高考数学第六章 不等式、推理与证明

高考数学第六章  不等式、推理与证明
高考数学第六章  不等式、推理与证明

2013版高三数学一轮精品复习学案:

第六章不等式、推理与证明

【知识特点】

(1)不等式应用十分广泛,是高中数学的主要工具,试题类型多、方法多、概念要求较高,特别是不等式性质的条件与结论,基本不等式的条件等。

(2)不等式的性质本身就是解题的手段和方法,要认真理解和体会不等式性质的条件与结论,并运用它去解题。

(3)一元二次不等式的解法及求解程序框图一定要在理解的基础上掌握,因为求解的程序框图就是求解的一般方法与步骤。

(4)二元一次不等式组与简单的线性规划是解决最优化问题的一个重要手段,但画图时一定要细心,然后求出目标函数的最值。

(5)基本不等式的条件是解题的关键,一定要认真体会,会运用基本不等式来证明或求解问题。

(6)推理与证明贯穿于每一个章节,是对以前所学知识的总结与归纳,概念较多,知识比较系统,逻辑性较强,在高中数学中有着特殊地位。

【重点关注】

不等式、推理与证明的学习应立足基础,重在理解,加强训练,学会建模,培养能力,提高素质,因此在学习中应重点注意以下几点:

(1)学习不等式性质时,要弄清条件与结论,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据解决问题。

(2)解某些不等式时,要与函数的定义域、值域、单调性联系起来,注重数形结合思想,解含参数不等式时要注重分类讨论的思想。

(3)利用基本不等式求最值时,要满足三个条件:一正,二定,三相等。

(4)要强化不等式的应用意识,同时要注意到不等式与函数和方程的对比与联系,充分利用函数方程思想、数形结合思想处理不等式问题。

(5)利用线性规划解决实际问题,充分利用数形结合思想,会达到事半功倍的效果,因此力求画图标准。

(6)深刻理解合情推理的含义,归纳解决这类问题的规律和方法,掌握分析法、综合

法、反证法的证明过程和解题特点。

(7)合情推理中主要包括类比推理与归纳推理两种推理模式,类比、归纳的数学思想是在进行问题探讨、研究时常见的思想方法。

(8)数学归纳法是证明数列、等式、不等式的有效方法,证明问题时要注意充分利用归纳假设,同时注意项数的变化,在证明不等问题时,注意放缩、作差等方法的应用。【地位和作用】

不等式通常会和函数,方程结合起来考查学生的综合能力,一般有一道小的选择或计算及填空出现在高考试题中,学好不等式的证明及计算是很重要的。涉及不等式的大题有时也会和求函数的最值结合大概可以占到20-30分。

推理与证明主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法(理科)等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势,选择题、填空题、解答题都可能涉及到,该部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,在新的高考中都会涉及和渗透,但单独出题的可能性较小;

总得说来,这一章在高考命题上将会呈现以下特点:

1、考查题型以选择题、填空为主,偶以解答题形式出现,但多数是解答题中的一部分,如与数列、函数、解析几何等结合考查,分值约占10%左右,既有中低档题也会有高档题出现;

2、重点考查不等式解法、不等式应用、线性规划以及不等式与其他知识的结合,另在推理与证明中将会重点考查。

合情推理与演绎推理及证明方法,偶尔对数学归纳法的考查,注重知识交汇处的命题;

3、预计本章在今后的高考中仍将在不等式的解法、基本不等式应用、线性规划以及推理与证明与其他知识的交汇处命题,更加注重应用与能力的考查。

6.1不等式

【高考新动向】

一、不等关系与不等式

1、考纲点击

(1)了解现实世界和日常生活中的不等关系;

(2)了解不等式(组)的实际背景;

(3)掌握不等式的性质及应用。

2、热点提示

(1)不等式的性质为考查重点,对于不等关系,常与函数、数列、简易逻辑及实际问题相结合进行综合;

(2)用待定系数法求参数的范围问题是重点,也是难点;

(3)题型以选择题和填空题为主,主要在与其他知识点交汇处命题。

二、一元二次不等式及其解法

1、考纲点击

(1)会从实际情境中抽象出一元二次不等式模型;

(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;

(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

2、热点提示

(1)以考查一元二次不等式的解法为主,兼顾二次方程的判别式、根的存在性等知识;

(2)以集合为载体,考查不等式的解法及集合的运算;

(3)以函数、数列、解析几何为载体,以二次不等式的解法为手段,考查求参数的范围问题;

(4)以选择、填空题为主,偶尔穿插于解答题中考查。

三、二元一次不等式(组)与简单的线性规划问题

1、考纲点击

(1)会从实际情境中抽象出二元一次不等式组;

(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;

(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

2、热点提示

(1)重点考查线性目标函数的最值,兼顾考查代数式的几何意义(如斜率、距离、面积等);

(2)多在选择、填空题中出现,有时会在解答题中出现,常与实际问题相联系,列出线性约束条件,求出最优解。

四、基本不等式

1、考纲点击

(1)了解基本不等式的证明过程;

(2)会用基本不等式解决简单的最大(小)值问题。 2、热点提示

(1)以考查基本不等式的应用为重点,兼顾考查代数式变形、化简能力,注意“一正、二定、三相等”的条件;

(2)考查方式灵活,可出选择题、填空题,也可出以函数为载体的解答题; (3)以不等式的证明为载体,与其他知识结合在一起来考查基本不等式,证明不会太难。但题型多样,涉及面广。

【考纲全景透析】

一、不等关系与不等式

1、比较两实数大小的方法——求差比较法

即:

0a b a b >?->; 0a b a b =?-=; 0a b a b

2、不等式的基本性质

定理1:若a b >,则b a <;若b a <,则a b >.即a b >?b a <。

注:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。 定理2:若a b >,且b c >,则a c >。

注:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数;定理2称不等式的传递性。

定理3:若a b >,则a c b c +>+。

注:(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向;

(2)定理3的证明相当于比较a c +与b c +的大小,采用的是求差比较法; (3)定理3的逆命题也成立;

(4)不等式中任何一项改变符号后,可以把它从一边移到另一边。 定理3推论:若,,a b c d a c b d >>+>+且则。

注:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式。

定理4.如果b a >且0>c ,那么bc ac >;如果b a >且0>b a 且0>>d c ,那么bd ac >。

注:(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;(2)两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)推论1可以推广到任意有限个两边都是正数的同向不等式两边分别相乘。这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。

推论2:如果0>>b a , 那么n

n

b a > )1(>∈n N n 且。

定理5:如果0>>b a ,那么n

n

b a >

)1(>∈n N n 且。

3、不等式的一些常用性质 (1)倒数性质

①11,0.a b ab a b >>?

< ②11

0.a b a b

<

③0,0a b

a b c d c d

>><

④11100.a x b a x b b x a

<<<<<>>,则 ①真分数的性质:

;(0).b b m b b m b m a a m a a m

+-<>->+- ②假分数的性质:

;(0)a a m a a m b m b b m b b m

+-><->+- 4、基本不等式

定理1:如果R b a ∈,,那么ab b a 22

2

≥+(当且仅当b a =时取“=”)。

注:(1)指出定理适用范围:R b a ∈,;(2)强调取“=”的条件b a =。

定理2:如果b a ,是正数,那么ab

b

a ≥+2(当且仅当

b a =时取“=”)

注:(1)这个定理适用的范围:,a b R +

∈;(2)我们称b

a b

a ,2为+的算术平均数,称

为的几何平均数。即:两个正数的算术平均数不小于它们的几何平均数。

ab,

a

b

二、一元二次不等式及其解法

1、一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:

注:当a<0时,可利用不等式的性质将二次项系数化为正数,注意不等号的变化,而后求得方程两根,再利用“大于号取两边,小于号取中间”求解。

2、用程序框图来描述一元二次不等式ax2+bx+c>0(a>0)的求解的算法过程为:

三、二元一次不等式(组)与简单的线性规划问题 1、二元一次不等式(组)表示的平面区域

(1)在平面直角坐标系中,直线0Ax By C ++=将平面内的所有点分成三类:一类在直线0Ax By C ++=上,另两类分居直线0Ax By C ++=的两侧,其中一侧半平面的点的坐标满足0Ax By C ++>,另一侧的半平面的点的坐标满足0Ax By C ++<;

(2)二元一次不等式0Ax By C ++>在平面直角坐标系中表示直线0Ax By C ++=某一侧的平面区域且不含边界,直线作图时边界直线画成虚线,当我们在坐标系中画不等式

0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,此时边界直线画成实线。

(3)不等式组表示的平面区域是各个不等式所表示平面点集的交集,因而是各个不等式所表示平面区域的公共部分。

2、线性规划的有关概念 名称 意 义 约束条件 由变量x,y 组成的不等式组

线性约束条件

由x,y 的一次不等式(或方程)组成的不等式组

目标函数关于x,y的函数解析式,如z=2x+3y

线性目标函数关于x,y的一次解析式

可行解满足线性约束条件的解(x,y)

可行域所有可行解组成的集合

最优解使目标函数取得最大值或最小值的可行解

线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题注:最优解必定是可行解,但可行解不一定是最优解,最优解不一定唯一,有时唯一,有时有多个。

四、基本不等式

1、基本不等式

定理1:如果

R

b

a∈

,,那么ab

b

a2

2

2≥

+(当且仅当b

a=时取“=”)。

注:(1)指出定理适用范围:

R

b

a∈

,;(2)强调取“=”的条件b

a=。

定理2:如果

b

a,是正数,那么

ab

b

a

+

2(当且仅当b

a=时取“=”)

注:(1)这个定理适用的范围:,a b R+

∈;(2)我们称

b

a

b

a

,

2

+

的算术平均数,称

b

a

ab,

为的几何平均数。即:两个正数的算术平均数不小于它们的几何平均数。

2、常用字的几个重要不等式

注:上述不等式成立的条件是a=b

3、利用基本不等式求最佳问题

已知x>0,y>0,则:

(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是(简记:积定

和最小);

(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是。(简记:和定积最大)

4、算术平均值与几何平均值

设a>0,b>0,则a,b的的算术平均值为,几何平均值为,均值不等式可叙述为:两个正实数的自述平均值大于或等于它们的几何平均值。

【热点难点精析】

一、不等关系与不等式

(一)应用不等式表示不等关系

※相关链接※

1、将实际的不等关系写成对应的不等式时,应注意实际问题中关键性的文字语言与对应的数学符号之间的正确转换,这关系到能否正确地用不等式表示出不等关系。常见的文字语言与数学符号之间的转换关系如下表:

2、注意区分“不等关系”和“不等式”的异同,不等关系强调的是关系,可用

表示,不等式则是表现不等关系的式子,对于实际问题中的不等关系可以从“不超过”、“至少”、“至多”等关键词上去把握,并考虑到实际意义。

※例题解析※

〖例〗某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1000万元的资金购买单价分别为40万元、90万元的A型汽车和B型汽车。根据需要,A型汽车至少买5辆,B型汽车至少买6辆,写出满足上述所有不等关系的不等式。

思路解析:把握关键点,不超过1000万元,且A 、B 两种车型分别至少5辆、6辆,则不等关系不难表示,要注意取值范围。

解答:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则

,.,,+≤+≤????≥≥?

?

?

?

≥≥????∈∈??40x 90y 10004x 9y 100

x 5x 5y 6y 6x y N

x y N

(二)比较大小 ※相关链接※

比较实数或代数式的大小的方法主要是作差法和作商法。

1、“作差法”的一般步骤是:(1)作差;(2)变形;(3)判断符号;(4)得出结论。用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法。常用的结论有

等。当两个式子都为正时,

有时也可以先平方再作差。

2、作商法的一般步骤是:

(1)作商;(2)变形;(3)判断商与1的大小;(4)得出结论。

注:当商与1

的大小确定后必须对商式的分母的正负做出判断方可得出结论,如:

3、特例法

若是选择题还可以用特殊值法比较大小,若是解答题,也可以用特殊值法探路.

※例题解析※

〖例〗(1)(2012·南平模拟)若a 、b 是任意实数,且a >b ,则下列不等式成立的是( )

()()()

l ++-22a b

b

A a 1b 1

B 1

a

11C g a b 0D 33

()>()<()>()<

(2)已知a 1,a 2∈(0,1),记M=a 1a 2,N=a 1+a 2-1,则M 与N 的大小关

系是( )

(A )M <N (B )M >N ()M=N (D )不确定 (3)已知a >b >0,比较a a b b 与a b b a 的大小.

【方法诠释】(1)运用特殊值验证即可.(2)可用作差法求 解.(3)利用作商法求解判断. 解析:(1)选D.令,=-

1

a 2

b=-1,则A 、B 、均不成立,故选D. (2)选B.∵M-N=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1) =(a 1-1)(a 2-1) 又a 1,a 2∈(0,1),

故(a 1-1)(a 2-1)>0,故M >N.

(3)∵()---==a b a b a b

b a a b a b a a a b b b

又a >b >0,故,a

1b

>a-b >0,

∴(),-a b a 1b >即,a b

b a a b 1a b

>又a b b a >0,

∴a a b b >a b b a ,

∴a a b b 与a b b a 的大小关系为:a a b b >a b b a .

(三)不等式性质的应用

〖例〗(1)(2011·浙江高考)若a 、b 为实数,则“0<ab <1”是“1

1a b b a

<或>”的( )

(A)充分而不必要条件 (B)必要而不充分条件

()充分必要条件 (D)既不充分也不必要条件

(2)已知函数f(x)=ax 2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求

f(-2)的取值范围.

【方法诠释】(1)利用不等式的基本性质进行判断.

(2)利用待定系数法寻找f(-2)与f(-1),f(1)之间的关系,即用f(-1),f(1)整体表示f(-2),再利用不等式的性质求f(-2)的取值范围.

解析:(1)选A.0<ab <1可分为两种情况:

当a >0,b >0时,由0<ab <1两边同除以b 可得;1a b

<当a <0, b <0时,两边同除以a 可得.1b a

∴“0<ab <1”是“11a b b a

<或>”的充分条件,

反之,当11a b b a

<或>时,可能有ab <0,∴“0<ab <1”是 “11a b b a

<或>”的不必要条件,故应为充分不必要条件. (2)方法一:设f(-2)=mf(-1)+nf(1)(m 、n 为待定系数),则 4a-2b=m(a-b)+n(a+b). 即4a-2b=(m+n)a+(n-m)b. 于是得+==???

?-=-=??m n 4m 3

n m 2n 1

,解得,

∴f(-2)=3f(-1)+f(1). 又∵1≤f(-1)≤2,2≤f(1)≤4, ∴5≤3f(-1)+f(1)≤10, 即5≤f(-2)≤10. 方法二:

()()()()()(),,..

?

=-+?-=-????

?=+???=--??1a f 1f 1f 1a b 21f 1a b b f 1f 12

[]即[] ∴f(-2)=4a-2b=3f(-1)+f(1). 又∵1≤f(-1)≤2,2≤f(1)≤4, ∴5≤3f(-1)+f(1)≤10, 即5≤f(-2)≤10.

(四)不等式的证明

〖例〗已知a >0,b >0,且a +b =1 求证 (a +

a 1)(

b +b 1)≥4

25。

证明:证法一: (分析综合法)

欲证原式,即证4(ab )2

+4(a 2

+b 2

)-25ab +4≥0,

即证4(ab )2

-33(ab )+8≥0,即证ab ≤41

或ab ≥8

∵a >0,b >0,a +b =1,∴ab ≥8不可能成立

∵1=a +b ≥2ab ,∴ab ≤41

,从而得证。

证法二: (均值代换法)

设a =21+t 1,b =21

+t 2。

∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21

, .

425

411625412316254

1)45(41)141)(141()21)(21()

141)(14

1(211)21(211)21(11)1)(1(224

2

222222

22222222211212

2221122212122=≥-++=--+=-++++++=++++++++=+++?+++=+?

+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a

显然当且仅当t =0,即a =b =21

时,等号成立

证法三:(比较法)

∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41

425)1)(1(0

4)8)(41(4833442511425)1)(1(2222≥

++∴≥--=++=-+?+=-++b b a a ab ab ab ab ab b a b b a a b b a a

证法四:(综合法)

∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41,

2

2

2

25(1)1139(1)1251611(1)1441644ab ab ab ab ab ab

?-+≥?-+?∴-≥-=?-≥??≥

??≥??

425

)1)(1(≥

++b b a a 即。

证法五:(三角代换法)

∵ a >0,b >0,a +b =1,故令a =sin 2α,b =c os 2

α,α∈(0,2π

),

.

4

25

)1)(1(425

2sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2

222

2222222

22442

2

22≥++≥-???

???

≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααα

ααααααα

ααα

方法提示:

由a

提醒:同时应用多个不等式时,容易改变不等式的范围,特别是多次运用同向不等式相加这一性质,因不是等价关系,易导致出错.

二、一元二次不等式及其解法

(一)一元二次不等式的解法

※相关链接※

解一元二次不等式的一般步骤

(1)对不等式变形,使一端为0且二次项系数大于0,即

(2)计算相应的判别式;

(3)当Δ≥0时,求出相应的一元二次方程的根;

(4)根据对应二次函数的图象,写出不等式的解集。

※例题解析※

〖例〗解下列不等式:

(1)2x2+4x+3<0;(2)-3x2-2x+8≤0;(3)8x-1≥16x2.

思路解析:首先将二次项系数转化为正数,再看二次基项式能否因式分解,若能,则可得方程的两根,且大于号取两边,小于号取中间,若不能,则再“Δ”,利用求根公式求解方程的根,而后写出解集。

解答:(1)∵Δ=42-4×2×3=16-24=-8<0,∴方程2x2+4x+3=0没有实根,∴2x2+4x+3<0的解集为Φ;

(2)原不等式等价于3x2+2x-8≥0?(x+2)(3x-4)≥0?x≤-2或x≥4 3

(3)原不等式等价于16x2-8x+1≤0?(4x-1)2≤0,∴只有当4x-1=0,即x=1

4

时,不等

式成立。故不等式的解集为

1 4??????

(二)含字母参数的不等式的解法

※相关链接※

含参数的一元二次不等式关于字母参数的取值范围问题,其主要考查二次不等式的解集与系数的关系以及分类讨论的数学思想。

1、解答分类讨论问题的基本方法和步骤是:

(1)要确定讨论对象以及所讨论对象的全体的范围;

(2)确定分类标准,正确进行合理分类;

(3)对所分类逐步进行讨论,分级进行,获取阶段性结果;

(4)进行归纳总结,综合得出结论。

2、对于解含有参数的二次不等式,一般讨论的顺序是:

(1)讨论二次项系数是否为0,这决定此不等式是否为二次不等式; (2)当二次项系数不为0时,讨论判别式是否大于0;

(3)当判别式大于0时,讨论二次项系数是否大于0,这决定所求不等式的不等号的方向;

(4)判断二次不等式两根的大小。 ※例题解析※

〖例〗解关于x 的不等式(1-ax)2

<1

思路解析:将不等式左边化为二次三项式,右边等于0的形式,并将左边因式分解,据a 的取值情况分类讨论。

解答:由(1-ax)2

<1处22211,(2)0.a x ax ax ax -+<-<即

(1)000,a =<当时,不等式转化为故x 无解。

222(2)00,|0.

a x x a a a ??<<∴<

当时,不等式转化为x(ax-2)>0,即x(x-)<0.不等式的解集为

22(3)|0x x a a ?

?∴<

?

?当a>0则,即原不等式转化为x(ax-2)<0,又>0,即原不等式的解集炒

2|02|0.

x x a x x a Φ??

<

?

?<

?综上所述,当a=0时,原不等式解集为;当a<0时,则原不等式解集为当时,则原不等式解集为

注:解含参数的一元二次不等式,可先考虑因式分解,再对参数进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏。若二次项系数含参数,则不要忘了二次项系数是否为零的情况。

(三)一元二次不等式的实际应用 ※相关链接※

1、实际应用问题是新课标下考查的重点,突出了应用能力的考查,在不等式应用题中常以函数模型出现,如一元二次不等式应用题常以二次函数为模型,解题时要理清题意,准

确找出其中不等关系再利用不等解法求解;

2、不等式应用题一般可按如下四步进行:

即:

(1)阅读理解、认真审题,把握问题中的关键量,找准不等关系; (2)引进数学符号,用不等式表示不等关系; (3)解不等式; (4)回归实际问题。 ※例题解析※

〖例〗国家原计划以2400元/吨的价格收购某种农产品m 吨,按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%)。为了减轻农民负担,决定降低税率。根据市场规律,高效率降低x 个百分点,收购量能增加2x 个百分点。试确定x 的范围,使税率调低后,国家此项税收总收入不低于原计划的78%。

思路解析:表示高效率调低后的税收收入→列不等关系→解不等关系→得结论 解答:设税率调低后的税收总收入为y 元,则

2212

2400(12%)(8)%(42400).25

08,42880,442,08,02,y m x x m x x x x x x x x =+?-=-

+-<≤≥??+-≤-≤≤<≤∴<≤由题意知,要使税收总收入不低于原计划的78%,须y 2400m 8%78%,整理,得x 解得又所以的取值范围是(0,2]

(四)一元二次不等式恒成立问题

〖例〗求使

y

x +≤a

y

x +(x >0,y >0)恒成立的a 的最小值。

思路解析:本题解法三利用三角换元后确定a 的取值范围,此时我们习惯是将x 、y

与c os θ、sin θ来对应进行换元,即令x =c os θ,y

=sin θ(0<θ<2π

=,这样也得a

≥sin θ+c os θ,但是这种换元是错误的 其原因是:(1)缩小了x 、y 的范围;(2)这样换

元相当于本题又增加了“x 、y =1”这样一个条件,显然这是不对的。

除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a 满足不等关系,

a ≥f (x ),则a min =f (x )m a x 若 a ≤f (x ),则a m a x =f (x )min ,利用这一基本事实,可以较轻松地

解决这一类不等式中所含参数的值域问题。还有三角换元法求最值用的恰当好处,可以把原问题转化。

解答:解法一:由于a 的值为正数,将已知不等式两边平方, 得:x +y +2

xy

≤a 2

(x +y ),即2

xy

≤(a 2

-1)(x +y ), ①

∴x ,y >0,∴x +y ≥2

xy

当且仅当x =y 时,②中有等号成立。 比较①、②得a 的最小值满足a 2

-1=1,

∴a 2

=2,a =2 (因a >0),∴a 的最小值是2。

解法二:设

y x xy y x xy y x y x y x y x y

x u ++

=+++=++=++=

212)(2

∵x >0,y >0,∴x +y ≥2

xy

(当x =y 时“=”成立),

∴y x xy +2≤1,y x xy

+2的最大值是1。

从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2, 解法三:∵y >0,

∴原不等式可化为

y x

+1≤a 1+y x ,

y x =t a n θ,θ∈(0,2π

)。

∴t a n θ+1≤a 1tan 2

+θ,即t a n θ+1≤a se c θ

∴a ≥sin θ+c os θ=2sin(θ+4π

),

又∵sin(θ+4π)的最大值为1(此时θ=4π

)。 由③式可知a 的最小值为2。

注:(1)解决恒成立问题一定要搞清谁是自变量,谁是参数。一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数;

(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方。

三、二元一次不等式(组)与简单的线性规划问题 (一)二元一次不等(组)表示平面区域 ※相关链接※

二元一次不等式(组)表示平面区域的判断方法 (1)直线定界,特殊点定域

注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线。若直线不过原点,特殊点常选取原点。

(2)同号上,异号下

即当

时,区域为直线Ax+By+

=0的上方,当

,区域为直线Ax+By+=0的下方。

※例题解析※

〖例〗如图ΔAB 中,A(0,1),B(-2,2),(2,6),写出ΔAB 区域所表示的二元一次不等组。

思路解析:通过三点可求出三条直线的方程,而后利用特殊点验证。因三条直线均不过原点,故可由原点(0,0)验证即可。

高考推理与证明真题汇编理科数学(解析版)

2012高考真题分类汇编:推理与证明 1. 【 2012 高 考 真 题 江 西 理 6 】 观 察 下 列 各 式 : 221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=L 则1010a b += A .28 B .76 C .123 D .199 【答案】C 【命题立意】本题考查合情推理中的归纳推理以及递推数列的通项公式。 【解析】等式右面的数构成一个数列1,3,4,7,11,数列的前两项相加后面的项,即 21++=+n n n a a a ,所以可推出12310=a ,选C. 2.【2012高考真题全国卷理12】正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF = 7 3 .动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10 【答案】B 【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 3.【2012高考真题湖北理10】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数, 以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ . 人们还用过一些类似的近似公式. 根据π =3.14159L 判断,下列近似公式中最精确的一个是 11.d ≈ B .d C .d D .d ≈ 【答案】D 【解析】 346b 69()d ,===3.37532b 16 616157611 ==3==3.14,==3.142857230021 d a V A a B D πππππππ?==???由,得设选项中常数为则;中代入得, 中代入得,C 中代入得中代入得,由于D 中值最接近的真实值,故选择D 。 4.【2012高考真题陕西理11】 观察下列不等式 213122+ < 231151233++<,

高中数学专题讲义-直接证明与间接证明

题型一:综合法 【例1】若 11 0a b <<,则下列结论不正确的是 ( ) A.22a b < B.2ab b < C.2b a a b +> D.a b a b -=- 【例2】如果数列{}n a 是等差数列,则( )。 (A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a = 【例3】在△ABC 中若2sin b a B =,则A 等于( ) (A)003060或 (B)004560或 (C)0060120或 (D)0030150或 【例4】下列四个命题:①若1 02 a << ,则()()cos 1cos 1a a +<-;②若01a <<,则11a -1a >+>2a ;③若x 、y ∈R ,满足2y x =,则()2log 22x y +的最小值是7 8;④ 若a 、b ∈R ,则221a b ab a b +++>+。其中正确的是( )。 (A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④ 【例5】下面的四个不等式:①ca bc ab c b a ++≥++222;②()4 1 1≤ -a a ;③2≥+a b b a ;④()()()2 2222bd ac d c b a +≥+?+.其中不成立的有 (A )1个 (B )2个 (C )3个 (D )4个 【例6】已知,a b R ∈且,0a b ≠,则在① ab b a ≥+222;②2≥+b a a b ; 典例分析 板块二.直接证明与 间接证明

③2 )2 (b a ab +≤;④2)2(222b a b a +≤+这四个式子中,恒成立的个数是 ( ) A 1个 B 2个 C 3个 D 4个 【例7】已知c b a ,,均大于1,且4log log =?c b c a ,则下列各式中,一定正确的是 ( ) A b ac ≥ B c ab ≥ C a bc ≥ D c ab ≤ 【例8】已知不等式1()()9,a x y x y ++≥对任意正实数x ,y 恒成立,则正实数a 的最小值是 ( ) A .2 B .4 C .6 D .8 【例9】α、β为锐角()sin a αβ=+,sin sin b αβ=+,则a 、b 之间关系为 ( ) A .a b > B .b a > C .a b = D .不确定 【例10】设M 是ABC ?内一点,且AB AC ?=u u u r u u u r 30BAC ∠=?,定义()(,,)f M m n p =, 其中m 、n 、p 分别是MBC ?,MCA ?,MAB ?的面积,若1 ()(,,)2 f P x y =,则14x y + 的最小值是 ( ) A .8 B .9 C .16 D .18 【例11】若函数32)1(2++-=mx x m y 是偶函数,则)4 3(-f ,)1(2+-a a f (a ∈R ) 的大小关系是)4 3(-f )1(2+-a a f . 【例12】设≥++=++>>>c b a c b a c b a 111 ,1,0,0,0则若 【例13】函数()y f x =在(0,2)上是增函数,函数()2y f x =+是偶函数,则 ()1f ,()2.5f ,()3.5f 的大小关系是 . 【例14】已知 5,2==b a ρρ,向量b a ρρ与的 夹角为0 120,则a b a ρρρ.)2(-=

2019届高考数学考前30天基础知识专练8(不等式推理与证明)

高三数学基础知识专练 不等式 推理与证明 一.填空题(共大题共14小题,每小题5分,共70分) 1、在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察 2、一元二次不等式ax +bx +c >0的解集为(α,β)(α>0),则不等式cx +bx +a >0的解集为 __________________. 3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线.已知直线 b ?平面α,直线a ?平面α,直线b //平面α,则直线b //直线a ”,这个结论显然是错误的,这是因为________________(填写下面符合题意的一个序号即可). (1)大前提错误 (2)小前提错误 (3)推理形式错误 (4)非以上错误 4、设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (n )= . 5、在等差数列{a n }中,公差为d ,前n 项和为S n ,则有等式d n n na S n 2 )1(1-+=成立.类比上述 性质,相应地在等比数列{b n }中,公比为q ,前n 项和为T n ,则有等式_____成立. 6、下列推理中属于合情合理的序号是_____________. (1)小孩见穿“白大褂”就哭; (2)凡偶数必能被2整除,因为0能被2整除,所以0是偶数; (3)因为光是波,所以光具有衍射性质; (4)鲁班被草划破了手而发明了锯. 7、设?????≥-<=-2 ),1(log 22)(2 21x x x x f x ,则不等式2)(>x f 的解集为____________. 8、若函数13)2(2)(2≥?+++= x a x a x x x f 能用均值定理求最大值,则a 的取值范围是____. 9、设a >b >c >0,且 c a m c b b a -≥ -+-11恒成立,则m 的最大值为___________. 10、某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋 35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件 下,最少要花费____________元. 11、已知0,0>>b a 且1=+b a ,则)1 )(1(b b a a ++ 的最小值为_______________. 12、设f (x )=x 3+x ,a ,b ,c ∈R 且a +b >0,b +c >0,a +c >0, 则f (a )+f (b )+f (c )的值的符号为____(填“正数” 或“负数). 13、删去正整数数列1,2,3,…中的所有完全平方数,得到一个新数列,则这个数列的第2019项为__________. 14、下面使用类比推理正确的序号是__________. (1)由“(a +b )c =ac +bc ”类比得到:“()()()a b c a c b c +?=?+?”; (2)由“在f (x )=ax 2+bx (a ≠0)中,若f (x 1)=f (x 2)则有f (x 1+x 2)=0”类比得到“在等差数列{a n }中,S n 为前n 项和,若S p =S q ,则有S p+q =0”; (3)由“平面上的平行四边形的对边相等”类比得到“空间中的平行六面体的对面是

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

历年高考数学真题精选46 推理与证明

历年高考数学真题精选(按考点分类) 专题46 推理与证明(学生版) 一.选择题(共9小题) 1.(2019?新课标Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为() A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙2.(2019?新课标Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的 长度之比是5151 (0.618 -- ≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此 外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51 - .若某人满足上述两 个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是( ) A.165cm B.175cm C.185cm D.190cm 3.(2017?新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A.乙可以知道四人的成绩B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩4.(2016?新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15C ?,B点表示

四月的平均最低气温约为5C ?,下面叙述不正确的是( ) A .各月的平均最低气温都在0C ?以上 B .七月的平均温差比一月的平均温差大 C .三月和十一月的平均最高气温基本相同 D .平均最高气温高于20C ?的月份有5个 5.(2016?北京)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每 次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A .乙盒中黑球不多于丙盒中黑球 B .乙盒中红球与丙盒中黑球一样多 C .乙盒中红球不多于丙盒中红球 D .乙盒中黑球与丙盒中红球一样多 6.(2014?北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不 合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有( ) A .2人 B .3人 C .4人 D .5人 7.(2013?广东)设整数4n ,集合{1X =,2,3,?,}n .令集合{(S x =,y ,)|z x ,y , z X ∈,且三条件x y z <<,y z x <<,z x y <<恰有一个成立}.若(x ,y ,)z 和(z ,w ,)x 都在S 中,则下列选项正确的是( )

三年高考(2017-2019)各地文科数学高考真题分类汇总:推理与证明

推理与证明 1.(2019全国II 文5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 2.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若 11a >,则 A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a > D .13a a >,24a a > 3.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤则 A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ? C .当且仅当0a <时,(2,1)A ? D .当且仅当3 2 a ≤ 时,(2,1)A ? 4.(2017新课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说, 你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A .乙可以知道两人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 5.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元 素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得 112n n S a +>成立的n 的最小值为 . 6.(2017北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (ⅰ)男学生人数多于女学生人数;

听课答案-第六单元-不等式、推理与证明

全品高考复习方案数学(理科) RJA 第六单元不等式、推理与证明 1.编写意图 (1)重视不等式本身的知识、方法的讲解和练习力度,以基本的选题和细致全面的讲解进行组织,使学生掌握好不等式本身的重要知识和方法,为不等式的应用打下良好的基础. (2)二元一次不等式(组)所表示的平面区域和简单的线性规划问题,是高考重点考查的两个知识点,我们不把探究点设置为简单的线性规划问题,而是设置为目标函数的最值(这样可以涵盖线性规划和非线性规划),含有参数的平面区域以及生活中的优化问题,这样在该讲就覆盖了高考考查的基本问题. (3)对于合情推理,主要在于训练学生的归纳能力,重点在一些常见知识点上展开. 2.教学建议 (1)在各讲的复习中首先要注意基础性,这是第一位的复习目标.由于各讲的选题偏重基础,大多数例题、变式题学生都可以独立完成,在基础性复习的探究点上要发挥教师的引导作用,教师引导学生独立思考完成这些探究点,并给予适度的指导和点评. (2)要重视实际应用问题的分析过程、建模过程.应用问题的难点是数学建模,本单元涉及了较多的应用题,在这些探究点上教师的主要任务就是指导学生如何通过设置变量把实际问题翻译成数学问题,重视解题的过程. (3)不等式在高考数学各个部分的应用,要循序渐进地解决,在本单元中涉及不等式的综合运用时,我们的选题都很基础,在这样的探究点上不要试图一步到位,不等式的综合运用是整个一轮复习的系统任务,在本单元只涉及基本的应用,不要拔高. (4)推理与证明是培养学生良好思维习惯,学习和运用数学思想方法,形成数学能力的重要一环.要站在数学思想方法的高度,对多年来所学习的数学知识和数学方法进行较为系统的梳理和提升.务必使学生对数学发现与数学证明方法有一个较为全面的认识. 3.课时安排 本单元共7讲,一个小题必刷卷(九),建议每讲1个课时完成,小题必刷卷1个课时完成,本单元建议用8个课时完成复习任务. 第33讲不等关系与不等式 考试说明了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景. 考情分析 考点考查方向考例考查热度 不等式的性 比较数、式的大小2017全国卷Ⅰ11 ★☆☆质 不等式性质 求参数的值、范围★☆☆的应用 真题再现 ■[2017-2013]课标全国真题再现 [2017·全国卷Ⅰ]设x,y,z为正数,且2x=3y=5z,则()

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.360docs.net/doc/b77131758.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.360docs.net/doc/b77131758.html,) 原文地址: https://www.360docs.net/doc/b77131758.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

2020年高考理科数学《推理与证明》题型归纳与训练

1 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n 【解析】 根据题意得a 1+a 2+…+a n n ≥n a 1a 2…a n (n ∈N *,n ≥2). 3 与数列有关的推理 例3观察下列等式:

2018高考文科数学推理与证明专项100题(WORD版含答案)

2018高考文科数学推理与证明专项100题(WORD版含答案)1. 下列说法中正确的是() A.当a>1时,函数y=a x是增函数,因为2>1,所以函数y=2x是增函数,这种推理是合情推理 B.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理 C.命题的否定是¬P:?x∈R,e x>x D.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小 2. 以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”. 该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为() A.2017×22015B.2017×22014C.2016×22015D.2016×22014 3. 用反证法证明命题:“若a,b∈R,则函数f(x)=x3+ax﹣b至少有一个零点”时,假设应为() A.函数没有零点B.函数有一个零点 C.函数有两个零点D.函数至多有一个零点 4. 分析法又叫执果索因法,若使用分析法证明:设a<b<c,且a+b+c=0,求证:b2﹣ac< 3c2,则证明的依据应是() A.c﹣b>0 B.c﹣a>0 C.(c﹣b)(c﹣a)>0 D.(c﹣b)(c﹣a)<0 5. 有一段演绎推理是这样的“所有边长都相等的多边形为凸多边形,菱形是所有边长都相等的凸多边形,所有菱形是正多边形”结论显然是错误的,是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误 6.

我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值,类比上述结论,在棱长为a的正四面体内任一点到其四个面的距离之和为定值,此定值为() A.B.C.D.a 7. 定义:“回文”是指正读反读都能读通的句子,它是古今中外都有的一种修辞方式和文字游戏,如“我为人人,人人为我”等.在数学中也有这样一类数字有这样的特征,称为回文数.设n是一任意自然数.若将n的各位数字反向排列所得自然数n1与n相等,则称n 为一回文数.例如,若n=1234321,则称n为一回文数;但若n=1234567,则n不是回文数.则下列数中不是回文数的是() A.187×16 B.1112C.45×42 D.2304×21 8. 学校计划在周一至周四的艺术节上展演《雷雨》、《茶馆》、《天籁》和《马蹄声碎》四部话剧,每天一部.受多种因素影响,话剧《雷雨》不能在周一和周四上演;《茶馆》不能在周一和周三上演;《天籁》不能在周三和周四上演;《马蹄声碎》不能在周一和周四上演.那么下列说法正确的是() A.《雷雨》只能在周二上演 B.《茶馆》可能在周二或周四上演 C.周三可能上演《雷雨》或《马蹄声碎》 D.四部话剧都有可能在周二上演 9. 小赵、小钱、小孙、小李四位同学被问到谁去过长城时, 小赵说:我没去过; 小钱说:小李去过; 小孙说;小钱去过; 小李说:我没去过. 假定四人中只有一人说的是假话,由此可判断一定去过长城的是() A.小赵B.小李C.小孙D.小钱 10. 设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为R,四面体S﹣ABC的体积为V,则R=()

2019届高三数学文一轮复习:第七章 不等式 推理与证明 课时跟踪训练38含解析

课时跟踪训练(三十八) [基础巩固] 一、选择题 1.观察下面关于循环小数化分数的等式:0.3·=39=13,0.1· 8·=1899=211,0.3· 5· 2·=352999,0.0005· 9·=11000×5999=5999000,据此推测循环小数0.23·可化成分数( ) A.2390 B.9923 C.815 D.730 [解析] 0.23·=0.2+0.1×0.3·=15+110×39=730. 选D. [答案] D 2.已知数列{a n }为11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规 律,则a 99+a 100的值为( ) A.3724 B.76 C.1115 D.715 [解析] 由给出的数列{a n }的前10项得出规律,此数列中,分子与分母的和等于2的有1项,等于3的有2项,等于4的有3项,…,等于n 的有n -1项,且分母由1逐渐增大到n -1,分子由n -1逐渐减小到1(n ≥2),当n =14时即分子与分母的和为14时,数列到91项,当n =15即分子与分母的和为15时,数列 到104项,所以a 99与a 100是分子与分母和为15中的第8项与第9项,分别为78, 69,∴a 99+a 100=78+69=3724,选A. [答案] A 3.观察下列各式:55=3125,56=15625,57=78125,…,则52018的末四位数字为( ) A .3125 B .5625 C .0625 D .8125

[解析]∵55=3125,56=15625,57=78125, 58=390625,59=1953125,…,∴最后四位应为每四个循环,2018=4×504+2,∴52018最后四位应为5625. [答案] B 4.(2017·安徽合肥一中模拟)《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形 如以下形式的等式具有“穿墙术”:22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15, 55 24=5 5 24,…,则按照以上规律,若9 9 n=9 9 n具有“穿墙术”,则n= () A.25 B.48 C.63 D.80 [解析]由22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15,5 5 24=5 5 24,…, 可得若99 n=9 9 n具有“穿墙术”,则n=9 2-1=80,故选D. [答案] D 5.(2017·湖北宜昌一中、龙泉中学联考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考得好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对了的两人是() A.甲丙B.乙丁 C.丙丁D.乙丙 [解析]如果甲对,则丙、丁都对,与题意不符,故甲错,乙对;如果丙错,则丁错,因此只能是丙对,丁错,故选D. [答案] D 6.如图所示,面积为S的平面凸四边形的第i条边的边长记为a i(i=1,2,3,4), 此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若a1 1= a2 2= a3 3= a4 4=k,

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

2020年高考文科数学推理与证明 专项练习题 含解析

课时规范练 A组基础对点练 1.用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根” 时,要做的假设是() A.方程x3+ax+b=0没有实根 B.方程x3+ax+b=0至多有一个实根 C.方程x3+ax+b=0至多有两个实根 D.方程x3+ax+b=0恰好有两个实根 解析:至少有一个实根的否定是没有实根,故要做的假设是“方程x3+ax+b =0没有实根”. 答案:A 2.(2019·重庆检测)演绎推理“因为对数函数y=log a x(a>0且a≠1)是增函数,而 函数y=log 1 2x是对数函数,所以y=log 1 2x是增函数”所得结论.错误的原因 是() A.大前提错误 B.小前提错误 C.推理形式错误 D.大前提和小前提都错误 解析:因为当a>1时,y=log a x在定义域内单调递增,当0

4.已知a n =log n +1(n +2)(n ∈N *),观察下列运算: a 1·a 2=log 23·log 34=lg 3lg 2·lg 4lg 3=2; a 1·a 2·a 3·a 4·a 5·a 6=log 23·log 34·…·log 78=lg 3lg 2·lg 4lg 3·…·lg 8lg 7=3;…. 若a 1·a 2·a 3·…·a k (k ∈N *)为整数,则称k 为“企盼数”,试确定当a 1·a 2·a 3·…·a k =2 016时,“企盼数”k 为( ) A .22 016+2 B .22 016 C .22 016-2 D .22 016-4 解析:a 1·a 2·a 3·…·a k =lg (k +2)lg 2=2 016,lg(k +2)=lg 22 016,故k =22 016-2. 答案:C 5.(2019·丹东联考)已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3), (2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为( ) A .(3,9) B .(4,8) C .(3,10) D .(4,9) 解析:因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9).故选D. 答案:D 6.下列结论正确的个数为( ) (1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确. (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理. (3)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的. (4)平面内,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为1∶8. A .0 B .1 C .2 D .3 解析:(1)不正确.(2)(3)(4)正确. 答案:D

第六章质量检测不等式推理与证明

第六章不等式推理与证明 (时间120分钟,满分150分) 、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1 .不等式(x + 1) x — 1> 0的解集是 A . {x|x > 1} 解析:■/ x — 1> 0, /? x > 1. 同时 x + 1> 0,即卩 x > — 1.二 x > 1. 答案:B 2 .下列命题中的真命题是 答案: x w 0 x 2> 1,从而得 x > 1 或 x W — 1. 答案:D 2x + 1 4 .若集合 A = {x||2x — 1|v 3}, B = {x| v 0},贝V A Q B 是 3 — x 1 A . {x|— 1 v x v — 2或 2v x v 3} B . {x|2v x v 3} 1 1 C . {x|—v x v 2} D . {x|— 1v x v — ^} 解析:T I2X — 1|v 3, ??? — 3v 2x — 1v 3.A — 1v x v 2. 2x + 1 又v 0, (2x + 1)(x — 3) > 0, 3 — x … 1 1 …x > 3 或 x v — 2* - - A Q B = {x| — 1 v x v — 2). {x|x > 1} C . {x|x > 1 或 x =— 1} {x|x >— 1 或 x = 1} A 门. .右 C .若 a > b , c > d ,贝U ac > bd a > b ,贝U a 2 > b 2 解析: 由 a >|b|,可得 a >|b|>0? 2 2 B .若 |a|> b ,则 a > b D .若 a > |b|,贝U a 2> b 2 a 2> b 2. x 2, x w 0 3 .已知函数 f(x) = 2x — 1, x >0 若f(x)> 1,则x 的取值范围是 A . ( — m,— 1] B . [1 ,+m ) C . ( — m, 0] U [1,+m ) ( — m, — 1] U [1 ,+m ) 解析:将原不等式转化为: x > 0 检测

用放缩法证明不等式的方法与技巧

用放缩法证明不等式的方法与技巧 一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12 112-+<<++k k k k k 3.22k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> ,n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111123222222 n n n n n n n n n +++???+≥++???+==+++ (8 )1+???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N * ∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T < (二).先放缩再求和: 3.证明不等式:111 12112123 123n ++++

相关文档
最新文档