(完整版)常微分方程试题及答案

(完整版)常微分方程试题及答案
(完整版)常微分方程试题及答案

第十二章 常微分方程

(A)

一、是非题

1.任意微分方程都有通解。( X )

2.微分方程的通解中包含了它所有的解。( X )

3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( O )

4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( X )

5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21

(C 为任意常数)。(

O ) 6.y y sin ='是一阶线性微分方程。( X )

7.xy y x y +='33不是一阶线性微分方程。( O )

8.052=+'-''y y y 的特征方程为0522=+-r r 。( O )

9.221xy y x dx dy

+++=是可分离变量的微分方程。( O )

二、填空题

1.在横线上填上方程的名称

①()0ln 3=-?-xdy xdx y 是可分离变量微分方程。

②()()022=-++dy y x y dx x xy 是可分离变量微分方程。 ③x y

y dx dy

x ln ?=是齐次方程。

④x x y y x sin 2+='是一阶线性微分方程。

⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。

2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。

3.x e y 2-=''的通解是21241

C x C e x ++-。

4.x x y cos 2sin -=''的通解是21cos 2sin 41

C x C x x +++-。

5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。

6.微分方程()06='-''?y y y 是 2 阶微分方程。

7.x

y 1=

所满足的微分方程是02=+'y y 。 8.x y y 2='的通解为2Cx y =。 9.0=+x

dy y dx 的通解为C y x =+22。 10.()2511

2+=+-x x y dx dy ,其对应的齐次方程的通解为()21+=x C y 。 11.方程()012=+-'y x y x 的通解为22x Cxe y =。

12.3阶微分方程3x y ='''的通解为3216120

1C x C x C x y +++=

2。 三、选择题

1.微分方程()043='-'+''y y y x y xy 的阶数是( D )。 A .3 B .4 C .5 D . 2

2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( A )。

A .3

B .5

C .4

D . 2

3.下列函数中,哪个是微分方程02=-xdx dy 的解( B )。

A .x y 2=

B .2x y =

C .x y 2-=

D . x y -=

4.微分方程3

23y y ='的一个特解是( B )。

A .13+=x y

B .()32+=x y

C .()2C x y +=

D . ()31x C y += 5.函数x y cos =是下列哪个微分方程的解( C )。

A .0=+'y y

B .02=+'y y

C .0=+y y n

D . x y y cos =+''

6.x x e C e C y -+=21是方程0=-''y y 的( A ),其中1C ,2C 为任意常数。

A .通解

B .特解

C .是方程所有的解

D . 上述都不对

7.y y ='满足2|0==x y 的特解是( B )。

A .1+=x e y

B .x e y 2=

C .2

2x e y ?= D . x e y ?=3

8.微分方程x y y sin =+''的一个特解具有形式( C )。

A .x a y sin *=

B .x a y cos *?=

C .()x b x a x y cos sin *+=

D . x b x a y sin cos *+=

9.下列微分方程中,( A )是二阶常系数齐次线性微分方程。

A .02=-''y y

B .032=+'-''y y x y

C .045=-''x y

D . 012=+'-''y y

10.微分方程0=-'y y 满足初始条件()10=y 的特解为( A )。

A .x e

B .1-x e

C .1+x e

D . x e -2

11.在下列函数中,能够是微分方程0=+''y y 的解的函数是( C )。

A .1=y

B .x y =

C .x y sin =

D . x e y =

12.过点()3,1且切线斜率为x 2的曲线方程()x y y =应满足的关系是( C )。

A .x y 2='

B .x y 2=''

C .x y 2=',()31=y

D . x y 2='',()31=y

13.下列微分方程中,可分离变量的是( B )。

A .

e x y dx dy =+ B .()()y b a x k dx

dy --=(k ,a ,b 是常数) C .x y dx dy =-sin D . x e y xy y ?=+'2 14.方程02=-'y y 的通解是( C )。

A .x y sin =

B .x e y 24?=

C .x e C y 2?=

D .x e y =

15.微分方程0=+x

dy y dx 满足4|3==x y 的特解是( A )。 A .2522=+y x B .C y x =+43 C .C y x =+22 D .

722=-y x 16.微分方程01=?-y x

dx dy 的通解是=y ( B )。 A .x C B .Cx C .C x

+1 D . C x + 17.微分方程0=+'y y 的解为( B )。

A .x e

B .x e -

C .x x e e -+

D . x e -

18.下列函数中,为微分方程0=+ydy xdx 的通解是( B )。

A .C y x =+

B .

C y x =+22 C .0=+y Cx

D . 02=+y Cx

19.微分方程02=-dx ydy 的通解为( A )。

A .C x y =-2

B .

C x y =- C .C x y +=

D .C x y +-=

20.微分方程xdx ydy sin cos =的通解是( D )。

A .C y x =+cos sin

B .

C x y =-sin cos

C .C y x =-sin cos

D . C y x =+sin cos

21.x e y -=''的通解为=y ( C )。

A .x e --

B .x e -

C .21C x C e x ++-

D .21C x C e x ++--

22.按照微分方程通解定义,x y sin =''的通解是( A )。

A .21sin C x C x ++-

B .21sin

C C x ++-

C .21sin C x C x ++

D . 21sin C C x ++

四、解答题

1.验证函数x x e e C y 23--+?=(C 为任意常数)是方程

y e dx

dy x 32-=-的通解,并求出满足初始条件0|0==x y 的特解。 2.求微分方程()()???==-++=1|0110

22x y dy x y dx y x 的通解和特解。 解:C x

y =-+22

11,1222=+y x 3.求微分方程

x y x y dx dy tan +=的通解。 解:Cx x

y =sin 。 4.求微分方程?????=+='=2|1

x y x y y x y 的特解。 解:()2ln 222+=x x y 。

5.求微分方程x e x y y sin cos -=?+'的通解。

解:()C x e y x +=-sin

6.求微分方程

x x y dx dy sin =+的通解。 解:()C x x x x

y +-=cos sin 1 7.求微分方程()()?????==+--'+=1

|0121027x y x y y x 的特解。 解:()()22313113

2+??????++=x x y 8.求微分方程1

22+'=

''x x y y 满足初始条件0=x ,1=y ,3='y 的特解。 解:133++=x x y 9.求微分方程y y y '=''2满足初始条件0=x ,1=y ,2='y 的特解。 解:4arctan π+=x y 或??? ?

?+=4tan πx y 10.验证二元方程C y xy x =+-22所确定的函数为微分方程()y x y y x -='-22的解。

11.求微分方程()()0=++-++dy e e dx e e y y x x y x 的通解。

解:()()C e e y x =-+11

12.求

x x y dx

dy sec tan =?-,0|0==x y 的特解。 解:x x y cos = 13.验证x y ωcos 1=,x y ωsin 2=都是02=+''y y ω的解,并写出该方程的通解。

14.求微分方程x

x y y 2

2-='的通解。 解:x x Cx y ln 22-=

15.求微分方程01=++

'x e y x

y 满足初始条件()01=y 的特解。 解:ex x e y x

-= 16.求微分方程

()3112+=+-x y x dx dy 的通解。 解:()()??

????+++=C x x y 21122 17.求微分方程011=+-+dy x

y dx y x 满足条件()10=y 的特解。 解:()()5322233=-+-x y x y

18.求微分方程02=-'+''y y y 的通解。

解:x x e C e C y 221-+=

19.求微分方程052=+'+''y y y 的通解。

解:()x C x C e y x 2sin 2cos 21+=-

20.求微分方程044=+'+''y y y 的通解。

解:()x e x C C y 221-+=

21.试求x y =''的经过点()1,0M 且在此点与直线12

+=

x y 相切的积分曲线。 解:121613++=x x y (B)

一、是非题

1.可分离变量微分方程不都是全微分方程。( X )

2.若()x y 1,()x y 2都是()()x Q y x P y =+'的特解,且()x y 1与()x y 2线性无关,则通解可表为()()()()[]x y x y C x y x y 211-+=。( O )

3.函数x x e e y 21λλ+=是微分方程()02121=+'+-''y y y λλλλ的解。( O )

4.曲线在点()y x ,处的切线斜率等于该点横坐标的平方,则曲线所满足的微分方程是C x y +='2(C 是任意常数)。( X )

5.微分方程y x e y -='2,满足初始条件0|0==x y 的特解为12

12+=

x y e e 。( X )

二、填空题 1.x y cos 1=与x y sin 2=是方程0=+''y y 的两个解,则该方程的通解为x C x C y sin cos 21+=。

2.微分方程032=-'-''y y y 的通解为x x e C e C y 321+=-。

3.微分方程02=+'-''y y y 的通解为()x e x C C y 21+=。

4.微分方程x e y 2='''的通解是322128

1C x C x C e y x +++=。 5.微分方程'y y =''的通解是21C e C y x +=。

6.微分方程

xy dx

dy 2=的通解是2x e C y ?=。 三、选择题

1.微分方程044=+'-''y y y 的两个线性无关解是( C )。

A .x e 2与x e 22?

B .x e 2-与x e x 2-?

C .x e 2与x e x 2?

D . x e 2-与x e 24-?

2.下列方程中,不是全微分方程的为( C )。

A .()()046632222=+++dy y y x dx xy x

B .()02=-?+dy y e x dx e y y

C .()022=--dy x dx y x y

D . ()02=--xdy dx y x

3.下列函数中,哪个函数是微分方程()g t s -=''的解( C )。

A .gt s -=

B .2gt s -=

C .221gt s -=

D . 221gt s = 4.下列函数中,是微分方程0127=+'-''y y y 的解( C )。

A .3x y =

B .2x y =

C .x e y 3=

D . x e y 2=

5.方程()012='--y x y x 的通解是( D )。

A .21x C y -=

B .21x

C y -= C .Cx x y +-=321

D . 221

x Cxe y -= 6.微分方程ydy x xdx y ln ln ?=?满足1|1==x y 的特解是( A )。

A .y x 22ln ln =

B .1ln ln 22=+y x

C .0ln ln 22=+y x

D . 1ln ln 22+=y x

7.微分方程()()01122=+++dx y dy x 的通解是( A )。

A .C y x =+arctan arctan

B .

C y x =+tan tan

C .C y x =+ln ln

D . C y x =+cot cot

8.微分方程()x y -=''sin 的通解是( C )。

A .()x y -=sin

B .()x y --=sin

C .()21sin C x C x y ++--=

D . ()21sin C x C x y ++-=

9.方程3=+'y y x 的通解是( A )。

A .3+=x C

y B .C x y +=3 C .3--=x C y D . 3-=x C

y

四、解答题

1.求微分方程()x x x y y 3sin 23cos 6249--=+''的通解。

解:()()x x x x C x x C y 3sin 23cos 221-+++=

2.求微分方程x y y y sin 67=+'-''的通解。 解:()x x e C e C y x x

sin 5cos 7741

261+++=

3.求微分方程()()0223222=-+-+dy xy x dx y xy x 的通解。 解:x C

x xy y =--22

(C)

一、是非题

1.只要给出n 阶线性微分方程的n 个特解,就能写出其通解。X

2.已知二阶线性齐次方程()()0=?+'?+''y x Q y x P y 的一个非零解y ,即可求出它的通解。( O )

二、填空题

1.微分方程054=++''y y y 的通解是()x C x C e y x sin cos 212+=。

2.已知1=y ,x y =,2x y =某二阶非齐次线性微分方程的三个解,则该方程的通解为()x C x C e y x sin cos 212+=。

3.微分方程x e y y y =+'-''22的通解为()1sin cos 21++=x C x C e y x 。

三、选择题

1.微分方程()

112+=+'x x x y y 的通解为( )。 A .C x +arctan B .()C x x +arctan 1 C .C x x +arctan 1 D .x

C x +arctan 2.微分方程1=-'y y 的通解是( )。

A .x e C y ?=

B .1+?=x e

C y C .1-?=x e C y

D .()x e C y ?+=1 3.???==+'=0

|31x y y y x 的解是( )。

A .??? ?

?-=x y 113 B .()x y -=13 C .x y 11-= D . x y -=1 4.微分方程

x y x y dx dy tan +=的通解为( )。 A .Cx x y =sin B .Cx

x y 1sin = C .Cx y x =sin D . Cx y x 1sin = 5.已知微分方程()()25

1+=+'x y x p y 的一个特解为()27*

132+=x y ,则此微分方程的通解是( )。

A .()()2721321+++x x C

B .()()27211121+++x x

C C .()()272

11121+++x x C D . ()()2721321+++x x 6.微分方程1+='-''x e y y 的一个特解应具有形式(式中a ,b 为常数)( )。

A .b ae x +

B .b axe x +

C .bx ae x +

D . bx axe x +

四、解答题

1.设x e y =是微分方程()x y x p y x =+'的一个解,求此微分方程满足条件0|2ln ==x y 的特解。

解:代入x e y =到方程()x y x p y x =+'中,得()x xe x p x -=-

原方程为()x y x xe y x x =?-+'-

()x e x e C e y -?+=1,()11=?-+'y e y x

∵2ln =x ,0=y ∴2

1--=e C 。

???? ??-=--211x e x e e y 。

2.已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程。

解:x e y y -=-31,x x e e y y --=-2223均是齐次方程的解且线性无关。 ()

x x x e e C e C ---+2221是齐次方程的通解。当21=C ,12=C 时,齐次方程的特解为x e 2

x e - 、x e 2都是齐次方程的解且线性无关。

∴x x e C e C 221+-是齐次方程的通解。

由此特征方程之根为-1,2,故特征方程022=--r r 。

相应的齐次方程为02=-'-''y y y

故所求的二阶非齐方程为

()x f y y y =-'-''2

1y 是非齐次方程的特解代入上式得

()()x e x x f ?-=21

所以()x e x y y y 212-=-'-''为所求的微分方程。

3.已知()210=f ,试确定()x f ,使()[]

()0=++dy x f ydx x f e x 为全微分方程,并求此全微分方程的通解。

解:()()y x f e P x +=,()x f Q =,由y

P x Q ??=??得 ()()x f e x f x +=',即()()x e x f x f =-'

∴()[]

()C x e C e e e x f x dx x dx +=+?=??--- ∵()C f ==210,∴()??? ?

?+=21x e x f x , 得全微分方程:02121=??? ??++?????

???? ??++dy x e ydx x e e x x x 解得()y x e dy x e dx y x u x y x x ??? ?

?+=??? ??++=??21210,00。 故此全微分方程的通解为C y x e x =???

??+21。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

2.5常微分方程课后答案(第三版)王高雄

习题2.5 2.ydy x xdy ydx 2=- 。 解: 2x ,得: ydy x xdy ydx =-2 c y x y d +-=221 即c y x y =+2 2 1 4. xy x y dx dy -= 解:两边同除以x ,得 x y x y dx dy - =1 令u x y = 则dx du x u dx dy += 即 dx du x u dx dy +=u u -=1 得到 ()2ln 2 1 1y c u -=, 即2 ln 21?? ? ??-=y c y x 另外0=y 也是方程的解。 6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydx x d x y x d y y d x -=-2 得到c x y x d +-=??? ? ??2 21

即 c x y x =+2 2 1 另外0=y 也是方程的解。 8. 32 x y x y dx dy += 解:令 u x y = 则: 21u x u dx du x u dx dy +=+= 即2 1u x dx du x = 得到22x dx u du = 故c x u +-=-11 即 21 1x x c y += 另外0=y 也是方程的解。 10. 2 1?? ? ??+=dx dy dx dy x 解:令 p dx dy = 即p p x 2 1+= 而 p dx dy =故两边积分得到 c p p y +-=ln 2 12 因此原方程的解为p p x 21+=,c p p y +-=ln 212 。 12.x y xe dx dy e =?? ? ??+-1 解: y x xe dx dy +=+1

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

考研数学三(常微分方程与差分方程)-试卷4

考研数学三(常微分方程与差分方程)-试卷4 (总分:58.00,做题时间:90分钟) 一、选择题(总题数:3,分数:6.00) 1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数: 2.00) __________________________________________________________________________________________ 解析: 2.设函数y 1 (x),y 2 (x),y 3 (x)线性无关,而且都是非齐次线性方程(6.2)的解,C 1,C 2为任意常数,则该非齐次方程的通解是 (分数:2.00) A.C 1 y 1 +C 2 y 2 +y 3. B.C 1 y 1 +C 2 y 2 -(C 1 +C 2 )y 3. C.C 1 y 1 +C 2 y 2 -(1-C 1 -C 2 )y 3. D.C 1 y 1 +C 2 y 2 +(1-C 1 -C 2 )y 3.√ 解析:解析:对于选项(D)来说,其表达式可改写为 y 3 +C 1 (y 1 -y 3 )+C 2 (y 2 -y 3 ),而且y 3是非齐次方程(6.2)的一个特解,y 1 -y 3与y 2 -y 3是(6.4)的两个线性无关的解,由通解的结构可知它就是(6.2)的通解.故应选(D). 3.已知sin 2 x,cos 2 x是方程y""+P(x)y"+Q(x)y=0的解,C 1,C 2为任意常数,则该方程的通解不是(分数:2.00) A.C 1 sin 2 x+C 2 cos 2 x. B.C 1 +C 2 cos2x. C.C 1 sin 2 2x+C 2 tan 2 x.√ D.C 1 +C 2 cos 2 x. 解析:解析:容易验证sin 2 x与cos 2 x是线性无关的两个函数,从而依题设sin 2 x,cos 2 x为该方程的两个线性无关的解,故C 1 sin 2 x+C 2 cos 2 x为方程的通解.而(B),(D)中的解析式均可由C 1 sin 2 x+C 2 cos 2 x恒等变换得到,因此,由排除法,仅C 1 sin 2 2x+C 2 tan 2 x不能构成该方程的通解.事实上,sin 2 2x,tan 2 x都未必是方程的解,故选(C). 二、填空题(总题数:1,分数:2.00) 4.当y>0时的通解是y= 1. (分数:2.00) 填空项1:__________________ (正确答案:正确答案:[*]) 解析:解析:将原方程改写成,然后令y=ux,则y"=u+xu".代入后将会发现该变形计算量较大.于 是可转换思维方式,将原方程改写成分离变量,然后积分得 三、解答题(总题数:25,分数:50.00) 5.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00) __________________________________________________________________________________________ 解析: 6.求微分方程x(y 2 -1)dx+y(x 2 -1)dy=0的通解. (分数:2.00) __________________________________________________________________________________________ 正确答案:(正确答案:用(x 2 -1)(y 2 -1)除方程的两端,则原方程化为由此可见这是一个变量可

常微分方程教案(王高雄)第二章

第二章目录 内容提要及其它 (1) 第二章一阶微分方程的初等解法(初等积分) (2) 第一节变量分离方程与变量变换 (2) 一、变量分离方程 (2) 二、可化为变量分离方程的类型 (6) 1、齐次方程 (6) 2、可化为变量分离方程 (7) 三、应用例题选讲 (10) 第二节线性方程与常数变易法 (11) 第三节恰当方程与积分因子 (15) 一、恰当方程 (15) 二、积分因子 (20) 第四节一阶隐含方程与参数表示 (23) 一、可以解出y(或x)的方程 (24) 二、不显含y(或x)的方程 (25) 本章小结及其它 (27)

内容提要及其它 授课题目 (章、节) 第二章:一阶微分方程的初等解法 教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74 主要参考书: [1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005, p1-70 [2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20 [3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004, p1-12 [4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169 [5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999, p15-158 [6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124 目的与要求: 掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法. 能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程. 教学内容与时间安排、教学方法、教学手段: 教学内容: 第1节变量分离方程与变量变换; 第2节线性方程与常数变易法; 第3节恰当方程与积分因子; 第4节一阶隐方程与参数表示:可以解出(或 y x)的方程、不显含(或 y x)的方程.时间安排:8学时 教学方法:讲解方法 教学手段:传统教学方法与多媒体教学相结合。 教学重点分析: 熟悉各种类型方程的初等解法,并且能正确而又敏捷地判断方程的类型,从而用初等方法求解。 教学难点分析: 本章的教学难点是判断微分方程的类型,以及方程的转化(即把能转化为用初等方法求解的方程)。

(整理)常微分方程试题及参考答案

常微分方程试题 一、填空题(每小题3分,共39分) 1.常微分方程中的自变量个数是________. 2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________. 3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变 量分离方程. 4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式 为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________. 5.方程=(x+1)3的通解为________. 6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满 足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解. 7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________. 8.方程+a1(t) +…+a n-1(t) +a n(t)x=0 中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________. 9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________. 10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组 x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式. 11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之 等价的一阶方程组________. 12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基 解矩阵exp A t=________. 13.方程组 的奇点类型是________. 二、计算题(共45分) 1.(6分)解方程 = . 2.(6分)解方程 x″(t)+ =0. 3.(6分)解方程 (y-1-xy)dx+xdy=0. 4.(6分)解方程

常微分方程习题及答案.[1]

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2 ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 2 2 1xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。

7.x y 1 =所满足的微分方程是 。 8.x y y 2='的通解为 。 9. 0=+ x dy y dx 的通解为 。 10. ()25 11 2+=+- x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程32 3y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .22x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程dx dy =2x 6.什么叫积分一个微分方程 7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程 dx dy =2 22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27

微积分(B)常微分方程与差分方程 练习题

For personal use only in study and research; not for commercial use 2013-2014(2) 大学数学(B) 练习题 第六章 For personal use only in study and research; not for commercial use 一、选择题 1. 微分方程xy y 2='的通解为 ( ) A. C e y x +=2 ; B. 2 x Ce y =; For personal use only in study and research; not for commercial use C. 2 C x y e =; D. x Ce y =. 2. 函数221x c y c e +=是微分方程20y y y '''--=的 ( ) A. 通解; B. 特解; C. 不是解; D. 是解, 但既不是通解, 也不是特解. 3. 设线性无关的函数321,,y y y 都是二阶非齐次线性微分方程)()()(x f y x q y x p y =+'+''的解, 21,C C 是任意常数,则该方程的通解是 ( ) A. 32211y y C y C ++; B. 3212211)(y C C y C y C +-+; C. 3212211)1(y C C y C y C ---+; D. 3212211)1(y C C y C y C --++. 4. 微分方程22y x y y x += +'是 ( ) A. 可分离变量的微分方程; B. 齐次微分方程; C. 一阶线性齐次微分方程; D. 一阶线性非齐次微分方程. 二、填空题 1. 微分方程y y y x ln ='的通解是 . 2. 方程x y y sin 2='的奇解为_______________.

常微分方程应用题和答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有 ()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f =,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01x x x ?? 。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

常微分方程和差分方程解法归纳

常微分方程解法归纳 1. 一阶微分方程部分 ① 可分离变量方程(分离变量法) 如果一阶微分方程),(y x f dx dy =中的二元函数),(y x f 可表示为) ()(),(y h x g y x f =的形式,我们称)()(y h x g dx dy =为可分离变量的方程。 对于这类方程的求解我们首先将其分离变量为 dx x g y h dy )() (=的形式,再对此式两边积分得到 C dx x g y h dy +=??)()(从而解出)()(y h x g dx dy =的解,其中C 为任意常数。 具体例子可参考书本P10—P11的例题。 ②一阶线性齐次、非齐次方程(常数变易法) 如果一阶微分方程),(y x f dx dy =中的二元函数),(y x f 可表示为 y x P x Q y x f )()(),(-=的形式,我们称由此形成的微分方程)()(x Q y x P dx dy =+为一阶线 性微分方程,特别地,当0)(≡x Q 时我们称其为一阶线性齐次微分方程,否则为一阶线性非齐次微分方程。 对于这类方程的解法,我们首先考虑一阶线性齐次微分方程 0)(=+y x P dx dy ,这是可分离变量的方程,两边积分即可得到?=-dx x P Ce y )(,其中C 为任意常数。这也是一阶线性 非齐次微分方程的特殊情况,两者的解存在着对应关系,设)(x C 来替换C ,于是一阶线性 非齐次微分方程存在着形如?=-dx x P e x C y )()(的解。将其代入)()(x Q y x P dx dy =+我们就可 得到)()()()()()()()()(x Q e x C x P e x C x P e x C dx x P dx x P dx x P =?+?-?'---这其实也就是 ? ='dx x P e x Q x C )()()(,再对其两边积分得C dx e x Q x C dx x P +? =? )()()(,于是将其回代入 ? =-dx x P e x C y )()(即得一阶线性微分方程)()(x Q y x P dx dy =+的通解? ? ? ??+??=?-C dx e x Q e y dx x P dx x P )()()(。 具体例子可参照书本P16—P17的例题。

常微分方程课后答案(第三版)王高雄

习题2.2 求下列方程的解。 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -? -dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy +1212--y x x =0 解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 1 2(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 234xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程 21d d y x y -=过点)1,2 (π 共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 x x y x y +-=d d 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 y x y =d d 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 13、二阶线性齐次微分方程的两个解12(),()y x y x ??==成为其基本解组的充要条件是 线性无关 。

常微分方程王高雄第三版答案

习题2.2 求下列方程的解 1. dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 21 e x -(x x cos sin +)+c] =c e x -2 1 (x x cos sin +)是原方程的解。 2. dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ? -dt 3 (?e t 2 e -?-dt 3c dt +) =e t 3- (5 1 e t 5+c) =c e t 3-+5 1 e t 2 是原方程的解。 3. dt ds =-s t cos + 21t 2sin 解:s=e ? -tdt cos (t 2sin 2 1 ?e dt dt ? 3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为: dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy + 1212 --y x x =0 解:原方程可化为: dx dy =-1212 +-y x x ? =-dx x x e y 2 1 2(c dx e dx x x +? -2 21) ) 2 1(ln 2 + =x e )(1ln 2 ?+- -c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 2 3 4xy x x += 解: dx dy 2 3 4 xy x x += =2 3y x + x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u += 2 u x 2 1u dx du = dx du u =2 c x u +=3 31 c x x u +=-33 (*) 将 x y u =带入 (*)中 得:3 4 3 3cx x y =-是原方程的解.

常微分方程练习题及答案(复习题)

常微分方程练习题及答案(复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程期末考试练习题及答案.

一,常微分方程的基本概念 常微分方程: 含一个白变量x,未知数y及若干阶导数的方程式。一般形式为:F (x, y, y …y(n)) =0 (n 丰0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。 如:f(x)⑶ +3f(x)+x=f(x) 为 3 阶方程。 2. 若f (x)使常微分方程两端恒等,则f (x)称为常微分方程的解。 3. 含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微 分方程的通解。如常系数三阶微分方程F (t , x(3)) =0的通解的形式为:x (t) =cx (t) +C2x (t) +C3x (t )。 4. 满足初值条件的解称为它的特解(特解不唯一,亦可能不存在) 。 5. 常微分方程之线性及非线性:对于F (x, y, y…y(n)) =0而言,如果方程之左端是y, y'…y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与白变量无关)。如:xy⑵-5y +3xy=sinx 为2阶线性微分方程;y⑵+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。

二.可分离变量的方程

1. 定义:形如dy=f (x) 4 (y)的方程,称为分离变量方程。这里f dx (x), § (x)分别是x, y的连续函数。 2. 解法:分离变量法』芸七=J f (x)dx+c. (*) 说明:a由于(*)是建立在§ (y)乒0的基础上,故而可能漏解。 需视情况补上§ (y) =0的特解。(有时候特解也可以和通解统一于 一式中) b.不需考虑因白变量引起的分母为零的情况。 例 1. ydx (x2-4x)dy =0 解:由题意分离变量得:2dx dy=0 x -4 y 即:1(工-1)dx 业=。 4 x —4 x y 积分之,得:1(ln x—4 —In x)+ln y =c 故原方程通解为:(x-4)y4=cx (c为任意常数),特解y=0 包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x)满足f(x)T f(:)dt+|n2,则f (x)是? 解:对给定的积分方程两边关于x求导,得: f' (x) = 2 f (x) (变上限求积分求导) 分离变量,解之得:f(x)=Ce2x 由原方程知:f (0) =In2 ,代入上解析式得: C=ln2 ,

相关文档
最新文档