期状态检测的重点对象。最终目的都是尽最大可能控制设备故障停电风险、减少事故损失。

4.2.4与电网运行方式结合

同一电网在不同运行方式下存在不同的关键风险点,阶段性的带电检测工作应围绕电网运行方式来展开,对关键设备适度加强测试能有效防范停电、电网事故。

4.2.5与停电检测结合

带电检测是对常规停电检测的弥补,同时也是对停电检测的指导。但是带电检测也不能解决全部问题,必要时、部分常规项目还是需要停电检测。所以应以带电检测为主,辅以停电检测。

4.2.6横向与纵向比较

同样运行条件、同型号的电力设备之间进行横向比较,同一设备历次检测进行纵向比较,是有效的发现潜在问题的方法。

4.2.7新技术应用

带电检测已被证实为有效的检测手段,新技术不断涌现。在保证电网、设备安全的前提下,积极探索使用新技术,积累经验,保证电网安全运行。

4.3在进行与温度和湿度有关的各种检测时(如红外热像检测等),应同时测量环境温度与湿度。

4.4进行检测时,环境温度一般应高于+5℃;室外检测应在良好天气进行,且空气相对湿度一般不高于80%。

4.5室外进行红外热像检测宜在日出之前、日落之后或阴天进行。

4.6室内检测局部放电信号宜采取临时闭灯、关闭无线通讯器材等措施,以减少干扰信号。

4.7进行设备检测时,应结合设备的结构特点和检测数据的变化规律与趋势,进行全面地、系统地综合分析和比较,做出综合判断。

4.8对可能立即造成事故或扩大损伤的缺陷类型(如涉及固体绝缘的放电性严重缺陷、产气速率超过标准注意值等),应尽快停电进行针对性诊断试验,或采取其它较稳妥的监测方案。

4.9在进行带电检测时,带电检测接线应不影响被检测设备的安全可靠性。

4.10当采用一种检测方法发现设备存在问题时,要采用其它可行的方法进一步进行联合检测,检测过程中发现异常信号,应注意组合技术的应用进行关联分析。

4.11当设备存在问题时,信号应具有可重复观测性,对于偶发信号应加强跟踪,并尽量查找偶发信号原因。

4.12老旧设备局部放电带电检测

带电高频局部放电检测需从末屏引下线抽取信号,很多老旧设备没有末屏引下线,不能有效进行带电检测,可以在工作中结合停电安装末屏端子箱和引下线,为带电检测创造条件。从末屏抽取信号时,尽量采用开口抽取信号,不影响被检测设备的安全可靠运行。

4.13带电检测信号表现出的家族性特征

应重视带电检测发现家族性缺陷的分析统计工作,查找缺陷发生的本质原因,着重从设备的设计、材质、工艺等方面查找,总结同型、同厂、同工艺的设备是否存在同样缺陷隐患,并分析这些缺陷在带电状态下表征出来的信号是否具有家族性特征。

5 变压器检测项目、周期和标准

序号项目周期标准说明

1 红外热像检

1)半年至1

2)投运后

3)必要时

按DL/T664要求执行。

新设备投运后1周内完成。

2 油中溶解气

体分析

1)330kV 及

以上:3月;

220kV:半年;

110kV及

66kV:1年;

2)投运后

3)必要时

按Q/GDW 168要求执行。

1)异常情况应缩短检测周

期。

2)已安装成熟在线监测的设

备,可根据情况适当缩短在

线检测周期,延长人工取样

周期。

3 高频局部放

电检测

1)1年至2年

2)投运后

3)必要时

1)正常:无典型放电图谱。

2)异常:在同等条件下同类设备

检测的图谱有明显区别。

3)缺陷:具有典型局部放电的检

测图谱。

1)与标准图谱(附录)比较。

2)新设备投运、大修后1周

内完成。

3)适用于铁芯、夹件及电容

末屏接地线,其它结构参照

执行。

4)异常情况应缩短检测周

期。

4 铁芯接地电

流测量

必要时≤100mA

当怀疑有铁芯多点接地时

进行该项测量

5.1红外热像检测

检测变压器箱体、储油柜、套管、引线接头及电缆终端,红外热像图显示应无异常温升、温差和/或相对温差。检测和分析方法参考DL/T664。

5.2油中溶解气体分析

对于66kV及以上设备,除例行试验外,新投运、对核心部件或主体进行解体性检修后重新投运的变压器,在投运后的第1、4、10、30天各进行一次本项试验。若有增长趋势,即使小于注意值,也应缩短试验周期。烃类气体含量较高时,应计算总烃的产气速率。取样及测量程序参考GB/T7252,同时注意设备技术文件的特别提示。

当怀疑有内部缺陷(如听到异常声响)、气体继电器有信号、经历了过负荷运行以及发生了出口或近区短路故障时,应进行额外的取样分析。

5.3高频局部放电检测

检测从套管末屏接地线、高压电缆接地线(变压器为电缆出线结构)、铁芯和夹件接地线上取信号。正常时应无典型放电图谱(见附录B)。

当怀疑有局部放电时,比较其它检测方法,如油中溶解气体分析、超高频局部放电检测、超声波检测等方法对该设备进行综合分析。

6 套管检测项目、周期和标准

序号项目周期标准说明

1 红外热像检

1)半年至1

2)投运后

3)必要时

按DL/T664要求执行。新设备投运后1周内完成。

2 高频局部放

电检测

1)1年至2年

2)投运后

3)必要时

1)正常:无典型放电图谱。

2)异常:在同等条件下同类设备

检测的图谱有明显区别。

3)缺陷:具有典型局部放电的检

测图谱。

1)与标准图谱(附录)比较。

2)新设备投运、大修后1周

内完成。

3)适用于电容末屏接地线,

其它结构参照执行。

4)异常情况应缩短检测周

期。

3 相对介质介

质损耗因数

1)1年至2年

2)投运后

3)必要时

1)正常:初值差≤10%。

2)异常:初值差>10%且≤30%

3)缺陷:初值差>30%

1)采用相对值比较法,单

根测试线长度应保证在

15米以内。

2)初值宜选取:设备停电

状态下的介质损耗因数

为合格,带电后立即检

测的数值作为初值。

3)相对设备宜选择同相异

类设备,如果因距离原

因可选择同类异相设

备,但一经确定就不可

序号项目周期标准说明

更改。

4 相对电容量

比值

1)1年至2年

2)投运后

3)必要时

1)正常:初值差≤5%。

2)异常:初值差>5%且≤20%

3)缺陷:初值差>20%

1)采用相对值比较法,单

根测试线长度应保证在

15米以内。

2)初值宜按下述方法选

取:设备停电状态下的

电容量合格,带电后立

即检测的数值作为初

值。

3)相对设备宜选择同相异

类设备,如果因距离原

因可选择同类异相设

备,但一经确定就不可

更改。

6.1红外热像检测

检测高压引线连接处、套管本体等,红外热像图显示应无异常温升、温差和/或相对温差。检测和分析方法参考DL/T664。

6.2高频局部放电检测

检测从套管末屏接地线上取信号。正常时应无典型放电图谱。

当怀疑有局部放电时,应比较其它检测方法进行综合分析。

6.3相对介质介质损耗因数

检测从套管末屏接地线上取信号。如取同相的电流互感器末屏电流与本身末屏电流差值的正切值。

当达到缺陷标准时,应停电进行例行试验。

6.4相对电容量比值

检测从套管末屏接地线上取信号。如取同相的电流互感器电容与本身电容的比值。

当达到缺陷标准时,应停电进行例行试验。

7 电流互感器检测项目、周期和标准

序号项目周期标准说明

1 红外热像检

1)半年至1

2)投运后

3)必要时

按DL/T664要求执行。新设备投运后1周内完成。

2 高频局部放

电检测

1)1年至2年

2)投运后

3)必要时

1)正常:无典型放电图谱。

2)异常:在同等条件下同类设备

检测的图谱有明显区别。

3)缺陷:具有典型局部放电的检

1)与标准图谱(附录)比较。

2)新设备投运、大修后1周

内完成。

3)适用于电容末屏接地线,

序号项目周期标准说明

测图谱。其它结构参照执行。

4)异常情况应缩短检测周

期。

3 相对介质介

质损耗因数

1)1年至2年

2)投运后

3)必要时

1)正常:初值差≤10%。

2)异常:初值差>10%且≤30%

3)缺陷:初值差>30%

1)采用相对值比较法,单

根测试线长度应保证在

15米以内。

2)初值宜选取设备停电状

态下的介质损耗因数合

格,带电后立即检测的

数值作为初值。

3)相对设备宜选择同相异

类设备,如果因距离原

因可选择同类异相设

备,但一经确定就不可

更改。

4 相对电容量

比值

1)1年至2年

2)投运后

3)必要时

1)正常:初值差≤5%。

2)异常:初值差>5%且≤20%

3)缺陷:初值差>20%

1)采用相对值比较法,单

根测试线长度应保证在

15米以内。

2)初值宜按下述方法选

取:设备停电状态下的

电容量合格,带电后立

即检测的数值作为初

值。

3)相对设备宜选择同相异

类设备,如果因距离原

因可选择同类异相设

备,但一经确定就不可

更改。

7.1红外热像检测

检测高压引线连接处、电流互感器本体等,红外热像图显示应无异常温升、温差和/或相对温差。检测和分析方法参考DL/T664。

7.2高频局部放电检测

检测从套管末屏接地线上取信号。正常时应无典型放电图谱。

当怀疑有局部放电时,应比较其它检测方法进行综合分析。

7.3相对介质介质损耗因数

检测从末屏接地线上取信号。如取异相电流互感器或同相的套管末屏电流换算与自身末屏电流差值的正切值。

当达到缺陷标准时,应停电进行例行试验。

7.4相对电容量比值

检测从末屏接地线上取信号。如取异相电流互感器或同相的套管末屏电流换算电容值与本身电容的比值。

当达到缺陷标准时,应停电进行例行试验。

8 电压互感器、耦合电容器检测项目、周期和标准

序号项目周期标准说明

1 红外热像检

1)半年至1

2)投运后

3)必要时

按DL/T664要求执行。新设备投运后1周内完成。

2 高频局部放

电检测

1)1年至2年

2)投运后

3)必要时

1)正常:无典型放电图谱。

2)异常:在同等条件下同类设备

检测的图谱有明显区别。

3)缺陷:具有典型局部放电的检

测图谱。

1)与标准图谱(附录)比较。

2)新设备投运、大修后1周

内完成。

3)适用于从电容末端抽取信

号,其它结构参照执行。

4)异常情况应缩短检测周

期。

3 相对介质介

质损耗因数

1)1年至2年

2)投运后

3)必要时

1)正常:初值差≤10%。

2)异常:初值差>10%且≤30%

3)缺陷:初值差>30

1)采用相对值比较法,单

根测试线长度应保证在

15米以内。

2)初值宜选取设备停电状

态下的介质损耗因数合

格,带电后立即检测的

数值作为初值。

3)相对设备宜选择同相异

类设备,如果因距离原

因可选择同类异相设

备,但一经确定就不可

更改。

4 相对电容量

比值

1)1年至2年

2)投运后

3)必要时

1)正常:初值差≤5%。

2)异常:初值差>5%且≤20%

3)缺陷:初值差>20%

1)采用相对值比较法,单

根测试线长度应保证在

15米以内。

2)初值宜按下述方法选

取:设备停电状态下的

电容量合格,带电后立

即检测的数值作为初

值。

3)相对设备宜选择同相异

类设备,如果因距离原

因可选择同类异相设

备,但一经确定就不可

更改。

8.1 红外热像检测

检测高压引线连接处、耦合电容器本体等,红外热像图显示应无异常温升、温差和/或相对温差。检测和分析方法参考DL/T664。

8.2 高频局部放电检测

检测从电容末端抽取信号。正常时应无典型放电图谱。

当怀疑有局部放电时,应比较其它检测方法进行综合分析。

8.3 相对介质介质损耗因数

检测从电容末端接地线上取信号。如取临近同相的电流互感器末屏电流与本身电流差值的正切值。

当达到缺陷标准时,应停电进行例行试验。

8.4 相对电容量比值

检测从电容末端接地线上取信号。如取临近同相的电流互感器末屏电流换算电容值与本身电容的比值。

当达到缺陷标准时,应停电进行例行试验。

9 避雷器检测项目、周期和标准

序号项目周期标准说明

1 红外热像检

1)半年至1

2)投运后

3)必要时

按DL/T664要求执行。新设备投运后1周内完成。

2 高频局部放

电检测

1)1年至2年

2)投运后

3)必要时

1)正常:无典型放电图谱。

2)异常:在同等条件下同类设备

检测的图谱有明显区别。

3)缺陷:具有典型局部放电的检

测图谱。

1)与标准图谱(附录)比较。

2)新设备投运、大修后1周

内完成。

3)适用于从避雷器末端抽取

信号,其它结构参照执行。

4)异常情况应缩短检测周

期。

3 运行中持续

电流检测1)35kV及以

上金属氧化

物避雷器:投

运后半年内

测量1次,运

行1年后每年

雷雨季前测

量1次

2)必要时

1)测量运行电压下的全电流、阻

性电流或功率损耗,测量值与初

始值比较,不应有明显变化,当

阻性电流增加一倍时,必须停电

检查。

2)当阻性电流初值差达到+50%

时,适当缩短监测周期。

测量时应记录环境温度,相

对湿度,和运行电压,应注

意瓷套表面状况的影响及相

间干扰影响。

9.1 红外热像检测

用红外热像仪检测避雷器本体及电气连接部位,红外热像图显示应无异常温升、温差和/或相对温差。检测和分析方法参考DL/T664。

9.2 高频局部放电检测

检测从避雷器末端抽取信号。正常时信号谱图应不具备局部放电特征。

当怀疑有局部放电时,应比较其它检测方法进行综合分析。

通过与同组间其它避雷器的测量结果相比较做出判断,应无显著差异。本项目宜在每年雷雨季节前进行。

10 GIS本体检测项目、周期和标准

序号项目周期标准说明

1 红外热像检

1)半年至1

2)投运后

3)大修后

4)必要时

参考DL/T664 见10.1条

2 超高频局部

放电检测

1)半年至1

2)投运后

3)大修后

4)必要时

1)正常:无典型放电图谱。

2)异常:在同等条件下同类设

备检测的图谱有明显区别。

3)缺陷:具有典型局部放电的

检测图谱。

见10.2条

3 超声波局部

放电检测

1)半年至1

2)投运后

3)大修后

4)必要时

1)正常:无典型放电波形或音

响,且≤5dB。

2)异常:数值>5dB。

3)缺陷:数值>10 dB。

见10.3条

4 SF6气体

湿度20℃

(μL/L)

1)投运后1

年,以后3

年1次

2)补气24h

3)大修后

4)必要时

新安装、大修后:

1)断路器灭弧室气室:≤150

2)其他气室:≤250

运行中:

1)断路器灭弧室气室:≤300

2)其他气室:≤500

见10.4条

5 SF6气体纯

1)投运后1

年内

2)必要时

1)正常:纯度≥97%。

见10.5条

6 SF6气体分

解物20℃

(μL/L)

1)投运后1

年,以后3

年1次

2)必要时

1)正常:SO2≤2且H2S≤2

2)缺陷:SO2≥5或H2S≥5

见10.5条

序号项目周期标准说明

7 SF6气体泄

漏成像法检

1)补气间隔

小于2年时

2)必要时

SF6设备各部位无泄漏迹象

10.1 红外热像检测

检测各单元及进、出线电气连接处,红外热像图显示应无异常温升、温差和(或)相对温差。注意与同等运行条件下其他相同单元进行比较。测量时记录环境温度、负荷及其近3小时内的变化情况,以便分析参考。

1)检测和分析方法可参考DL/T664。

2)新设备投运、A类检修后1周内完成。

3)对电压互感器隔室、避雷器隔室、电缆仓隔室重点检测。

4)异常情况应缩短检测周期。

10.2 超高频局部放电检测

GIS中局部放电波形有很陡的上升前沿,脉冲的持续时间只有几个纳秒,但在气室中的谐振时间达到毫秒数量级,使得在气室中多次谐振的频率最高可达1.5GHz以上;GIS的同轴结构相当于一个良好的波导,信号在其内部传播时衰减很小。超高频放电脉冲的特征参数主要有信号的幅值、放电起始点和脉冲间隔,都可用于缺陷的识别。超高频放电信号频谱范围一般为500-2000MHz,通过检测超高频电磁波信号可实现对电力设备局部放电类型的判别和定位。

在检测前应尽量排除环境的干扰信号。检测中对干扰信号的判别可综合利用超高频法典型干扰图谱、频谱仪和高速示波器等仪器和手段进行。进行局部放电定位时,可采用示波器(采样精度至少1GHz以上)等进行精确定位,必要时也可通过改变电气设备一次运行方式进行。

1)新设备投运、A类检修后1周内完成。

2)适用于非金属法兰绝缘盆子,带有金属屏蔽的绝缘盆子可利用浇注开口进行检测;其它结构参照执行。

3)异常情况应缩短检测周期。

10.3 超声波局部放电检测

一般检测频率在20-100kHz之间的信号,若有数值显示,可根据显示的dB值进行分析。若检测到异常信号可利用超高频检测法、频谱仪和高速示波器等仪器、手段进行综合判断。

1)新设备投运、A类检修后1周内完成。

2)异常情况应缩短检测周期。

10.4 SF6气体湿度检测

SF6气体可以从补气口处取样,测量方法可参考DL/T506、DL/T914和DL/T915。测量完成之后,按要求恢复补气口,注意按力矩要求紧固并检漏。

10.5 SF6气体纯度和SF6气体分解物检测

可选择性地进行测量SF6气体分解物。测量方法参考DL/T917、DL/T918、DL/T919、DL/T920、DL/T921。

11 开关柜检测项目、周期和标准

序号项目周期标准说明

1 红外热像检

1)半年至1

2)投运后

3)必要时

1)正常:柜体表面温度与环境

温差≤20K。

2)缺陷:柜体表面温度与环境

温差>20K。

见11.1条

2 超声波局部

放电检测

1)半年至1

2)投运后

3)必要时

1)正常:无典型放电波形或音

响,且数值≤8dB。

2)异常:数值>8dB且≤15dB。

3)缺陷:数值>15dB。

见11.2条

3 暂态地电压

检测

1)半年至1

2)投运后

3)必要时

1)正常:相对值≤20dB。

2)异常:相对值>20dB。

见11.3条

11.1 红外热像检测

检测开关柜及进、出线电气连接处,红外热像图显示应无异常温升、温差和(或)相对温差。注意与同等运行条件下相同开关柜进行比较。测量时记录环境温度、负荷及其近3小时内的变化情况,以便分析参考。

1)检测和分析方法按DL/T664规定。

2)新设备投运后1周内应开展一次测温。

3)对大电流柜酌情考虑。

11.2 超声波局部放电检测

一般检测频率在20-100kHz之间的信号,若有数值显示,可根据显示的dB值进行分析。若检测到异常信号可利用超高频检测法、频谱仪和高速示波器等仪器和手段进行综合判断。

1)新设备投运、大修后1周内应进行一次检测。

2)异常情况应缩短检测周期。

11.3 暂态地电压检测

每个站所有开关柜检测时应使用同一设备进行。有异常情况时可开展长时间在线监测,采集监测数据进行综合判断。

1)新设备投运后1周内应进行一次检测。

2)相对值:被测设备数值与环境数值(金属)差。

3)异常情况可开展长时间在线监测。

12 敞开式SF6断路器检测项目、周期和标准

序号项目周期标准说明

1 红外热像检

1)半年至1年

2)投运后

3)大修后

4)必要时

1)正常:热像图本体相间同类

部位热点温差<3K

2)异常:热像图本体相间同类

部位热点温差≥3K

见12.1条

2 SF6气体湿度

20℃(μL/L)

1)投运后1

年,以后3年

1次

2)补气24h后

3)大修后

4)必要时

新安装、大修后:≤150

运行中:≤300

见10.4条

3 SF6气体纯度1)投运后1年

2)必要时

1)正常:纯度≥97%见10.5条

4 SF6气体分解

物20℃(μL/L)

1)投运后1

年,以后3年

1次

2)必要时

1)正常:SO2≤2且H2S≤2

2)缺陷:SO2≥5或H2S≥5

见10.5条

5 SF6气体泄漏

成像法检测

1)补气间隔小

于2年时

2)必要时

SF6设备各部位无泄漏迹象

12.1 红外热像检测

检测断路器本体及电气连接处,红外热像图显示应无异常温升、温差和(或)相对温差。注意与同等运行条件下其他断路器进行比较。测量时记录环境温度、负荷及其近3小时内的变化情况,以便分析参考。

1)检测和分析方法按DL/T664规定。

2)新设备投运、A类检修后1周内应开展一次检测。

3)异常情况应缩短检测周期。

13 高压电缆带电检测项目、周期和标准

序号项目周期标准说明

1 红外热像检

1)大修后带

负荷一周内

(但应超过

24h);

2)其他3个

1)对于外部金属连接部位,相间温

差超过6℃应加强监测,超过10℃应

申请停电检查;

2)终端本体相间超过2℃应加强监

测,超过4℃应停电检查。

电力电缆终端和非直埋

式电缆中间接头、交叉互

联箱、外护套屏蔽接地点

等部位

必要时:当电缆线路负荷

月1次;3)必要时较重(超过50%)时,应适当缩短红外热像检测周期,建议一个月测量一次。

注意:①需要对电缆线路各处分别进行测量,避免遗漏测量部位;②被检电缆带电运行,带电运行时间应该在24小时以上,并尽量移开或避开电缆与测温仪之间的遮挡物,如玻璃窗、门或盖板等;

③最好在设备负荷高峰状态下进行,一般不低于额定负荷30%。

2 外护层接地

电流

1)交接后

一周内

2)3个月1

3)必要时

正常:满足下表全部条件时;

异常:满足下表任何一项条件时;

缺陷:满足下表任何一项条件时

接地电流

绝对值

<100A

接地电流与负荷

比值

<20%

单相接地电流最

大值/最小值

<3

接地电流

绝对值

≥100A且

≤200A

接地电流与负荷

比值

≥20%且

≤50%

单相接地电流最

大值/最小值

≥3且≤5

接地电流

绝对值

>200A

接地电流与负

荷比值

>50%

单相接地电流

最大值/最小

>5

必要时:

新建、扩改建电气设备在

投运初期一周内应进行

一次接地电流检测;

在每年大负荷来临之前

以及大负荷过后,或者度

夏高峰前后,应加强对接

地电流的检测。

对于运行环境差、设备陈

旧及缺陷设备,要增加监

测次数。

对接地电流测量数据的

分析,要结合电缆线路的

负荷情况,综合分析接地

电流异常的发展变化趋

势。

3 电缆终端及

中间接头高

频局部放电

1)1年

2)投运后

3)大修后

1)正常:无典型放电图谱。

2)异常:在同等条件下同类设备检

测的图谱有明显区别。

1)与标准图谱(附录)

比较。

2)新设备投运、大修后1

检测4)必要时3)缺陷:具有典型局部放电的检测

图谱。周内完成。

3)异常情况应缩短检测周期。

4)当放电幅值达到3V以上时,应尽快安排停运。

4 电缆终端及

中间接头超

高频局部放

电检测

1)1年

2)投运后

3)大修后

4)必要时

1)正常:无典型放电图谱。

2)异常:在同等条件下同类设备检

测的图谱有明显区别。

3)缺陷:具有典型局部放电的检测

图谱。

1)与标准图谱(附录)

比较。

2)新设备投运、大修后1

周内完成。

3)异常情况应缩短检测

周期。

5 电缆终端及

中间接头超

声波局部放

电检测

1)1年

2)投运后

3)必要时

1)正常:无典型放电波形或音响,

且数值≤0dB。

2)异常:数值>1dB且≤3dB。

3)缺陷:数值>3dB。

13.1 红外热像检测

利用红外成像技术,对电力电缆终端和非直埋式电缆中间接头、交叉互联箱、外护套屏蔽接地点等部位进行检测和诊断。检测时最好在设备负荷高峰状态下进行,尽量移开或避开电缆与测温仪之间的遮挡物,记录环境温度、负荷及其近3小时内的变化情况,以便分析参考。

1)检测和分析方法可参考DL/T 664;

2)新设备投运、大修后1周内完成;

3)当电缆线路负荷较重(超过50%)时,应适当缩短红外热像检测周期,建议一个月测量一次;

4)对电缆线路各处分别进行测量。

13.2 外护层接地电流

对电缆金属护套的环流和接地电流进行测量,对电缆线路接地系统的运行状态进行检测和分析。

1)新建、扩改建电气设备在投运初期一周内应进行一次接地电流检测;

2)在每年大负荷来临之前以及大负荷过后,或者度夏高峰前后,应加强对外护层接地电流的检测;

3)对于运行环境差、设备陈旧及缺陷设备,应增加检测次数;

4)对接地电流测量数据的分析,要结合电缆线路的负荷情况,综合分析接地电流异常的发展变化趋势。

13.3 电缆终端及中间接头高频局部放电检测

检测从电缆终端接地线上取信号,在电缆本体取同步信号。正常时应无典型放电图谱。

当怀疑有局部放电时,应比较其它检测方法进行综合分析。

13.4 电缆终端及中间接头超高频局部放电检测

检测从电缆中间接头或交叉互联箱接地线上取信号,在电缆本体取同步信号。正常时应无典型放电图谱。

当怀疑有局部放电时,应比较其它检测方法进行综合分析。

13.5 电缆终端及中间接头超声波局部放电检测

一般检测频率在20-100kHz之间的信号,若有数值显示,可根据显示的dB值进行分析。若dB值显示为0,或无显示,但通过检测仪器可以听到疑似放电声音,也应引起注意。

附录A 高频局部放电检测标准

(规范性附录)

高频局部放电测试结果图谱特征放电幅值说明

缺陷具有典型局部放电的检

测图谱且放电幅值较大

放电相位图谱具有明

显180度特征,且幅

值正负分明

大于500mV,

并参考放电频

率。

缺陷应密切监

视,观察其发展

情况,必要时停

电检修。通常频

率越低,缺陷越

严重。

异常具有局部放电特征且放

电幅值较小

放电相位图谱180度

分布特征不明显,幅

值正负模糊

小于500mV大

于100mV,并

参考放电频率。

异常情况缩短

检测周期。

正常无典型放电图谱没有放电特征没有放电波形按正常周期进

地铁供电设备带电检测技术的应用

地铁供电设备带电检测技术的应用 发表时间:2019-05-06T09:47:05.660Z 来源:《电力设备》2018年第31期作者:陈怀军 [导读] 摘要:带电检测技术是供电设备状态检修新技术手段,其在国外发达国家已应用多年,技术成熟。 (天津市地下铁道运营有限公司天津 300222) 摘要:带电检测技术是供电设备状态检修新技术手段,其在国外发达国家已应用多年,技术成熟。带电检测采用红外成像、超声波局放、特高频局放等技术手段,对运行状态下的设备典型参数进行检测和分析,可提前发现设备隐患。带电检测技术可以提高供电设备的运维水平,其推广应用是地铁供电设备维护的发展趋势。 关键词:地铁;供电设备;带电检测 Application of charged detection technology for metro power supply equipment CHEN Huaijun (Tianjin Metro O&M Co.,Ltd.,Tianjin 300222) Abstract:Charged detection technology is a new technology for condition-based maintenance of power supply equipment,the technology has been applied in developed countries for many years,and its technology is mature. Charged detection uses infrared imaging,ultrasonic partial discharge,UHF partial discharge and other technical means to detect and analyze the typical parameters of the equipment in operation,so as to discover the hidden troubles of the equipment in advance. Charged detection technology can improve the operation and maintenance level of power supply equipment,and its popularization and application is the development trend of metro power supply equipment maintenance. Key words:metro;power supply equipment;charged detection 引言 近年来,我国城市轨道交通快速发展,很多城市已发展至网络化运营阶段。地铁客运的特点是高效快捷、客运量大,发生延误时社会影响巨大。安全稳定的地铁供电系统是运营服务的基础条件,地铁运营对供电系统设备运营维护管理水平的要求在不断提高,停电检修时间窗口不断较小,传统的基于周期的定期检修模式已经不能完全适应地铁供电可靠性不断提高的要求。近年来,各地地铁运营公司逐步推行供电设备状态检修。 带电检测是开展状态检修工作的基础,通过对各类带电检测技术的测量数据进行综合分析,能够准确掌握设备实际运行状态,在超前防范设备隐患、降低故障损失、降低供电风险、保障地铁运营安全等方面都具有重要意义。 1.供电设备检修发展历程 设备维修体制的发展过程大致可划分为被动维修、计划性预防维修和状态检修三个阶段。 20世纪50年代前主要采用故障后维修的被动维修(Breakdown Maintenance)设备管理模式。被动维修的特点是非计划性、维修不足,设备事故多、经济损失大,设备管理具有不可控性,多数情况不能接受,这种管理模式逐渐被淘汰。 国外19世纪60年代至80年代开始采用、国内当今主要采用的是基于时间的预防性维修(Preventive Maintenance)管理模式。供电设备的定期检修大幅减少了突发性故障,但也存在维修成本高、维修过剩等弊端。 19世纪70年代中期发达国家出现了状态维修模式,80年代随着计算机技术的发展,设备状态监测技术、故障诊断技术得到较快发展。这种维修模式提高了设备检修的针对性、目的性,减少了大量的陪试情况和现场运维工作量。基于不停电检测的供电设备状态检修,能有效减少设备停电次数,减少设备操作,降低供电系统运行风险,是当前我国供电设备检修模式的发展大趋势。 2.带电检测技术简介 带电检测,一般采用便携式检测设备,在运行状态下,对设备状态量进行的现场检测,其检测方式为带电短时间内检测,有别于长期连续的在线监测。带电检测技术突出特点在于可以实现大部分供电设备在运条件下的状态诊断、缺陷部位的精确定位、缺陷程度的定量分析,达到故障超前发现并处置,提高设备的可靠性,并指导设备状态评价和状态检修。电气设备在故障发生前或发生时,通常伴有“热、声、光、电、水、气”等多种故障特征信息,带电检测就是通过捕捉这些特征参数对设备状态进行分析。带电检测按照被测参数主要包括光学成像检测(红外成像检测、紫外成像检测、SF6气体泄漏成像检测等),化学量检测(油中溶解气体检测、SF6气体分解产物检测、SF6气体微水检测等),机械量检测(超声波信号检测等),电气量检测(高频局部放电检测、超高频局部放电检测、暂态地电压检测等)。带电检测技术注重组合技术的应用,当一项参数异常后,可采取多项技术加以验证,通过组合技术的应用基本能够明确设备缺陷,最后通过停电检测来确诊处理。带电检测是对常规停电检测的弥补,同时也是对停电检测的指导;但是带电检测也不能解决全部问题,必要时、部分常规项目还是需要停电检测。 3.带电检测的主要技术手段 3.1 红外热像检测 红外热像检测是以设备的热分布状态为依据对电力系统中具有电流、电压致热效应或其他致热效应的带电设备进行检测和诊断,可以高效诊断设备的运行状态及其存在的隐患缺陷。 红外热像检测优势有很多,远离被检测设备,操作安全方便,,测温范围宽,可视性好,能准确地发现设备的缺陷。大多数设备热效应缺陷都可以通过发热或热分布改变的特点反映出来,有较高的灵敏度。 红外热像检测能准确的发现电力系统中各裸露设备元器件以及各元件间连接部分的温度以及温度的变化,如地铁主变压器套管、油变散热器、整流变接线端子、二次设备、低压配电设备等,只要设备上没有阻隔物,可以直视的的部分都可以进行红外测量。 3.2 超声波信号检测 超声波检测技术是指对频率介于20kHz-200kHz区间的声信号进行采集、分析、判断的一种检测方法。超声波局放技术是利用电气设备内部或外部发生局部放电时局放点会伴随着超声波向四周传播,采用超声波探测装置收集频率高于20kHz的声波,并对采集到的声波波长类型进行分析判断,确定被试设备的绝缘状态。 超声波局部放电检测技术抗电磁干扰能力强,检测范围小但便于实现放电定位,受机械振动干扰较大,对于绝缘性缺陷不敏感。 超声波检测范围涵盖变压器、组合电器、开关柜、电缆终端、架空线路等各个电压等级的各类一次设备。线路超声波局放能检测所有

建筑地基处理技术规范

1 总则 1.0.1 为了在地基处理的设计和施工中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。 1.0.2 本规范适用于建筑工程地基处理的设计、施工和质量检验。 1.0.3地基处理除应满足工程设计要求外,尚应做到因地制宜、就地取材、保护环境和节约资源等。 1.0.4 建筑工程地基处理除应执行本规范外,尚应符合国家现行的有关强制性标准的规定。经处理后的地基计算时,尚应符合现行国家标准《建筑地基基础设计规范》GB 50007的有关规定。

2术语和符号 2.1术语 2.1.1 地基处理ground treatment 提高地基强度,改善其变形性质或渗透性质而采取的技术措施。 2.1.2 复合地基composite foundation 部分土体被增强或被置换,形成的由地基土和增强体共同承担荷载的人工地基。 2.1.3 地基承载力特征值characteristic value of subgrade bearing capacity 由载荷试验测定的地基土压力变形曲线线性变形段内规定的变形所对应的压力值,其最大值为比例界限值。 2.1.4 换填垫层cushion 挖去表面浅层软弱土层或不均匀土层,回填坚硬、较粗粒径的材料,并夯压密实形成的垫层。 2.1.5 加筋垫层reinforced cushion 在垫层材料内铺设单层或多层水平向加筋材料形成的垫层。 2.1.6 预压地基preloading foundation 对地基进行堆载预压或真空预压、或联合使用堆载和真空预压,形成的地基土固结压密后的地基。 2.1.7 堆载预压drift preloading 对地基进行堆载使地基土固结压密的地基处理方法。 2.1.8 真空预压vacuum preloading 通过对覆盖于竖井地基表面的不透气薄膜内抽真空排水使地基土固结压密的地基处理方法。 2.1.9 压实地基compacted foundation 利用平碾、振动碾或其它碾压设备将填土分层密实的处理地基。 2.1.10 夯实地基rammed foundation 反复将夯锤提到高处使其自由落下,给地基以冲击和振动能量,将地基土密实的处理地基。 2.1.11 挤密地基compaction foundation 利用横向挤压设备成孔或采用振冲器水平振动和高压水共同作用下,将松散土层密实的处理地基。 2.1.12 砂石桩复合地基sand-gravel columns composite foundation 将碎石、砂或砂石挤压入已成的孔中,形成密实砂石增强体的复合地基。 2.1.13 水泥粉煤灰碎石桩复合地基cement fly ash-graval pile composite foundation 由水泥、粉煤灰、碎石等混合料加水拌合形成增强体的复合地基。

传感器在电力设备检测中的应用

传感器在电力设备检测中的应用 电力设备在运行中经常受电的、热的、机械的负荷作用,以及自然环境(气温、气压、湿度以及污秽等)的影响,长期工作会引起老化、疲劳、磨损,以致性能逐渐下降,可靠性逐渐降低。为保证电力系统的安全运行,对系统的重要设备的运行状态进行的监视与检测。监测的目的在于及时发现设备的各种劣化过程的发展,以求在可能出现故障或性能下降到影响正常工作之前,及时维修、更换,避免发生危及安全的事故。 电力设备状态监测的传统方法是经常性的人工巡视与定期预防性检修、试验。设备在运行中由值班人员经常巡视,凭外观现象、指示仪表等进行判断,发现可能的异常,避免事故发生。传统方法效率低,成本高,且可能会给工作人员带来一定危险。随着传感技术与计算机技术的发展,电力设备的状态监测方法向着自动化、智能化的方向发展,设备的定期检修制度向着预警式检修制度发展。电力设备状态的监测涉及面广,大量的非电参量(热学、力学、化学参量等)需要各种相应的传感器,传感技术的发展为此提供了可能。 装备各种传感器的具有状态监测功能的新型电力设备是构成自动化的电力系统的基础,是状态监测和故障诊断的第一步,也是很重要的一步。本文以温度传感器为例,对传感器在实际生产生活中的应用做一简单介绍。 一、检测对象 电力系统中大量设备需要检测温度信息,从而确定电力设备的运行情况,以便运行调度人员及时采取措施,消除异常,避免设备的损坏和事故的发生。 电力设备过热的主要原因是过电流,单仅仅监视电流不能准确反映设备是否超温,因为温度是各种因素影响的综合反映。 主要检测的对象有:电力设备导电连接处、插接处,干式变压器的绕组,电力变压器油温,箱式变电站的出线端、低压开关和高压开关进出线端等等。 二、基本结构及工作原理 温度传感器品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 (1)热电偶:将两种不同材料的导体或半导体A和B焊接起来,构成一

带电检测技术在变电运维中的应用剖析 郭婷婷

带电检测技术在变电运维中的应用剖析郭婷婷 发表时间:2018-08-09T09:58:52.830Z 来源:《电力设备》2018年第12期作者:郭婷婷徐立华[导读] 摘要:在当今社会电力系统是我们国家重要的组成部分,生活用电与工业用电都与全部电力系统的平稳运行有着联系。 (国网肥城市供电公司山东省肥城市 271600) 摘要:在当今社会电力系统是我们国家重要的组成部分,生活用电与工业用电都与全部电力系统的平稳运行有着联系。通常生活用电是从发电厂发出,然后由大面积的输电线路传输到变电站,最终从变电站传输到每一户居民。所以变电设备是电厂与用户之间的纽带,是电力系统中最为重要的一部分,相关部门和单位需要对其加大投入力度,进而确保变电设备的正常运行。 关键词:带电检测技术;变电运维;应用 1带电检测技术在变电运维中的重要性分析 1.1变电运维的重要性 电力系统包含发电、输电、变电众多环节,首先从发电厂发出,然后经过大面积的输电线路传输到变电站,最终由变电站传输到每一户居民和工业用户中。变电运维对电力系统的运行质量有着十分重要的影响,所以需要对变电设备进行定期检测以确保电力供应的正常进行。换句话说变电运维是变电设备的运行维护,其通常是变电运维操作站和变电运维队两个部分组成。变电运维操作站的任务是电站的电力运行管理工作,在值班人数相对较少的情况下对电站的电力运行进行深入的管理工作。变电运维队则是基站的巡逻和检修队伍,分为两个队伍:一个是操作队,另一个是巡检队。变电运维是以电网公司的大检修工作为基础,在关注到变电日常运行的基础上加强变电检修工作,进而预防变电设备的运行问题,确保其供电质量。 1.2带电检测技术的相关要求 变电设备中的任意一个环节出现问题就会使得整个变电系统不能正常运行,所以需要定期对变电设备进行带电检测,特别是变压器一些重要元件。对此可以根据实际情况进行周期性的全方位带电检测,这其中主要包括相应的红外测温系统和频谱检测电器的放电检测等,利用多种带电检测技术进行检测工作。对于已经放置人工智能系统的变电站,还需要在智能机器人进行巡检工作之后,由专业的运维人员进行复检。根据相应的检测数据判断出变电设备的隐患问题和缺陷漏洞,然后及时安排相应的工作人员进行特定的带电检测工作,在发现某一部分出现问题或者隐患时,为了保障变电设备的合理运行,需要采取停电处理解决的方式。 2带电检测技术在变电运维中的应用 2.1脉冲电流法 现阶段,我国各个电力部门普遍使用的局部放电检测方法就是脉冲电流法。需要注意的是该方法也适用于直流条件下的局部放电检测。在实际运用过程中,技术人员一定要根据变电设备运行的实际情况和需求,结合自身的经验合理采用脉冲电流法,这样才能充分发挥该项检测方法的作用,进一步提高带电检测工作的效率与质量,保障整个检测数据的准确性,为下一步环节开展提供重要的参考依据。 2.2红外线检测技术 技术人员可以在带电设备制热效应基础上利用红外检测技术,通过特定的仪器获取设备表面发出的红外辐射信息。技术人员利用辐射信息判断辐射值是否存在偏差,进而判断出设备运行是否存在问题,找出问题所在。该技术主要是利用特定机器获取辐射信息,不需要停电,同时即使是远距离也可以对收集到的红外线信息进行有效分析。因此,红外线检测技术在电力设备带电检测中应用价值高,也是各大电力部门普遍适用的带电检测技术。需要注意的是技术人员在利用该项技术对变电设备进行检测时一定要严格按照相关的技术要求和流程进行操作,进一步提高检测数据的精确性,将各种问题对设备损耗降到最低。 2.3无线电干扰电压法 一般情况下,电晕在放电的过程中会有电磁波产生,产生的电磁波会借助无线电干扰电压表进行检测,因此技术人员可以利用这一特点对电气设备局部放电进行科学检测。当前我国各大电力部门普遍使用的而检测方法就是利用频射传感器进行检测。技术人员通过利用无线电干扰电压法可以对放电强度进行电力定量这样大大提高检测效率与保障数据的精确性,为运维工作开展提供更加科学全面的数据参考。 2.4介质损耗分析法 变电设备局部放电能力直接决定其对绝缘材料造成的破坏程度,二者成正比。也就是说一旦局部放电能量消耗提升,那么局部放电对绝缘材料的破坏程度就会随之加深。鉴于此,电力部门相关管理人员与技术人员一定要加强对放电消耗功率测量环节的重视程度。由于大多数绝缘结构中的气隙数目与电压变化正比,会跟随电压升高而不断增加。同时局部放电对介质也会造成一定的损耗直接导致其运行数据出现明显变化。因此技术人员在日常工作过程中可以根据数据变化来确定局部放电能量,从而判断绝缘材料是否遭到破坏。 2.5超高频局部放电检测技术 通过使用该项技术可以更加有效测试出GIS中初始局部放电脉冲。利用该项测试仪器强大的测量频带以及衰减噪声信号的方式双管齐下可以更加有效降低噪声对放电检测的影响,提高整个检测数据的准确性,同时最大限度的再现局部放电脉冲。技术人员在实际操作过程中可以根据频带的宽窄,将其分为超高频窄带检测或是宽频带检测两种。两者的中心频率存在很大的差异。鉴于超高频宽频检测技术具有抑制噪音、涵盖大量信息的优势,因此得到更加广泛的应用。 3带电检测技术实例分析 3.1利用带电检测设备完成跟踪检测 某500kV变电站在2015年对其变压器设备进行了更换。在具体作业过程中,对变压器内部的缺陷情况,利用带电检测设备完成相应的检测工作。设备投入运行后,相关的技术人员要依据设备检测相关要求,在设备运行期间完成相应的检测工作[4]。具体作业期间,主变压器内存在的气体溶解现象,将会使检测数据出现异常,对设备的运行造成不良影响。为了保证设备运行过程中不出现问题,对设备进行早期检测时,检查应当分别在设备投入1d、7d、30d时进行,然后对变压器气体溶解问题进行集中研究与分析。通过检测发现,2号变压器的1d监测数据存在异常,但变压器运行良好;7d检查时,发现本体存在C4H2。为了分析C4H2对变压器运行造成的影响,通过色谱检测技术检测获取三相绝缘油的检测结果,最终的分析结果断定,2号主变器存在运行故障,会出现低能放电,需要对设备展开全面检测,且要及时处理发现的问题,避免故障进一步扩大而造成更大的不良影响。

地基基础检测细则

(编号:01-ZJ-2015A-02)RSM-PRT(T)型基桩低压变检测实施细则 1、检测目的检测混凝土桩的桩身完整性,判别桩身缺陷的程度和位置,并为静载、基桩钻芯和低应变检测确定桩位提供依据。 2、适用范围 本实施细则适用于指导本公司人员用建筑工程基桩的承载力和桩身法检测评价钢筋混凝土灌注桩身结构完整性。 3、检测依据 3.1《建筑基桩检测技术规范》(JGJ106-2014) 3.2《建筑地基基础检测规范》(DBJ15-60-2008) 3.3《建筑地基基础施工质量验收规范》(GB50202-2002) 3.4《建筑地基基础设计规范》(GB50007-2011) 4.抽样原则: 4.1设计单位或质监部门对受检桩桩位提出具体要求。 4.2随机抽样,设计等级为甲级的工程或地质条件复杂、成桩质量可靠性较低的灌注桩,抽检数量不应少于总桩数的30%,且不得少于20根;其它桩基工程的抽检数量不应少于总桩数的20%,且不得少于10根。 4.3柱下三桩或三桩以下的承台抽检桩数不得少于1根。一柱一桩的应全部检测。 5、检测前的准备工作 5.1检测前与委托单位签订合同,合同内容应明确:试验项目、检测方法和数量。填写工程概况表; 5.2收集必要的资料: 1.检测桩的桩位图和编号; 2.检测桩的设计资料:桩型、桩径、桩长、设计承载力; 3.检测桩的现场施工记录;检测场地的工程地质资料。 5.3检测桩的桩头处理: 1.挖孔桩、锤击灌注桩和钻孔桩要凿去桩顶浮浆、松散或破损部分,露出坚硬的混凝土表面,桩顶表面应平整干净且无积水; 2.桩顶的材质、强度、载面尺寸应与原柱身基本等同;对于预应力管桩,当法兰盘与桩身混凝土之间结合不紧密时,应锯去法兰盘。 5.4制定检测方案 6、仪器设备武汉岩海公司生产的动测仪(K1616P)或PIT桩身完整性检测仪(PIT-V)、内装TC 电加速度传感器、力棒、力锤、室内电脑、打印机。 7、检测步骤和方法 7.1检测前检测员用红油漆笔在所有待检桩的桩顶写上相应的桩号表示待检,然后每检测完一根桩后用黑油漆笔划“√”来表示该桩已检。 7.2检测时,应合理设置采样时间间隔、采样点数、增益、模拟滤波、触发方式等,其中增益应结合激振方式通过现场对比试验确定; 7.3传感器安装: 1.传感器安装在桩顶面,传感器用耦合剂与桩顶面粘接; 2.安装完毕后的传感器必须与桩顶面保持垂直,且紧粘桩顶表面,在信号采集过程中不得产生滑移或松动。 7.4对于钢筋混凝土灌注桩,传感器安装时应符合下列规定: 1.传感器安装点及其附近不得有缺损或裂缝;

电力设备在线监测

目录 摘要 (2) 前言 (2) 第一章高压断路器 (2) 第一节高压断路器的作用 (2) 第二节高压断路器的绝缘 (3) 第三节影响高压断路器绝缘性能 (3) 第四节断路器就其对地绝缘方式 (3) 第二章电力设备在线监测技术简介 (4) 第三章高压断路器的在线监测 (4) 第一节交流泄漏电流的在线监测 (5) 第二节高频接地电流的在线监测 (5) 第三节开关特性的在线监测 (5) 第四节温度特性的在线监测 (6) 第五节真空断路器真空度的在线监测 (6) 结论 (7)

高压断路器的在线监测方法 摘要:通过对断路器状态监测方法的介绍, 分析了在线监测方法的诸多特点, 指出其监测内容丰富, 信息处理速度快, 对提高断路器故障的识别、分析、诊断和处理有着极大的帮助作用, 提出为加强设备管理, 加强状态检修的需要, 应用在线监测技术已成为一种发展趋势。 关键词:高压断路器在线监测电力系统 前言:高压断路器是电力系统最重要的开关设备。它担负着控制和保护的功能,既根据电网的运行的需要用它来可靠地投入或切除相应线路或电气设备。当线路或电气设备发生故障时,将故障部分从电网中快速的切除,保证电网无故障部分正常的运行。如果断路器不能在电力系统发生故障是开断线路、消除故障,就会使事故扩大造成大面积的停电。因此,高压断路器性能的好坏、工作可靠程度是决定电力系统安全运行的重要因素。在电力系统中工作的高压断路器必须满足灭弧、绝缘、发热和电动力方面的一般要求。 第一章高压断路器 第一节高压断路器的作用 高压断路器(或称高压开关)它不仅以切断或闭合高压电路中的空载电流和负荷电流,而且当系统发生故障时通过继电器保护装置的作用,切断过负荷电流和短路电流,它具有相当完善的灭弧结构和足够的断流能力,可分为:油断路

建筑地基处理技术规范JGJ79 强制性条文

建筑地基处理技术规范 JGJ79-2012 强制性条文13条: 3.0.5处理后的地基应满足建筑物地基承载力,变形和稳定性要求,地基处理的设计尚应符合下列规定:1、经处理后的地基,当在受力层范围内仍存在软弱下卧层时,应进行软弱下卧层地基承载力验算;2、按地基变形设计或应作变形验算且需进行地基处理的建筑物或构造物,应对处理后的地基进行变形验算;3、对建造在处理后的地基上受较大水平荷载或位于斜坡上的建筑物及构造物,应进行地基稳定性验算。 4.4.2 换填垫层的施工质量检验应分层进行,并应在每层的压实系数符合设计要求后铺上层。 5.4.2 预压地基竣工验收检验应符合下列规定:1、排水竖井处理深度范围内和竖井底面一下受压土层,经预压所完成的竖向变形和平均固结度应满足设计要求;2、应对预压的地基土进行原位试验和室内土工试验。 6.2.5 压实地基的施工质量检验应分层进行。每完成一道工序,应按设计要求进行验收,未经验收或验收不合格时,不得进行下一道工序施工。 6.3.2 强夯置换处理地基,必须通过现场试验确定其适用性和处理效果。 6.3.10 当强夯施工所引起的振动和侧向挤压对邻近建构筑物产生不利影响时,应设置监测点,并采取挖隔振沟或防振措施。 6.3.13 强夯处理后的地基竣工验收,承载力检验根据静载荷试验、其他原位测试和室内土工试验等方法综合确定。强夯置换后的地基竣工验收,除应采用单墩静载荷试验进行承载力检验外,尚应采用动力触探等查明置换墩着底情况及密度随深度的变化情况。 7.1.2 对散体材料复合地基增强体应进行密实度检验;对有粘结强度复合地基增强体应进行强度及桩身完整性检验。 7.1.3复合地基承载力的验收检验应采用复合地基静载荷试验,对有粘结强度的复合地基增强体尚应进行单桩静载荷试验。 7.3.2 水泥土搅拌桩用于处理泥炭图、有机质土、pH值小于4的酸性土、塑性指数大于25的粘土,或在腐蚀性环境中以及无工程经验的地区使用时,必须通过现场和室内试验确定其适用性。 7.3.6 水泥土搅拌桩干法施工机械必须配置经国家计量部门确认的具有能瞬时检测并记录出粉体计量装置及搅拌深度自动记录仪。 8.4.4 注浆加固处理后地基的承载力应进行静载荷试验检验。 10.2.7 处理地基上的建筑物应在施工期间及使用期间进行沉降观测,直至沉降达到稳定为止。

电网设备状态带电检测检测题库(技能类)

红外热像检测 一、单项选择题 1、下列哪一项不属于变电站内支柱绝缘子的例行试验项目。(D) A、红外热像检测B、现场污秽度评估 C、例行检查 D、绝缘电阻测试 2、红外测温发现设备热点,应调整亮漆(所有颜色)的发射率为(D)。 A、0.88 B、0.3-0.4 C、0.59-0.61 D、0.9 3、红外测温发现设备热点,应调整黑亮漆(在粗糙铁上)的发射率为(A) A、0.88 B、0.3-0.4 C、0.59-0.61 D、0.9 4、负荷及其近(C)内的变化情况,以便分析参考。 A、1小时B、 2小时 C、 3小时D、 4小时 5、下列试验项目(C)不属于Q/GDW 168-2008《输变电设备状态检修试验规程》中规定的高压套管的例行试验项目。 A、绝缘电阻 B、红外热像检测 C、油中溶解气体分析D、电容量和介质损耗因数(电容型) 6、若电气设备的绝缘等级是B级,那么它的极限工作温度是(D)℃。 A、100 B、110 C、120 D、130 7、电气设备与金属部件的连接的线夹设备缺陷判断为严重缺陷的为(C)。 A、温差不超过15K B、热点温度70℃,相对温差大于70% C、热点温度大于80℃,相对温差大于80% D、热点温度大于110℃,相对温差大于95% 8、电气设备与金属部件的连接的线夹设备缺陷判断为危急缺陷的为(D)。 A、温差不超过15K B、热点温度70℃,相对温差大于70%

C、热点温度大于80℃,相对温差大于80% D、热点温度大于110℃,相对温差大于95% 9、电气设备与金属部件的连接的线夹设备缺陷判断为一般缺陷的为(A)。 A、温差不超过15K B、热点温度70℃,相对温差大于80% C、热点温度大于80℃,相对温差大于80% D、热点温度大于110℃,相对温差大于95% 10、红外热像仪的启动时间应不小于(A)。 A、1min B、 2min C、 3min D、 4min 11、隔离开关刀口设备缺陷判断为一般缺陷的为(A)。 A、温差不超过15K B、热点温度70℃,相对温差大于80% C、热点温度大于90℃,相对温差大于80% D、热点温度大于130℃,相对温差大于95% 12、隔离开关刀口设备缺陷判断为严重缺陷的为(C)。 A、温差不超过15K B、热点温度70℃,相对温差大于80% C、热点温度大于90℃,相对温差大于80% D、热点温度大于130℃,相对温差大于95% 13、隔离开关刀口设备缺陷判断为危急缺陷的为(D)。 A、温差不超过15K B、热点温度70℃,相对温差大于80% C、热点温度大于90℃,相对温差大于80% D、热点温度大于130℃,相对温差大于95% 14、关于红外辐射,下面说法正确的是(B) A、红外辐射可传透大气而没有任何衰减 B、红外辐射可通过光亮金属反射 C、红外辐射可透过玻璃 D、红外辐射对人体有损害 15、物体在多少温度以上就辐射出红外线?(A)

《带电设备红外诊断技术应用导则》DLT

带电设备红外诊断技术应用导则 参照中华人民共和国 电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》 《华北电网有限公司红外技术管理制度》 1、从事红外检测与诊断工作的人员应具备以下素质: (1)从事红外检测与诊断工作的人员应熟悉红外检测与诊断技术的基本原理,掌握红外检测仪器的工作原理、主要性能、技术指标以及操作方法,并能熟练操作红外检测仪器。 (2)从事红外检测与诊断工作的人员应了解电气设备的性能、结构、运行状况。 (3)从事红外检测与诊断工作的人员应熟悉掌握中华人民共和国电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》和本管理制度,掌握《国家电网公司电力安全工作规程(变电站和发电厂电气部分、电力线路部分)(试行)》和现场试验的有关安全规定。 2、红外检测的范围:只要表面发出的红外辐射不受阻挡都属于红外诊断的有效监测设备。例如:旋转电机、变压器、断路器、互感器、电力电容器、避雷器、电力电缆、母线、导线、绝缘子串、组合电器、低压电器及二次回路等。 二、红外检测与诊断的基本要求 (一)对检测设备的要求 1、红外测温仪应操作简单,携带方便,测温精确度高,测量结果的重复性好,不受测量环境中高压电磁场的干扰,仪器应满足现场带电实测对距离的要求,并应能对表面放射率、大气环境参数、测量距离等进行修正以保证测量结果的真实性。 2、红外热电视应操作简单携带方便,有较好的测温精确度,测量结果的重复性好,不受测量环境中高压电磁场的干扰图像清晰,具有图像锁定、记录、输出和简单的分析功能。 3、红外热像仪应图象清晰、稳定,不受测量环境中高压电磁场的干扰,具有较强的图象分析功能,具有较高的热传感分辨率和图象分辨率,空间分辨率应满足实测距离的要求,具有较高的测量精确度和合适的测温范围。 (二)对被检测设备的要求 1、被检测设备应为带电设备。

《建筑基桩检测技术规范2014》

修订内容 1 进一步明确基桩检测方法选择原则及抽检数量的规定; 3.1.1 基桩检测可分为施工前为设计提供依据的试验桩检测和施工后为验收提供依据的工程桩检测。基桩检测应根据检测目的、检测方法的适应性、桩基的设计条件、成桩工艺等,按表3.1.1合理选择检测方法。当通过两种或两种以上检测方法的相互补充、验证,能有效提高基桩检测结果判定的可靠性时,应选择两种或两种以上的检测方法。 3.3.1 为设计提供依据的试验桩检测应依据设计确定的基桩受力状态,采用相应的静载试验方法确定单桩极限承载力,检测数量应满足设计要求,且在同一条件下不应少于3根;当预计工程桩总数小于50根时,检测数量不应少于2根。 3.3.3 混凝土桩的桩身完整性检测方法选择,应符合本规范第3.1.1条的规定;当一种方法不能全面评价基桩完整性时,应采用两种或两种以上的检测方法,检测数量应符合下列规定: 1 建筑桩基设计等级为甲级,或地基条件复杂、成桩质量可靠性较低的灌注桩工程,检测数量不应少于总桩数的30%,且不应少于20根;其他桩基工程,检测数量不应少于总桩数的20%,且不应少于10根; 2 除符合本条上款规定外,每个柱下承台检测桩数不应少于1根; 3 大直径嵌岩灌注桩或设计等级为甲级的大直径灌注桩,应在本条第1~2款规定的检测桩数范围内,按不少于总桩数10%的比例采用声波透射法或钻芯法检测; 4 当符合本规范第3.2.6条第1~2款规定的桩数较多,或为了全面了解整个工程基桩的桩身完整性情况时,宜增加检测数量。 对干作业挖孔桩和单节预制桩,数量可减半。——取消 3.3.4 当符合下列条件之一时,应采用单桩竖向抗压静载试验进行承载力验收检测: 1 设计等级为甲级的桩基; 2 施工前未按本规范第3.3.1条进行单桩静载试验的工程; 3 施工前进行了单桩静载试验,但施工过程中变更了工艺参数或施工质量出现了异常; 4 地基条件复杂、桩施工质量可靠性低; 5 本地区采用的新桩型或新工艺; 6 施工过程中产生挤土上浮或偏位的群桩。

高速公路夯实水泥土桩复合地基技术规范DB13∕T 2950-2019

高速公路夯实水泥土桩复合地基技术规范 1 范围 本标准规定了高速公路夯实水泥土桩复合地基的术语和定义、基本规定、设计和施工技术要求、质量检验。 本标准适用于高速公路夯实水泥土桩复合地基技术,其它等级公路可参照执行。 2 规范性引用文件 下列文件对于本规范的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包含所有的修改单)适用于本文件。 GB/T 50783 复合地基技术规范 JTG C10 公路勘测规范 JTG/T D31-02 公路软土地基路堤设计与施工技术细则 JTG F80/1 公路工程质量检验评定标准 JTG F90 公路工程施工安全技术规范 3 术语和定义 下列术语和定义适用于本文件。 3.1 夯实水泥土桩复合地基 composite foundation of rammed soil-cement pile 将水泥和素土按一定比例拌和均匀,夯填到桩孔内形成具有一定强度的夯实水泥土桩,由夯实水泥土桩和被挤密的桩间土形成的复合地基。 3.2 夯实系数rammed factor 桩体夯实干密度与最大干密度的比值。 3.3 面积置换率 replacement ratio 复合地基中桩体的横截面积与其所分担的处理面积的比值。 3.4 桩土应力比pile-soil stress ratio 复合地基中桩体上的平均竖向应力和桩间土上的平均竖向应力的比值。 4 基本规定

4.1 进行夯实水泥土桩复合地基设计前应对拟建工程场地进行岩土工程勘察;分析地基土层的分布范围、分层情况、地下水及其PH 值、土的含水量、塑性指数和有机质含量等;分析荷载大小及对地基承载力和变形的技术要求等;并结合工程实际情况,分析本地区相似地质条件下公路工程的复合地基处理经验和使用情况。 4.2 夯实水泥土桩复合地基适用于处理深度一般不超过10 m 在地下水位以上为黏性土、粉土、粉砂土、杂土等适合成桩并能挤密的地基。 4.3 夯实水泥土桩可采用沉管、冲击等挤土成孔法施工,也可采用洛阳铲、螺旋钻等非挤土成孔法施工。 4.4 对JTG/T D31-02规定应作变形验算的路堤,经地基处理后,在施工和使用阶段应进行沉降观测,直到沉降达到稳定为止。 5 设计 5.1 一般规定 5.1.1 夯实水泥土桩处理地基的深度,应根据地质条件、工程要求和成孔及夯实设备等因素综合确定,宜将桩端选在承载力较高的持力层。 5.1.2 当桩端下存在软弱下卧层时,应按公式(1)进行软弱下卧层承载力验算。 z cz z f P P ≤+ (1) 式中: P z ——软弱下卧层顶面处的附加应力值(kPa ); P cz ——软弱下卧层顶面处的自重应力值(kPa ); f z ——软弱下卧层顶面处的地基承载力特征值(kPa )。 5.1.3 在桩顶与路基填料之间应设置垫层,垫层厚度应不小于300 mm ,材料可选用碎石、中粗砂或石灰土。加筋垫层土工合成材料应选用耐久性好的土工格栅、土工格室等。 5.1.4 夯实水泥土桩桩身直径宜根据施工工具和施工方法确定,宜取300 mm ~600 mm 。 5.1.5 夯实水泥土桩桩间距应根据地基土的特性、设计对复合地基承载力特征值及沉降指标的要求和施工工艺等因素确定,桩中心距离不宜大于桩径的5倍。布桩时采用正方形和正三角形的形式时,桩中心距离可按照公式(2)、(3)计算。 正方形时: d m s .785 .0= …………………………………………………………(2) 正三角形时: d m s .907 .0= (3)

电力设备带电检测技术规范

电力设备带电检测技术规范 国家电网公司 2010年1月

目录 前言 ...................................................................... I 1 范围 (1) 2 规范性引用文件 (1) 3 定义 (1) 5 变压器检测项目、周期和标准 (4) 6 套管检测项目、周期和标准 (5) 7 电流互感器检测项目、周期和标准 (6) 8 电压互感器、耦合电容器检测项目、周期和标准 (8) 9 避雷器检测项目、周期和标准 (9) 10 GIS本体检测项目、周期和标准 (10) 11 开关柜检测项目、周期和标准 (12) 12 敞开式SF6断路器检测项目、周期和标准 (12) 13 高压电缆带电检测项目、周期和标准 (13) 附录A 高频局部放电检测标准 (17) 附录B 高频局部放电检测典型图谱 (18) 附录C GIS超高频局部放电检测典型图谱 (21) 附录D 高压电缆局部放电典型图谱 (29) 附录E 编制说明 (30)

。 前言 电力设备带电检测是发现设备潜伏性运行隐患的有效手段,是电力设备安全、稳定运行的重要保障。为规范和有效开展电力设备带电检测工作,参考国内外有关标准,结合实际情况,制订本规范。 本标准附录A为规范性附录,附录B、附录C、附录D为资料性附录。 本标准由国家电网公司生产技术部提出。 本标准由国家电网公司科技部归口。 本标准主要起草单位:北京市电力公司、中国电力科学研究院、国网电力科学研究院 本标准参加起草单位:江苏省电力公司、福建省电力公司、湖北省电力公司 本标准的主要起草人:刘庆时、张国强、丁屹峰、韩晓昆、黄鹤鸣、杨清华、赵颖、闫春雨、毛光辉、彭江、牛进仓、孙白、王承玉 本标准由国家电网公司生产部负责解释。 本标准自发布之日起实施。

带电检测技术标

目录 1、项目开展背景3 2、项目实施内容及工期3 2.1项目实施内容3 2.2工期要求3 3、项目实施内容定义理解4 3.1带电检测4 3.2高频局部放电检测4 3.3红外热像检测4 3.4超声波信号检测4 3.5超高频局部放电检测4 3.6暂态地电压检测4 4、服务的难点、特点分析及应对措施5 4.1对电力设备的带电检测是判断运行设备是否存在缺陷,预防设备损坏并 保证安全运行的重要措施之一。5 4.2带电检测实施原则5 4.2.1带电局部放电检测判定5 4.2.2缺陷定位5 4.2.3与设备状态评价相结合5 4.2.4与电网运行方式结合5 4.2.5与停电检测结合6 4.2.6横向与纵向比较6 4.2.7新技术应用6 4.3在进行与温度和湿度有关的各种检测时(如超声波检测等),应同时测量 环境温度与湿度。6 4.4进行检测时,环境温度一般宜高于+5℃;室外检测应在良好天气进行, 且空气相对湿度一般不高于80%。6 4.5室外进行超声波检测宜在日出之后、日落之前进行。6

4.6室内检测局部放电信号宜有足够的光源以更好的确定故障位置。6 4.7进行设备检测时,应结合设备的结构特点和检测数据的变化规律与趋 势,进行全面地、系统地综合分析和比较,做出综合判断。6 4.8对可能立即造成事故或扩大损伤的缺陷类型(如涉及固体绝缘的放电性 严重缺陷等),应尽快停电进行针对性诊断试验,或采取其它较稳妥的监测方案。7 4.9在进行带电检测时,带电检测应不影响被检测设备的安全可靠性。7 4.10当采用超声波检测方法发现设备存在问题时,要采用其它可行的方法 进一步进行联合检测,检测过程中发现异常信号,应注意组合技术的应用进行关联分析。7 4.11当设备存在问题时,信号应具有可重复观测性,对于偶发信号应加强 跟踪,并尽量查找偶发信号原因。7 3、投标人承担项目优势:7 4、项目部组成、机具装备及劳动力安排计划7 4.1项目部组成:7 4.2管理成员的主要职责8 4.3带电检测设备配备:9 4.4劳动力配备11 5.质量要求、技术标准和规程规范11 5.1质量和技术要求11 6.安全控制措施13 7.职业健康安全目标、保证体系及技术组织措施13 7.4职业健康安全组织技术措施14

江门市建设工程地基基础检测方案确认表

江门市建设工程地基基础检测方案备案表 (2018年6月修订版) 工程名称监督登记号 单位工程数量地基基础设计等级层数 桩/地基持力层/ 锚杆(索)外露出面 层一端所在土层 一端所在土层 设计桩/杆长m 检测单位 方案制定依据 广东省建设工程质量管理条例、设计文件、有关规范:□《建筑基桩检测技术规范》 JGJ 106-2014 □《建筑地基基础检测规范》DBJ 15-60-2008(对平板载荷试验,为避免出现评判的随意性,要求统一依据本规范进行)□《水泥搅拌桩》GB/T 50783-2012 □《建筑边坡工程技术规范》GB50330-2013 □《建筑基坑支护技术规程》JGJ120-2012 □城镇道路工程施工质量验收规范CJJ 1-2008 □给水排水管道工程施工及验收规范GB50268-2008 □建筑地基检测技术规范JGJ340-2015(水泥土钻芯法检测统一依据本规范进行)□ 桩型(地基类型)□打入管桩□静压管桩□人工挖孔桩□钻孔桩□冲孔桩 □旋挖桩□水泥搅拌桩□高压旋喷桩□CFG桩□天然地基 □处理地基□支护锚杆□基础锚杆□锚索□土钉□地下 连续墙□ □工艺试验□初次检测(验收) □复打(压)后重新检测□桩身 处理后重新检测□验证或□扩 大检测 单位 工程名称 □桩径/桩数/承台数□锚杆径/杆数 □地基面积 桩距(仅对 复合地基) 道路挡土墙/其他基槽数/面积 给排水管道 基槽长/井位承载力□特征值□轴向拉力值□拉力设计值(□kN/□kPa)要求试验荷载(□kN/□kPa) 检测方法□静载抗压□静载抗拔□水平静载 □钻芯□低应变□高应变□平板 荷载□声波透射□锚杆抗拔 □轻□重型动力触探□静力触探 □静载抗压□静载抗拔□水平静载 □钻芯□低应变□高应变□平板 荷载□声波透射□锚杆抗拔 □轻□重型动力触探□静力触探 □静载抗压□静载抗拔□水平静载 □钻芯□低应变□高应变□平板 荷载□声波透射□锚杆抗拔 □轻□重型动力触探□静力触探 检测数量□静载抗压: □静载抗拔: □水平静载: □低应变: □高应变: □钻芯: □平板荷载: □声波透射: □触钎探: □静载抗压: □静载抗拔: □水平静载: □低应变: □高应变: □钻芯: □平板荷载: □声波透射: □触钎探: □静载抗压: □静载抗拔: □水平静载: □低应变: □高应变: □钻芯: □平板荷载: □声波透射: □触钎探: 第联共联

建筑地基基础检测项目、方法及数量一览表

附件:建筑地基基础检测项目、方法及数量一览表(恩施州) 第1页,共4页 序号基础选型 天然地基桩(墩)身完整性 桩(墩)的承载力检测方法检测数量检测方法检测数量 1 人工挖孔灌注墩 (埋深大于3米,直径不少 于1000mm,且埋深与墩身 直径小于6或墩身直径与 扩底直径的比小于4的独 立刚性基础,墩身有效长 度不宜超过5米。《建筑地 基基础检测技术规范》 DB42/269-2003第 3.0.8 条) 非 嵌 岩 墩 浅层平板静载荷试 验 依据:《建筑地基基 础设计规范》 GB50007-2002 第10.1.6条 具体数量部位由设计文件 给出,但单位工程试验数 量不少于3点, 依据:《建筑地基基础检测 技术规范》DB42/269-2003 第3.0.7.1条 低应变 依据:《建筑地基 基础检测技术 规范》 DB42/269-2003 第3.0.8条 每根柱的承台下抽检的墩数不应 少于1根,承台下单墩、二墩应 全数检测 依据:《建筑地基基础检测技术规 范》DB42/269-2003第3.0.8条 依据:《建筑地基基础检测技术规 范》DB42/269-2003第3.0.7.2条 。 执行《建筑地基基础检 测技术规范》 DB42/269-2003标准 3.0.7条第2款天然地 基的检测规定。 嵌 岩 墩 岩基静载荷试验 依据:《建筑地基基 础检测技术规范》 DB42/269-2003 第3.0.7.1条 具体数量部位由设计文件给 出,但单位工程试验数量不 少于3点, 依据:《建筑地基基础检测技 术规范》DB42/269-2003 第3.0.7.1条。

第2页,共4页序号基础选型 天然地基桩身完整性桩的承载力检测方法检测数量检测方法检测数量检测方法检测数量 2 人工挖孔 灌注桩 (桩径 ≥1000mm) 端 承 型 非 嵌 岩 桩 深层平板 静载荷试 验 具体数量由设计 文件给出,但单 位工程试验数 量不少于3点, 依据:《建筑地基 基础检测技术 规范》 DB42/269-2003 第3.0.7.1条 声波透射法 ①甲级设计等级的桩基、地质条件复杂、成桩质量可靠性低 的灌注桩,抽检数量不少于总桩数的30%,且不应少于20根; 其他建筑桩:抽检数量不少于总桩数的20%,且不应少于10根; 干成孔作业且终孔后经过核验的灌注桩,抽检数量不少于总 桩数的10%,且不应少于10根。 ②且每根柱的承台下的抽验桩数不少于1根,单桩和两桩应全 数检测。 ③依据:《建筑地基基础检测技术规范》DB42/269-2003第 3.0.6.7条《建筑地基基础设计规范》GB50007-2002第10.1.7 条。 静载荷试 验或抗 拔试验 总桩数的1%,不应少 于3根,总数小于50 根时,不应少于2根。 依据:《建筑地基基础 检测技术规范》 DB42/269-2003第 3.0.6.2条;《建筑地 基基础设计规范》 GB50007-2002第 10.1.8条。 端 承 型 嵌 岩 桩 岩基静载 荷试验 具体数量由设计 文件给出,但单 位工程试验数 量不少于3点, 依据:《建筑地 基基础检测技 术规范》 DB42/269-2003 第3.0.7.1条 声波透射法 ①甲级设计等级的桩基、地质条件复杂、成桩质量可靠性低 的灌注桩,抽检数量不少于总桩数的30%,且不应少于20根; 其他建筑桩:抽检数量不少于总桩数的20%,且不应少于10根; 干成孔作业且终孔后经过核验的灌注桩,抽检数量不少于总 桩数的10%,且不应少于10根。 ②且每根柱的承台下的抽验桩数不少于1根,单桩和两桩应全 数检测。 ③依据:《建筑地基基础检测技术规范》DB42/269-2003第 3.0.6.7条《建筑地基基础设计规范》GB50007-2002第10.1.7 条。 核验 根据岩基静载荷试验 报告,结合桩身质量 (声波透射法、钻芯 法)报告校验。依据: 《建筑地基基础设计 规范》GB50007-2002 第10.1.8条。

相关文档
最新文档