第6章 第34讲-不等式、推理与证明

第6章 第34讲-不等式、推理与证明
第6章 第34讲-不等式、推理与证明

课时达标 第34讲-不等式、推理与证明

一、选择题

1.已知f (x )=x +1

x -2(x <0),则f (x )有( )

A .最大值为0

B .最小值为0

C .最大值为-4

D .最小值为-4

C 解析 因为x <0,所以f (x )=-??????(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1

-x

,即x =-1时,等号成立.

2.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )

A.a +b 2≥ab (a >0,b >0)

B .a 2+b 2≥2ab (a >0,b >0) C.2ab a +b ≤ab (a >0,b >0) D.a +b 2

a 2+

b 2

2

(a >0,b >0) D 解析 由AC =a ,BC =b 可得圆O 的半径r =a +b 2,又OC =OB -BC =a +b

2-b =

a -

b 2,则FC 2=OC 2+OF 2=(a -b )24+(a +b )24=a 2+b 22,再根据题图知FO ≤FC ,即a +b

2≤

a 2+

b 2

2

.故选D. 3.若a ≥0,b ≥0,且a (a +2b )=4,则a +b 的最小值为( ) A. 2 B .4 C .2

D .2 2

C 解析 因为a ≥0,b ≥0,所以a +2b ≥0,又因为a (a +2b )=4,所以4=a (a +

2b )≤(a +a +2b )2

4

,当且仅当a =a +2b =2时,等号成立.所以(a +b )2≥4,所以a +b ≥2.

4.函数y =^x 2+2

x -1(x >1)的最小值是( )

A .23+2

B .23-2

C .2 3

D .2

A 解析 因为x >1,所以x -1>0.

所以y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3

x -1

=(x -1)2+2(x -1)+3x -1=x -1+3

x -1+2

≥2

(x -1)? ??

??

3x -1+2=23+2.

当且仅当x -1=3

x -1

,即x =1+3时,等号成立.

5.若正数a ,b 满足a +b =2,则1a +1+4

b +1的最小值是( )

A .1 B.94 C .9

D .16

B 解析 1a +1+4b +1=? ????1a +1+4b +1·(a +1)+(b +1)4=14×???

???1+4+b +1a +1+4(a +1)b +1≥14(5+24)=9

4,当且仅当b +1a +1=4(a +1)b +1

,即b +1=2(a +1)时,等号成立.故选B.

6.(2019·南昌模拟)不等式x 2+2x <a b +16b a 对任意a ,b ∈(0,+∞)恒成立,则实数x 的

取值范围是( )

A .(-2,0)

B .(-∞,-2)∪(0,+∞)

C .(-4,2)

D .(-∞,-4)∪(2,+∞)

C 解析 不等式x 2+2x <a b +16b

a

对任意a ,b ∈(0,+∞)恒成立,等价于x 2+2x <

????a b +16b a min ,因为a b +16b a

≥2

a b ·16b

a

=8(当且仅当a =4b 时,等号成立),所以x 2+2x <8,解得-4<x <2.

二、填空题

7.设P (x ,y )是函数y =2

x

(x >0)图象上的点,则x +y 的最小值为________.

解析 因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时,等号成立.

答案 2 2

8.已知x ,y 为正实数,3x +2y =10,则3x +2y 的最大值为________. 解析 由a +b

2

a 2+

b 2

2

得3x +2y ≤2·(3x )2+(2y )2=2·3x +2y =25,当且仅当x =53,y =5

2

时,等号成立.

答案 2 5

9.为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为________.

解析 由题意设BC =x (x >1),AC =t (t >0),依题设AB =AC -0.5=t -0.5,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos 60°,即(t -0.5)2=t 2+x 2-tx ,化简并整理得t =x 2-0.25x -1(x >1),即t =x -1+0.75x -1+2≥2+3????当且仅当x =1+32时,等号成立,此时t 取

最小值2+ 3.

答案 2+ 3 三、解答题

10.设a ,b ,c 均为正数,且a +b +c =1,求a 2b +b 2c +c 2

a

的最小值.

解析 因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2

a +(a +

b +

c )≥2(a +b +c ),

即a 2b +b 2c +c 2a ≥a +b +c ,所以a 2b +b 2c +c 2

a

≥1. 11.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.

解析 (1)因为x >0,y >0,2x +8y -xy =0,所以xy =2x +8y ≥216xy =8xy ,所以xy (xy

-8)≥0,又xy ≥0,所以xy ≥8,即xy ≥64,当且仅当x =4y ,即8y +8y -4y 2=0,即y =4,x =16时,等号成立,所以xy 的最小值为64.

(2)因为2x +8y =xy >0,所以2y +8x =1,所以x +y =(x +y )????2y +8x =10+2x y +8y

x ≥10+2

2x y ·8y x =18,当且仅当2x y =8y

x

,即x =2y ,即4y +8y -2y 2=0,即y =6,x =12时,等号成立,所以x +y 的最小值为18.

12.某地需要修建一条大型输油管道通过240 km 宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的费用为400万元,铺设距离为x km 的相邻两增压站之间的输油管道的费用为x 2+x 万元.设余下工程的总费用为y 万元.

(1)试将y 表示成x 的函数;

(2)需要修建多少个增压站才能使y 最小,其最小值为多少?

解析 (1)设需要修建k 个增压站,则(k +1)x =240,即k =240

x -1,所以y =400k +(k +

1)(x 2+x )=400????240x -1+240x (x 2+x )=96 000x +240x -160.因为x 表示相邻两增压站之间的距离,则0<x <240.故y 与x 的函数关系为y =96 000

x

+240x -160(0<x <240).

(2)y =

96 000

x

+240x -160≥296 000

x

·240x -160=2×4 800-160=9 440,当且仅当96 000x =240x ,即x =20时,等号成立,此时k =240x -1=240

20-1=11.故需要修建11个增压站才能使y 最小,其最小值为9 440万元.

13.[选做题]若正实数x ,y 满足(2xy -1)2=(5y +2)(y -2),则x +1

2y 的最大值为( )

A .-1+32

2

B .-1+33

2

C .1+33

2

D .-1-32

2

A 解析 由(2xy -1)2=(5y +2)(y -2)可得(2xy -1)2=9y 2-(2y +2)2,即(2xy -1)2+(2y +2)2=9y 2,所以????2x -1y 2+????2+2y 2=9.因为????2x -1y 2+???

?2+2

y 2≥?

???2x -1y +2+2y 2

2

???

?2x +1y +22

2

,当且仅当2x -1y =2+2y 时,等号成立.所以????2x +1y +22≤18,所以2x +1

y

≤32

32-2

2.所以x+1

2y

的最大值为32

2

-1.

-2,即x+1

2y≤

推理与证明(教案)

富县高级中学集体备课教案 年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§1.1 归纳推理第 1 课时 教学目标1、掌握归纳推理的技巧,并能运用解决实际问题。 2、通过“自主、合作与探究”实现“一切以学生为中心”的理念。 3、感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。 重点归纳推理及方法的总结中心 发言 人王晓君 难点归纳推理的含义及其具体应用 教具课型新授课课时 安排 1课 时 教法讲练结合学法归纳总结个人主页 教学过程 教一、原理初探 ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!” ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在? ③探究:他是怎么发现“杠杆原理”的? 正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。 ④思考:整个过程对你有什么启发? ⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。 二、新课学习 1、哥德巴赫猜想 哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法观察猜想证明 归纳推理的发展过程

推理与证明

推理与证明 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第3讲推理与证明 【知识要点】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理 2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。3.类比推理的一般步骤: ①找出两类事物之间的相似性或者一致性。 ②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想) 【典型例题】 1、(2011江西)观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为 () A、01 B、43 C、07 D、49 2、(2011江西)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为() A、3125 B、5625 C、0625 D、8125 3、(2010临颍县)平面内平行于同一条直线的两条直线平行,由此类比思维,我们可以得到() A、空间中平行于同一平面的两个平面平行 B、空间中平行于同一条直线的两条直线平行 C、空间中平行于同一条平面的两条直线平行 D、空间中平行于同一条直线的两个平面平行

4、(2007广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a* (b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是() A、(a*b)*a=a B、[a*(b*a)]*(a*b)=a C、b*(b*b)=b D、(a*b)*[b*(a*b)]=b 5、(2007广东)如图是某汽车维修公司的维修点环形分布图.公司在 年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发 现需将A,B,C,D四个维修点的这批配件分别调整为40,45, 54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调 整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为() A、15 B、16 C、17 D、18 6、(2006陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3, 4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为() A、4,6,1,7 B、7,6,1,4 C、6,4,1,7 D、1,6,4,7 7、(2006山东)定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0, 1},B={2,3},则集合A⊙B的所有元素之和为() A、0 B、6 C、12 D、18 8、(2006辽宁)设⊕是R上的一个运算,A是V的非空子集,若对任意a,b∈A,有a⊕b ∈A,则称A对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()

2019届高考数学考前30天基础知识专练8(不等式推理与证明)

高三数学基础知识专练 不等式 推理与证明 一.填空题(共大题共14小题,每小题5分,共70分) 1、在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察 2、一元二次不等式ax +bx +c >0的解集为(α,β)(α>0),则不等式cx +bx +a >0的解集为 __________________. 3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线.已知直线 b ?平面α,直线a ?平面α,直线b //平面α,则直线b //直线a ”,这个结论显然是错误的,这是因为________________(填写下面符合题意的一个序号即可). (1)大前提错误 (2)小前提错误 (3)推理形式错误 (4)非以上错误 4、设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (n )= . 5、在等差数列{a n }中,公差为d ,前n 项和为S n ,则有等式d n n na S n 2 )1(1-+=成立.类比上述 性质,相应地在等比数列{b n }中,公比为q ,前n 项和为T n ,则有等式_____成立. 6、下列推理中属于合情合理的序号是_____________. (1)小孩见穿“白大褂”就哭; (2)凡偶数必能被2整除,因为0能被2整除,所以0是偶数; (3)因为光是波,所以光具有衍射性质; (4)鲁班被草划破了手而发明了锯. 7、设?????≥-<=-2 ),1(log 22)(2 21x x x x f x ,则不等式2)(>x f 的解集为____________. 8、若函数13)2(2)(2≥?+++= x a x a x x x f 能用均值定理求最大值,则a 的取值范围是____. 9、设a >b >c >0,且 c a m c b b a -≥ -+-11恒成立,则m 的最大值为___________. 10、某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋 35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件 下,最少要花费____________元. 11、已知0,0>>b a 且1=+b a ,则)1 )(1(b b a a ++ 的最小值为_______________. 12、设f (x )=x 3+x ,a ,b ,c ∈R 且a +b >0,b +c >0,a +c >0, 则f (a )+f (b )+f (c )的值的符号为____(填“正数” 或“负数). 13、删去正整数数列1,2,3,…中的所有完全平方数,得到一个新数列,则这个数列的第2019项为__________. 14、下面使用类比推理正确的序号是__________. (1)由“(a +b )c =ac +bc ”类比得到:“()()()a b c a c b c +?=?+?”; (2)由“在f (x )=ax 2+bx (a ≠0)中,若f (x 1)=f (x 2)则有f (x 1+x 2)=0”类比得到“在等差数列{a n }中,S n 为前n 项和,若S p =S q ,则有S p+q =0”; (3)由“平面上的平行四边形的对边相等”类比得到“空间中的平行六面体的对面是

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

高考数学:专题三 第三讲 推理与证明配套限时规范训练

第三讲 推理与证明 (推荐时间:50分钟) 一、选择题 1.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项 公式为 ( ) A .a n =3 n -1 B .a n =3n C .a n =3n -2n D .a n =3n -1+2n -3 2.已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2 -2-4 =2,依照以上各 式的规律,得到一般性的等式为 ( ) A.n n -4+8-n 8-n -4 =2 B.n +1n +1-4+n +1+5n +1-4=2 C.n n -4+n +4n +1-4 =2 D.n +1n +1-4+n +5n +5-4 =2 3. “因为指数函数y =a x 是增函数(大前提),而y = ??? ?13x 是指数函数(小前提),所以函数y = ??? ?13x 是增函数(结论)”,上面推理的错误在于 ( ) A .大前提错误导致结论错 B .小前提错误导致结论错 C .推理形式错误导致结论错 D .大前提和小前提错误导致结论错 4.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”; ②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ?m =x ”类比得到“p ≠0,a ·p =x ·p ?a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =a b ”. 以上的式子中,类比得到的结论正确的个数是 ( ) A .1 B .2 C .3 D .4 5.已知定义在R 上的函数f (x ),g (x )满足f x g x =a x ,且f ′(x )g (x )

听课答案-第六单元-不等式、推理与证明

全品高考复习方案数学(理科) RJA 第六单元不等式、推理与证明 1.编写意图 (1)重视不等式本身的知识、方法的讲解和练习力度,以基本的选题和细致全面的讲解进行组织,使学生掌握好不等式本身的重要知识和方法,为不等式的应用打下良好的基础. (2)二元一次不等式(组)所表示的平面区域和简单的线性规划问题,是高考重点考查的两个知识点,我们不把探究点设置为简单的线性规划问题,而是设置为目标函数的最值(这样可以涵盖线性规划和非线性规划),含有参数的平面区域以及生活中的优化问题,这样在该讲就覆盖了高考考查的基本问题. (3)对于合情推理,主要在于训练学生的归纳能力,重点在一些常见知识点上展开. 2.教学建议 (1)在各讲的复习中首先要注意基础性,这是第一位的复习目标.由于各讲的选题偏重基础,大多数例题、变式题学生都可以独立完成,在基础性复习的探究点上要发挥教师的引导作用,教师引导学生独立思考完成这些探究点,并给予适度的指导和点评. (2)要重视实际应用问题的分析过程、建模过程.应用问题的难点是数学建模,本单元涉及了较多的应用题,在这些探究点上教师的主要任务就是指导学生如何通过设置变量把实际问题翻译成数学问题,重视解题的过程. (3)不等式在高考数学各个部分的应用,要循序渐进地解决,在本单元中涉及不等式的综合运用时,我们的选题都很基础,在这样的探究点上不要试图一步到位,不等式的综合运用是整个一轮复习的系统任务,在本单元只涉及基本的应用,不要拔高. (4)推理与证明是培养学生良好思维习惯,学习和运用数学思想方法,形成数学能力的重要一环.要站在数学思想方法的高度,对多年来所学习的数学知识和数学方法进行较为系统的梳理和提升.务必使学生对数学发现与数学证明方法有一个较为全面的认识. 3.课时安排 本单元共7讲,一个小题必刷卷(九),建议每讲1个课时完成,小题必刷卷1个课时完成,本单元建议用8个课时完成复习任务. 第33讲不等关系与不等式 考试说明了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景. 考情分析 考点考查方向考例考查热度 不等式的性 比较数、式的大小2017全国卷Ⅰ11 ★☆☆质 不等式性质 求参数的值、范围★☆☆的应用 真题再现 ■[2017-2013]课标全国真题再现 [2017·全国卷Ⅰ]设x,y,z为正数,且2x=3y=5z,则()

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.360docs.net/doc/4a16478768.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.360docs.net/doc/4a16478768.html,) 原文地址: https://www.360docs.net/doc/4a16478768.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

第41讲逻辑推理与证明复数框图

第41讲逻辑推理与证明复数框图 高三新数学第一轮复习教案〔讲座41—逻辑、推理与证明、复数、 框图〕 一.课标要求: 1.常用逻辑用语 〔1〕命题及其关系 ①了解命题的逆命题、否命题与逆否命题;②明白得必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系; 〔2〕简单的逻辑联结词 通过数学实例,了解"或"、"且"、"非"逻辑联结词的含义。 〔3〕全称量词与存在量词 ①通过生活和数学中的丰富实例,明白得全称量词与存在量词的意义; ②能正确地对含有一个量词的命题进行否定。 2.推理与证明 〔1〕合情推理与演绎推理 ①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发觉中的作用; ②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,把握演绎推理的差不多模式,并能运用它们进行一些简单推理; ③通过具体实例,了解合情推理和演绎推理之间的联系和差异。 〔2〕直截了当证明与间接证明 ①结合差不多学过的数学实例,了解直截了当证明的两种差不多方法:分析法和综合法;了解分析法和综合法的摸索过程、特点; ②结合差不多学过的数学实例,了解间接证明的一种差不多方法--反证法;了解反证法的摸索过程、特点; 〔3〕数学归纳法 了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题; 〔4〕数学文化 ①通过对实例的介绍〔如欧几里德?几何原本?、马克思?资本论?、杰弗逊?独立宣言?、牛顿三定律〕,体会公理化思想; ②介绍运算机在自动推理领域和数学证明中的作用; 3.数系的扩充与复数的引入 〔1〕在咨询题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾〔数的运算规那么、方程理论〕在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系; 〔2〕明白得复数的差不多概念以及复数相等的充要条件; 〔3〕了解复数的代数表示法及其几何意义; 〔4〕能进行复数代数形式的四那么运算,了解复数代数形式的加减运算的几何意义。 4.框图 〔1〕流程图 ①通过具体实例,进一步认识程序框图;

2019高考数学一轮复习第11章复数算法推理与证明第3讲合情推理与演绎推理分层演练文

第3讲 合情推理与演绎推理 一、选择题 1.观察下列各式:a +b =1,a 2 +b 2 =3,a 3 +b 3 =4,a 4 +b 4 =7,a 5 +b 5 =11,…,则a 10 +b 10 =( ) A .121 B .123 C .231 D .211 解析:选B .法一:令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n + a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123. 法二:由a +b =1,a 2 +b 2 =3,得ab =-1,代入后三个等式中符合,则a 10 +b 10 =(a 5 +b 5)2 -2a 5b 5 =123. 2.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( ) A .21 B .34 C .52 D .55 解析:选D .因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55. 3.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( ) A .(7,5) B .(5,7) C .(2,10) D .(10,2) 解析:选B .依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有 n (n +1) 2 个“整 数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每 个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7). 4.如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD 与AB

2019届高三数学文一轮复习:第七章 不等式 推理与证明 课时跟踪训练38含解析

课时跟踪训练(三十八) [基础巩固] 一、选择题 1.观察下面关于循环小数化分数的等式:0.3·=39=13,0.1· 8·=1899=211,0.3· 5· 2·=352999,0.0005· 9·=11000×5999=5999000,据此推测循环小数0.23·可化成分数( ) A.2390 B.9923 C.815 D.730 [解析] 0.23·=0.2+0.1×0.3·=15+110×39=730. 选D. [答案] D 2.已知数列{a n }为11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规 律,则a 99+a 100的值为( ) A.3724 B.76 C.1115 D.715 [解析] 由给出的数列{a n }的前10项得出规律,此数列中,分子与分母的和等于2的有1项,等于3的有2项,等于4的有3项,…,等于n 的有n -1项,且分母由1逐渐增大到n -1,分子由n -1逐渐减小到1(n ≥2),当n =14时即分子与分母的和为14时,数列到91项,当n =15即分子与分母的和为15时,数列 到104项,所以a 99与a 100是分子与分母和为15中的第8项与第9项,分别为78, 69,∴a 99+a 100=78+69=3724,选A. [答案] A 3.观察下列各式:55=3125,56=15625,57=78125,…,则52018的末四位数字为( ) A .3125 B .5625 C .0625 D .8125

[解析]∵55=3125,56=15625,57=78125, 58=390625,59=1953125,…,∴最后四位应为每四个循环,2018=4×504+2,∴52018最后四位应为5625. [答案] B 4.(2017·安徽合肥一中模拟)《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形 如以下形式的等式具有“穿墙术”:22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15, 55 24=5 5 24,…,则按照以上规律,若9 9 n=9 9 n具有“穿墙术”,则n= () A.25 B.48 C.63 D.80 [解析]由22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15,5 5 24=5 5 24,…, 可得若99 n=9 9 n具有“穿墙术”,则n=9 2-1=80,故选D. [答案] D 5.(2017·湖北宜昌一中、龙泉中学联考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考得好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对了的两人是() A.甲丙B.乙丁 C.丙丁D.乙丙 [解析]如果甲对,则丙、丁都对,与题意不符,故甲错,乙对;如果丙错,则丁错,因此只能是丙对,丁错,故选D. [答案] D 6.如图所示,面积为S的平面凸四边形的第i条边的边长记为a i(i=1,2,3,4), 此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若a1 1= a2 2= a3 3= a4 4=k,

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

专题十二 推理与证明第三十二讲 推理与证明答案

专题十二 推理与证明 第三十二讲 推理与证明 答案部分 2019年 1.解析:由题意,可把三人的预测简写如下: 甲:甲乙. 乙:丙乙且丙甲. 丙:丙乙. 因为只有一个人预测正确, 如果乙预测正确,则丙预测正确,不符合题意. 如果丙预测正确,假设甲、乙预测不正确, 则有丙乙,乙甲, 因为乙预测不正确,而丙乙正确,所以只有丙甲不正确, 所以甲丙,这与丙乙,乙甲矛盾.不符合题意. 所以只有甲预测正确,乙、丙预测不正确, 甲乙,乙丙. 故选A . 2010-2018年 1.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++ 1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <. 若1q -≤,则2 12341(1)(10a a a a a q q +++=++) ≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾, 所以10q -<<,所以2131(1)0a a a q -=->,2 241(1)0a a a q q -=-<, 所以13a a >,24a a <,故选B . 解法二 因为1x e x +≥,1234123ln()a a a a a a a +++=++,

所以1234 12312341a a a a e a a a a a a a +++=++++++≥,则41a -≤, 又11a >,所以等比数列的公比0q <. 若1q -≤,则2 12341(1)(10a a a a a q q +++=++) ≤, 而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾, 所以10q -<<,所以2131(1)0a a a q -=->,2 241(1)0a a a q q -=-<, 所以13a a >,24a a <,故选B . 2.D 【解析】解法一 点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a -的直线,当0a ≠时,2x ay -=表示过定点(2,0), 斜率为1 a 的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直,显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为3 2 - ,当32a -<-,即3 2 a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的 区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即3 2 a =时, 4ax y +>表示的区域不包含点(2,1),故排除C ,故选D . 解法二 若(2,1)A ∈,则21422 a a +>?? -?≤,解得32a >,所以当且仅当3 2a ≤时, (2,1)A ?.故选D . 3.D 【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙 看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D . 4.A 【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即 11 2 n n n n S h B B += ,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么

第六章质量检测不等式推理与证明

第六章不等式推理与证明 (时间120分钟,满分150分) 、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1 .不等式(x + 1) x — 1> 0的解集是 A . {x|x > 1} 解析:■/ x — 1> 0, /? x > 1. 同时 x + 1> 0,即卩 x > — 1.二 x > 1. 答案:B 2 .下列命题中的真命题是 答案: x w 0 x 2> 1,从而得 x > 1 或 x W — 1. 答案:D 2x + 1 4 .若集合 A = {x||2x — 1|v 3}, B = {x| v 0},贝V A Q B 是 3 — x 1 A . {x|— 1 v x v — 2或 2v x v 3} B . {x|2v x v 3} 1 1 C . {x|—v x v 2} D . {x|— 1v x v — ^} 解析:T I2X — 1|v 3, ??? — 3v 2x — 1v 3.A — 1v x v 2. 2x + 1 又v 0, (2x + 1)(x — 3) > 0, 3 — x … 1 1 …x > 3 或 x v — 2* - - A Q B = {x| — 1 v x v — 2). {x|x > 1} C . {x|x > 1 或 x =— 1} {x|x >— 1 或 x = 1} A 门. .右 C .若 a > b , c > d ,贝U ac > bd a > b ,贝U a 2 > b 2 解析: 由 a >|b|,可得 a >|b|>0? 2 2 B .若 |a|> b ,则 a > b D .若 a > |b|,贝U a 2> b 2 a 2> b 2. x 2, x w 0 3 .已知函数 f(x) = 2x — 1, x >0 若f(x)> 1,则x 的取值范围是 A . ( — m,— 1] B . [1 ,+m ) C . ( — m, 0] U [1,+m ) ( — m, — 1] U [1 ,+m ) 解析:将原不等式转化为: x > 0 检测

用放缩法证明不等式的方法与技巧

用放缩法证明不等式的方法与技巧 一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12 112-+<<++k k k k k 3.22k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> ,n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111123222222 n n n n n n n n n +++???+≥++???+==+++ (8 )1+???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N * ∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T < (二).先放缩再求和: 3.证明不等式:111 12112123 123n ++++

第53讲 推理与证明(解析版)

简单已测:1994次正确率:87.2 % 1.下列表述正确的是( ) ①归纳推理是由部分到整体的推 理;②归纳推理是由?般到?般的推理;③演绎推理是由?般到特殊的推理;④类?推理是由特殊到?般的推理;⑤类?推理是由特殊到特殊的推理.A.①②③ B.②③④C.①③⑤ D.②④⑤ 考点:归纳推理的常??法、类?推理的常??法知识点:归纳推理、类?推理答案:C 解析:所谓归纳推理,就是从个别性知识推出?般性结论的推理. 故①对②错; ?所谓演绎推理是由?般到特殊的推理.故③对; 类?推理是根据两个或两类对象有部分属性相同,从?推出它们的其他属性也相同的推理.故④错⑤对.故选:. ?般已测:2488次正确率:82.5 % 2.图是“推理与证明”的知识结构图,如果要加?“归纳”,则应该放在( ) A.“合情推理”的下位 B.“演绎推理”的下位 C.“直接证明”的下位 D.“间接证明”的下位 考点:归纳推理的常??法、类?推理的常??法知识点:归纳推理、类?推理答案:A 解析:合情推理包括归纳推理与类?推理,因此答案为. C A

简单已测:1990次正确率:95.2 % 3.给出下列表述:①综合法是由因导果法;②综合法是顺推证法;③分析法是执果索因法;④分析法是间接证明法; ⑤分析法是逆推证法.其中正确的表述有( )A.个B.个C.个D. 个 考点:分析法的思考过程、特点及应?、综合法的思考过程、特点及应?知识点:综合法、分析法答案:C 解析:结合综合法和分析法的定义可知①②③⑤均正确,分析法和综合法均为直接证明法,故④不正确. ?般 已测:3748次 正确率:87.4 % 4.观察下列各式:,则的末四位数字为( ) A.B.C.D. 考点:有理数指数幂的运算性质、归纳推理的常??法知识点:有理数指数幂的运算法则、归纳推理答案:D 解析:, 可以看出这些幂的最后位是以为周期变化的, , 的末四位数字与的后四位数相同,是, 故选D ?般已测:1886次正确率:81.9 % 5.观察下列各式:,, ,,, ,则=( ) A.B.C. 23455=3125,5=15625,5=78125,?5 6 7520113125562506258125 ∵5=3125,5=15625,5=781255 675=390625,5=1953125,5=9765625,5=48828125? 89101144∵2011÷4=502?3∴52011578125a +b =1a +b =322a +b =433a +b =744a +b =1155…a +b 10102876123

第6章 第36讲-不等式、推理与证明

课时达标 第36讲-不等式、推理与证明 一、选择题 1.用反证法证明命题:“若a +b +c 为偶数,则自然数a ,b ,c 恰有一个偶数”时正确的反设为( ) A .自然数a ,b ,c 都是奇数 B .自然数a ,b ,c 都是偶数 C .自然数a ,b ,c 中至少有两个偶数 D .自然数a ,b ,c 中都是奇数或至少有两个偶数 D 解析 “自然数a ,b ,c 中恰有一个偶数”的否定是“自然数a ,b ,c 都是奇数或至少有两个偶数”.故选D. 2.分析法又称执果索因法,若用分析法证明:“设 a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( ) A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0 C 解析 b 2-a c <3a ?b 2-ac <3a 2?(a +c )2-ac <3a 2?a 2+2ac +c 2-ac -3a 2<0 ?-2a 2+ac +c 2<0?2a 2-ac -c 2>0?(a -c )(2a +c )>0?(a -c )(a -b )>0. 3.(2019·焦作一中月考)若a ,b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2 D.a b <a +1b +1 B 解析 在B 项中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立. 4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零 C .恒为正值 D .无法确定正负 A 解析 由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减可知f (x )是R 上的单调递减函数,由x 1+x 2>0可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.

相关文档
最新文档