液体点滴速度监控装置点滴速度控制及检测

液体点滴速度监控装置点滴速度控制及检测
液体点滴速度监控装置点滴速度控制及检测

液体点滴速度监控装置点滴速度控制及检测

前言

目前医院使用的点滴输液装置是将液体容器挂在一定的高度上,利用势能差将液体输入到病人的体内(图1),通过软管口径的压紧和放松来控制点滴速度。有经验的医护人员可以根据药剂的特性对点滴速进行控制,但是一般的病人却无法做到,控制不好还有一定的危险性。在一些大医院一个护士常常需要负责十几个、甚至几十个床位的液体点滴,很容易出现混乱局面,导致工作效率降低。为了提高医院本身的管理水平和工作效率,减轻医护人员的劳动强度,对于可以进行自助式护理的病人来说,需要一种可以由病人自己操作,自动定时、定量向病人进行输液的装置;而对于医护人员来说,需要一种可以对所有的病人进行统一监控的智能监控装置。本设计就是针对以上问题而做的智能型液体点滴速度监控装置。设计要求为能有以下几种功能:

(1)检测输液点滴速度

(2)检测输液点滴高度

(3)控制点滴速度

(4)显示点滴速度

(5)能设置点滴速度

45

图1 45

第一章硬件设计说明

1.1 系统简介

本设计分为主机控制,从机测量,主从通信三个框架。由从机测量并控制点滴速度,得到的数据送到单片机进行处理,再通过RS485通信将数据反馈给主机进行显示处理,主机也可以通过RS485通信对从机进行控制。本人负责点滴速度检测及控制部分。系统框图(图2)如下:

图2 系统框图

45

1.2方案设计过程及实现方法

1.2.1 点滴速度检测电路设计

点滴速检测是整个系统的核心,检测精度是衡量系统精确性的一个最重要指标。这样就不会因为点滴速度异常而使患者面临危险。出于安全性考虑,在检测点滴速度时不能使原胶管破损,否则就会对输液造成严重感染而影响患者,因此在检测点滴速度时要用非接触的方式。

方案一:利用发射型光电传感器,传感器工作时,当物体经过射程之内,就会对红外光进行反射,传感器接受到这个感反射信号后动作,以检测物体稳定动作的最大距离。但是光电传感器对各种介质的反射程度不同,对水的动作距离近,对玻璃的动作距离远。而且光电传感器体积较大,需要距离滴斗一定距离才能分辨不同介质,无法安装在合适的位置上,所以最终放弃这种方案。

方案二:利用光束采集方法,利用液滴下落时接收到的光强的变化反映液滴个数。根据光学折射原理,光线在穿透密度不同的介质时,将发生散射,使光强发生变化。在检测过程中将滴管放置在检测用的发光器件的中间即可反映这种变化。光束采集方案有几种器件可以使用:

①使用发光二极管和光敏三极管组合。

②使用红外发光二极管和接收管组合。

③利用激光。

通过对比,在这次设计中由于是近距离探测,故采用方案②来完成数据采集。由于红外光波长比可见光长,因此受可见光的影响较小。同时红外系统还具有以下优点:尺寸小、质量轻,能有效的抗可见光波段的伪装,对辅助装置要求最少,对人眼无伤害。红外传感器,即红外发射跟接收二极管。在点滴滴斗两边分别装上红外发射跟接收二极管,没有液滴落下时,接收管正常接收,每当液滴落下的时候,发射出的红外光被散射或折射,接受管接收到的光强变弱。利用这样的信号变化,可以测出变化次数,也就是液滴个数,经过数据处理得到点滴速度。红外光的方向性好,集束能力强,所以信号变化比较明显,所以最终使用此方案。当然红外光也有一定的缺点,如大气、潮湿的天气、雾和云对它

45

有衰减作用,所以只适用于室内通信。在现代生活中,人们为了更方便的使用红外光这种有效的媒质,利用红外光做出了很多器件,发射式光电检测器就是其中的一种器件,它具有体积小、灵敏度高、线性好等特点,外围电路简单,安装起来方便,电源要求不高。用它作为近距离传感器是最理想的,电路设计简单、性能稳定可靠。

考虑到用单片机进行数据处理,要把输入信号转化成数字(0.1)状态,所以要用到比较器。又考虑到采集到的模拟信号有可能比较弱,变化不明显,(在输入端信号变化小)有可能经过比较器也产生不了明显的变化效果,所以要将它进行放大后再输入比较器内,据此可以用LM324芯片,它同时有放大和比较两种功能。

1.2.2 电机控制电路设计

为了拉动输液器,以改变它的高度改变点滴速度,使用直流电机,两端加正电压为正转,加负电压为反转。因此考虑用继电器来当控制开关,控制电机两端的电压。通过查阅资料,确定继电器的驱动跟保护电路。控制信号由单片机产生,用光耦合器隔离,通过控制单片机的输出高低电平以控制继电器的驱动电路。

1.3 点滴检测电路设计及其分析

图3 点滴检测电路

45

第一部分为红外发光接收二极管的驱动跟接收电路;第二部分为把变化信号进行放大;第三部分为把放大后的信号与设定的电压作比较,比较后的结果输入到单片机P3.2端进行数据处理。

红外发射管一直处于发射状态,在运放前加了电容隔直流,减少干扰。当液滴没有落下的时候,红外接收管输出低电平,经过运放放大比较输出低电平;当液滴落下时,红外发射管发出的光被液滴散射削弱,使接收管的电平变高,经过运放放大比较后输出一个高电平。所以当单片机接收到一个高电平时表明一滴液滴落下。具体过程如下:当没有液滴下落时,接收二极管正常接收,处于导通状态,输出为低电平,通过运放放大后仍为低电平,由LM324的第6端输入,与5端的2.5V比较,因为低于2.5V,所以输出为低电平,通过P3.2送入单片机进行数据处理,因此当没有液滴下落的时候,单片机接收的一直是低电平;当有液滴下落时,发射二极管发射的红外光被液滴散射,导致接收二极管无法导通而输出高电平,经过运放放大10倍后由LM324的6端输入,与5端的2.5V比较,因为高于2.5V,所以输出为高电平,通过P3.2送入单片机进行数据处理,因此当有液滴下落的时候,单片机接收的高电平,接收的高电平个数就是液滴下落的个数。

1.4 直流电机控制电路设计及分析

直流电机控制电路如图4。第一部分为光耦合器的驱动电路;第二部分为继电器的驱动及保护电路,在继电器两端并联一个二极管,触点断开时,二极管导通,吸收电感负载中储存的能量;触点闭合时,二极管截止,起保护感性触点作用,避免继电器被烧坏;第三部分为电机两端电压控制电路。

当P1.0输出高电平,P1.1输出低电平时,只有下面的光耦合器接通,带动三极管驱动继电器电路,继电器使开关闭合,电机两端接负电压,电机反转,使储液瓶的势差减小而减慢点滴的下落速度;当P1.0输出低电平,P1.1输出高电平时,只有上面的光耦合器接通,带动三极管驱动继电器电路,继电器使开关闭合,电机两端接正电压,电机正转,使储液瓶的势差增达到而加快点滴的下落速度。当两个端口都输出高电

45

平时,上下的光耦合器都不接通,所以开关都断开,电机不工作;两个端口都输出低电平时,上下的光耦合器都接通,开关也都接通使电路短路,这种情况不允许发生,所以在对其进行编程的时候应该注意延时,要闭合某个开关时要确定一个开关完全打开,以避免两个开关同时接通而造成电路短路。

图4 直流电机控制电路

45

第二章主要器件介绍

2.1 红外发射接收二极管

半导体发光二极管是一种把电能直接转换成光能的固体发光器件,也称注入型电致发光器件。它在日常生活中应用广泛,具有以下几个特点:

(1)寿命长,一般都在几万小时以上;

(2)体积小,功耗低,响应速度快;

(3)可靠性高,发光光谱单色性好,波段范围宽;

发光二极管的电流-电压特性曲线如图5:

图5 发光二极管的电流-电压特性曲线

在具体应用时,发光二极管的直流驱动电路如图6(a)所示,交流电源驱动电路如图6(b)所示。

45

45

图6 发光二极管驱动电路

由于发光二极管的正向伏安特性曲线很陡,所以在使用时必须串联限流电阻,以控制通过管子的电流,防止烧坏管子。在直流电路中,限流电阻R 的阻值由下式估算:

F F I U E R /)(-= ①

式中 R ——限流电阻,k Ω

F U ——发光二极管正向压降,V

F I ——发光二极管一般工作电流,mA

在交流电路中,其限流电阻R 可由下式估算:

F F RMS I U E R 2/)(-= ②

式中 R ——限流电阻,k Ω

RMS E ——交流电源电压的有效值,V

本设计所用的二极管为红外发射接收二极管。

2.2 LM324

运算放大器是用反馈控制其特性的直接耦合的高增益放大器。它具有增益高,共模抑制比高,输入阻抗高,输出阻抗低,电源电压变动适应范围宽, 频率范围宽,以及稳定性和可靠性高等特点。因此,运算放大器几乎可以用于线性和非线性电子学的每一个领域,也可以用于某些数字电路中。

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图7所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立,LM324内有4个高性能运算放大器,并有相位补偿

电路,耗电低,可用正电源或正负双电源工作,电源电压范围宽,正电源为3.0~30.0V,正负电源为+1.5~15V,输入电压范围大,并可以低到地电位,而输出电压范围为0~Vcc。内电路包括各种转移放大,直流放大,可代换许多不同厂家或公司生产的同类产品。主要电参数见表1。

图7LM324外型图

表1 主要参数

每一组运算放大器可用图8(a)所示符号来表示,它有5个引出端,其中“+”“-”分别为2个信号输入端的同相输入端和反相输入端,“V+”,“V-”为正,负电源端,“Vo”为输出端。LM324的引脚排列见图8(b)。由于LM324四运放电路具有电源电压范围宽,静态功耗小,价格低廉等优点,因此被广泛应用于家用电器,工业仪器,电子玩具,报警装置,自动控制等电路中。可以利用它构成正,负反馈放大电路,音调控制电路,信号分配放大电路,信号运算电路,测量放大电路,有源滤波电路,电压比较电路,触发器等。

45

45

(a )符号 (b )引脚图

图8 LM324芯片

(1)反相运算放大电路

反相运算放大器,简称反相放大器,如图9所示。输入信号加在反相输入端1R 和f R 组成负反馈网络。

图9 反相运算放大器

通常,为了保持差分放大电路的对称性,在同相端接有电阻R 使输入电路两端的电阻尽量相等,p R 的值由下式给出:

f f p R R R R R +=

11 ③

(2)比较器

图10 比较器

当运放去掉反馈电阻时,或者说当运放处于开环状态,理论上认为运放的开环放大倍数为无穷大(实际上是很大,如LM324运放开环放大倍数为100Db,即10万倍)。此时运算放大器便形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-或地)。当同相输入端电压高于反相输入端电压时,运放输出高电平,当同相输入端电压低于反相输入端电压时,运放输出低电平。图8中使用两个运放组成一个电压上下限比较器,电阻R1、R1’组成分压电路,为运放A1设定比较电平U1,电阻R2,R2’为运放A2设立比较电平U2。输入电压Ui同时加到A1的同相输入端和A2的反相输入端之间,当Ui>U1时,运放输出高电平;当UiU2,则当输入电压Ui越出[U2,U1]区间范围时,LED点亮,这便是一个电压双限指示器。若选择U2>U1,则当输入电压Ui在[U1,U2]区间范围时,LED点亮,这是一个“窗口”电压指示器。此电路与各类传感器配合使用,稍加变通,便可用于各种物理量的双限检测,短路,断路报警等。

45

2.3 光电耦合器

光电耦合器是一种把发光器件(一般为红外发光二极管)和光敏器件封装在同一个壳体内的光电转换器件(电信号→光信号→电信号),其基本结构如图11所示。通常将发光器件一则称为输入端,光敏接收器件一则称为输出端。输入端有一个电信号时,发光器件发出的光信号通过透明光导介质传输到光敏器件后,转换成电信号输出,即在信息的传输过程中,用光作为媒介把输入端和输出端的电信号耦合在一起。在它的线性工作范围内,这种耦合具有线性变化关系。由于输入端和输出端之间是用光来耦合,因而输出信号对输入端无反馈,很好地实现了电性能上的隔离。它被广泛地应用于微机和受控电路的接口、高频功率电源的反馈控制,也适用于不同电位、不同阻抗电路之间的传输和隔离,并用于抑制线路间和接地回路中的噪声,尤其作为无触点开关使用比传统的继电器更为安全、可靠。

图11 光电耦合器基本结构

光电耦合器的主要结构是把发光器件和光接收器件组装在一个密闭的管壳内, 然后利用发光器件的管脚作输入端, 而把光接收器的管脚作为输出端。当在输入端加电信号时,发光器件发光。这样,光接收器件由于光敏效应而在光照后产生光电流并由输出端输出。从而实现了以“光”为媒介的电信号传输, 而器件的输入和输出两端在电气上是绝缘的。这

45

样就构成了一种中间通过光传输信号的新型半导体光电子器件。光电耦合器的封装形式一般有管形、双列直插式和光导纤维连接三种。

光电耦合的主要特点如下:

●输入和输出端之间绝缘, 其绝缘电阻一般都大于1010Ω , 耐压一般

可超过1kV, 有的甚至可以达到10kV以上。

●由于“光”传输的单向性, 所以信号从光源单向传输到光接收器时不

会出现反馈现象, 其输出信号也不会影响输入端。

●由于发光器件(砷化镓红外二极管) 是阻抗电流驱动性器件, 而噪音

是一种高内阻微电流的电压信号。因此光电耦合器件的共模抑制比很大,所以光电耦合器件可以很好地抑制干扰并消除噪音。

●容易和逻辑电路配合。

●响应速度快。光电耦合器件的时间常数通常在微秒甚至毫微秒级。

●无触点、寿命长、体积小、耐冲击。

光电耦合器的几种驱动电路

(a)(b)

45

45 图12 光电耦合器的驱动电路

其中图12(a )发光二极管串联的电阻Rs 用于调整流过发光二极管的电流F I 由于电源电压必须超过发光二极管正向压降(约为1.2V ,用F U 表示)的二倍,所以F U >2.4V 。如果需要恒定驱动电流F I ,可以采用图12(b )。图12(a )驱动电路的限流电阻可以由下式计算:

F F CC

S I U U R -= ④ 图12(b )所示电路是用场效应管驱动,其电阻F R 可以由下面联立方程求得。

F D GS R I U = ⑤

2)1(P

GS DSS D U U I I -= ⑥ 式中GS U 为栅极和源极之间的电压,DSS I 为饱和漏极电流,P U 为夹断电压,漏极电流D I ≈F

I 。 以上几种光电耦合器基本驱动电路结构简单,设计方便,只要选择F I 不要超过极限电流就可以了。

光电耦合器的几种输出电路

a )

(b)

图13 光电耦合器输出电路

上面两种是光电耦合器的基本输出电路。图13(a)和图13(b)的不同在于前者在入射光输入时输出呈“0”态,即低电平;而后者与之相反,在入射光输入时输出呈“1”态,即高电平。这两种都是光电耦合器调制光受光输出电路。其中图13(a)是最基本的电路,电阻R作为光敏三极管的负载,通过C、 R耦合到后一级放大器将光电信号放大后再输出。这个电路的缺点是:当稳定光中串入强的外部干扰时,光敏三极管就饱和了,这样稳定光加调制光相对于总入射光就比较弱了。图13(b)是以电感作为光敏三极管的负载的,这样做仅对交流信号具有高阻抗,消除了外部稳态干扰光的影响。发射极电阻R是为了在遇到非常强的稳定光时,防止光敏三极管流过强的电流。

光电耦合器的应用

光电耦合器在电子线路中有非常广泛的应用,特别是在电路隔离,噪声抑制等方面显示了它突出的优点。

(1)在逻辑电路上的应用:用光电耦合器可以构成各种逻辑电路。由于光电耦合器的抗干扰性能和隔离性能比晶体管好,因此,由它

构成的逻辑电路更可靠。

(2)作为固体开关应用:在开关电路中,往往要求控制电路和开关之间要有很好的电隔离,这对于一般的电子开关来说是很难作到的,但用光电耦合器就很容易实现。下图(图14)就是简单的固体开

关电路。

45

45

图14 常开电路

图14是一个常开的开关,用晶体管的输入信号来控制输出。当晶体管处于截止状态时,开关不通。当晶体管输入正脉冲,处于导通状态时,开关接通,有光电流输出户。限流电阻F R 按下式选择:

F CES

F CC F I U U U R )(+-= ⑦

图15 常闭开关

图15是常闭开关。当晶体管处于截止状态时,发光二极管有足够的电流通过,使a 、b 两端处于导通状态,相当于开关接通。当晶体管输入正脉冲而处于饱和导通状态时,该管c 、e 间的压降多在0.3V 以下,远小

于发光二极管的正向导通电压(1.2~2V),故发光二极管无电流通过,使ab两端电阻极大,相当于开关断开。该电路的限流电阻

F

R按下式计算:

F CES

F

CC

F I U

U

U

R )

(+

-

=⑧

光电耦合器的光敏三极管的最大输出电流一般是30mA。

2.4 继电器

继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。

固态继电器(SSR)是一种由固态电子器件所组成的新型无触点开关期间。它是用半导体器件代替传统电接点作为切换装置的具有继电器特性的无触点开关器件,单相SSR为四端有源器件,其中两个输入控制端,两个输出端,输入输出间为光隔离,输入端加上直流或脉冲信号到一定电流值后,输出端就能从断态转变成通态。它利用分立元件,集成器件及微电子技术实现控制回路(输入)与负载回路(输出)之间的电隔离和消耗耦合,达到无触点,无火花接通和断开电路的目的,具有工作可靠,驱动功率小,开关速度快,使用寿命长,无噪音和抗干扰的特点。且能与CMOS,TTL,HTL等叔祖电路相兼容。因此,其应用领域十分广泛,诸如微机的I/O接口,防爆场合和自动控制领域等。

固态继电器的分类

固态继电器按负载电源类型分为交流型(AC-SSR)和直流型(DC-SSR)两种。AC-SSR以双向晶体管(或两只反并联的单向晶闸管)做开关元件,DC-SSR以功率晶体管做开关元件,分别用以接通和断开交流和直流负载电源。交流固态继电器按控制触发的形式分为过零触发型和随机导通型两种。当控制信号加入时,前者只能在交流电源电压过零点附近才导通,后者则在交流电压的任意相位上导通和关闭。常开式固态继电器在其输入段加入控制信号时,输出端接通,而常闭式则相反。以安装形式可分为装配式,插座式和焊接式三种。装配式固态继电器可

45

以安装在配电板上,焊接式固态继电器可以直接焊接在印刷电路板上。

固态继电器的构成及工作原理

固态继电器一般由三部分组成:输入部分,控制部分和输出部分。输入部分由输入组和光耦合器的发光二极管组成;输出部分由三端双向可控硅元件和浪涌吸收缓冲器组成;控制部分在输入输出两部分之间,由光耦合器的受光部分和过零电路组成,受光部分可以是光三端可控硅,光晶体管等。输入部分感受输入信号,并转换为光信号送给控制部分。控制部分感受输入级的光信号并转换为电信号控制输出部分的导通或切断。输出部分驱动负载并吸收高压电源线上可能出现浪涌电压,以保证固态继电器可以可靠工作。

以下图(图16)过零控制方式的固态继电器,以它为例来说明其工作原理。

图16 过零控制方式的固态继电器

(1)输入控制信号,相当于开关闭合,光耦合器的发光二极管流过电流并发光;

(2)作为受光器的光三端双向可控硅开关受光,同时由于过零电路的作用,在负载电源电压为零值附近时开通,使输出部分的三端双向可控硅元件电弧导通;

(3)由于是可控硅元件导通,使负载上有电流流过;

(4)由于是可控硅元件导通,所以即使撤消输入信号也不会使负载电流截止,只有在负载电流降到三端双向可控硅元件的保持电流以下时,才能关断。固态继电器的工作波形如图(图17):

45

液体自动混合装置的监控系统设计 (2)

基于组态软件的液体自动混合装置的监控系统设计 摘要 本次设计以力控组态软件实时检测锅炉压力与液位控制系统为背景,主要内容利用北京三维力控科技公司的全中文工控组态软件设计锅炉压力与液位监控系统,在上位机上显示每个控制系统的结果,并可以对比实时压力与液位曲线和专家报表。本文首先说明了自己对传感器等元器件的认识并对锅炉的控制系统做了简单的介绍,然后又对整个系统做了介绍。其中重点阐述了ForceControl6.1组态软件,以及各个元器件的作用,整个系统各个模块的功能与作用。同时对组态软件做了详细说明,介绍了如何绘制组态图和动画的连接,然后又对该系统做了仿真演练,用仿真来实现锅炉压力与液位的检测功能通过宇电仪表实现电压与压力的转换。经过多次实践和不断的改善从而完成了整个毕业设计。 关键词:锅炉压力检测,锅炉液位检测,组态软件,宇电808P 一、实际系统介绍 两种液体的流入和混合液体的流出分别由三个电磁阀控制,可用一个搅拌电机带动搅拌器工作,用三个液位传感器控制三个电磁阀。外加一个压力传感器检测炉内压力,超过设定值后自动报警以便提醒工作人员,确保设备和人身安全。通过连接宇电仪表实现压力的检测目的。 二、设计目标 初始状态:装置投入运行时,液体A、B阀门关闭,混合液流出阀门打开20S,将容器液体排空后关闭。 按下启动按钮,装置按以下动作工作: 1,液体A阀门打开,液体A流入容器; 2,液面到达L2时,传感器L2触点接通,关闭液体A阀门,同时打开B阀门; 3,当液面到达L1时,传感器L1触点接通,关闭液体B阀门,同时搅拌电机工作。 4,搅拌1分钟后停止,混合液体阀门打开,放出混合液体。 5,当液面降到L3时,传感器L3触点由接通变为断开,再经20S容器排空,关闭混合液体流出阀门,开始下一周期操作。 停止操作:按下停止按钮后,当前的混合操作处理完毕后,才停止操作,即停在初始状态上。在搅拌期间,通过压力传感器实时的反映炉内压力变化情况,连接宇电仪表,给系统压力当超过设定值之后及时报警确保安全问题。 三、所需硬件及简介 液位罐,搅拌器,搅拌电动机,电磁阀,液位传感器,管道,压力传感器,宇电808P 温度源,热电偶,压力表,气囊,电源等。YLXN-01型虚拟仪器技术试验箱。 附:宇电AI-708P/808P程序型仪表的介绍 1主要特点 输入采用数字校正系统,内置常用热电阻和热电偶非线性校准表格,测量精度 达0.2级。采用先进性模块化结构,提供丰富的输出规格。供电电源为24VDC 电源。 2部分端子连接及参数设定 1,2连两相插座,3连T/R+,4接T/R-,0-5V的信号由17,18端输入。

输液速度计算公式

输液速度和时间的计算公式 临床护理工作中,常常会有医嘱要求“液体在多长时间内输完”,这就涉及到每分钟滴数的计算。 我国临床常用的输液器滴系数有10、15、20滴/ml三种型号,根据输液器滴系数可进行如下公式推理: 每小时输入的毫升数(ml/h)=(滴/min)×60 min/h)/滴系数(滴/ml)。 因此,当滴系数为10、15、20滴/ml时,分别代入上述公式即可得出:(1)滴系数为10滴/ml,则:每小时输入的毫升数=(滴数/min)×6。 (2)滴系数为15滴/ml,则:每小时输入的毫升数=(滴数/min)×4。 (3)滴系数为20滴/ml,则:每小时输入的毫升数=(滴数/min)×3。 每个输液器其滴系数是固定不变的,故在已知每小时输入的毫升数和每分钟滴数两者之间的任意一个变量时,利用上述3个公式,即可得出另一个变量。 举例: 1. 已知输入液体的总量和预计输完所用的时间,求每分钟滴数。 每分钟滴数=液体的总量(ml)×滴系数(滴/毫升)/输液所用时间(min) 2.已知输入液体的总量和每分钟滴数,求输完液体所用的时间。 输液所用时间(h)=液体的总量(ml)×滴系数(滴/毫升)/[每分钟滴数(滴/分)×60(min)]

或者 输液所用时间(min)=液体的总量(ml)×滴系数(滴/毫升)/每分钟滴数(滴/分) 3.已知每分钟滴数,计算每小时输入量。 每小时输入量(ml)=每分钟滴数×60(min)/每毫升相当滴数(15滴)。 例:每分钟滴数为54滴,计算每小时输入量。解:每小时输入量(ml)=54×60/15=216(ml)。 4.已知输入总量与计划使用时间,计算每分钟滴数。 每分钟滴数=输液总量×每毫升相当滴数(15滴)/输液时间。 例:日输入总量2000ml,需10h输完,求每分钟滴数。 解:每分钟滴数=2000×15/(10×60)=30000/600=50(滴)。

液体点滴速度监控装置资料

液体点滴速度监控装置 [摘要]该装置实时地监测液体点滴速度,通过单片机对信息的分析和处理,由主机发出相应的指令,调整系统的工作平稳,构成了一个高性能的闭环控制系统。实现了对点滴输液速度的直观监测,同时对一些异常情况的出现可实施报警。利用该装置还能通过主控平台对各个分立系统信息实施自动化、智能化的集中处理。能方便、简易的操作和使用,对医疗具有很强的实用性。 [关键词]实时监控红外传感闭环控制步进电机 一、方案设计与论证 根据题目要求和原输液装置的特点,提出以下三种方案: 1、方案一 直接在滴斗处用两电极棒的方法。 图1 此方案的传感器采用简单的液体导电原理,在滴斗处安装两个电极。当水滴落下时,电极导通,从而使待测量的变化转化为高低电平电信号。采用伺服电机改变系统装置中液瓶与受液瓶的高度,达到改变点滴速度,从而进行控制。 2、方案二 把通过电机改变系统装置高度的方法,改为控制步进电机对输液管进行压缩或缓松,从而实现对点滴速度的改变。采用交流电动机控制H2的高度。即采用红外传感器测量滴斗滴液,送至单片机接口计数,通过数字模拟转换,将其转换为4—20MA标准电流值,同时通过键盘输入给定每分钟的滴数,再将此滴数将其转换为4—20MA标准电流值,将此两个信息同时进入数字PID调节器。通过偏差计算再输出一组4—20MA标准电流值,通过变频调速器控制电动机调节H2的高度,来控制滴斗滴数。此方案的优点是,完全按目前电气工程标准化运作,可以在很短时间完成。 2、方案三 根据点滴装置的特点,通过对装置的某一位置进行监测和控制,达到对整个系统液体

点滴速度的监控。(如图1)。 通过控制输液软管夹头的松紧来控制点滴速度,采用红外传感器测量滴斗滴数,送至单片机接口计数并显示,首先标定两个脉冲(两滴间)间的时间间隔(以10MS为时基单位)。然后计算给定滴斗滴数(通过键盘)的时间间隔(以10MS为时基单位)。将此两个时间间隔进行比较,以决定步进电机运行的方向。该步进电机通过丝杠控制输液软管夹头的松紧,来控制滴斗滴数 4、方案比较 方案一的特点是:实现比较简单容易,原理上也是可行的,但由于本装置用于医疗,电弧的产生,可能对不同的药物有影响,同时传感器(电极)不能重复使用,以防止传染。 方案二通过改用红外传感器,弥补了方案一的不足。但是还存在问题,利用改变高度的方法虽然容易实现,但可控性不好。由此,我们采用了第三种方案,通过挤压输液管的办法来实现对点滴速度的控制。 二、系统原理框图如图2所示。 图2 本系统最主要的是充分利用单片机编程的灵活性和其强大的功能,使一些小的系统实现自动化和智能化成为了现实。其中的器件都比较简单,尽大可能的利用各集成芯片的功能,如系统的键盘和显示原理电路。通过红外传感器对水滴滴落的动态信息的感应,单片机对数据的采集分析和处理,同时使用小功率的步进电机进行机械调整,使装置能机智、即时的响应操作者的使用。 三、主要电路原理与设计 1、AT89C51单片机基本系统控制与数值信号处理的核心采用AT89C51单片机,采用 串口工作方式。电路如图3。

液体点滴速度监控装置的设计

液体点滴速度监控装置 [摘要 ] 该装置实时地监测液体点滴速度,通过单片机对信息地分析和处理,由主机发出相应地指令, 调整 系统地工作平稳,构成了一个高性能地闭环控制系统 .实现了对点滴输液速度地直观监测,同时对 一些异常情况地出现可实施报警 .利用该装置还能通过主控平台对各个分立系统信息实施自动化、智能 化地集中处理 .能方便、简易地操作和使用,对医疗具有很强地实用性 . [ 关键词 ] 实时监控 红外传感 闭环控制 步进电机 一、 方案设计与论证 根据题目要求和原输液装置地特点,提出以下三种方案: 1、方案一 直接在滴斗处用两电极棒地方法 . 与受液瓶地高度,达到改变点滴速度,从而进行控制 2、方案二 把通过电机改变系统装置高度地方法, 改为控制步进电机对输液管进行压缩或缓松, 从而实现对点 滴速度地改变 .采用交流电动机控制 H2 地高度 .即采用红外传感器测量滴斗滴液, 送至单片机接口计数, 通过数字模拟转换,将其转换为 4— 20MA 标准电流值,同时通过键盘输入给定每分钟地滴数,再将此 滴数将其转换为 4—20MA 标准电流值,将此两个信息同时进入数字 PID 调节器 .通过偏差计算再输出一 组 4— 20MA 标准电流值,通过变频调速器控制电动机调节 H2 地高度,来控制滴斗滴数 .此方案地优点 是,完全按目前电气工程标准化运作,可以在很短时间完成 .文档收集自网络,仅用于个人学习 2、 方案三 根据点滴装置地特点, 通过对装置地某一位置进行监测和控制, 达到对整个系统液体点滴速度地监 控 . (如图 1).文档收集自网络,仅用于个人学习 通过控制输液软管夹头地松紧来控制点滴速度,采用红外传感器测量滴斗滴数,送至单片机接口 计数并显示,首先标定两个脉冲(两滴间)间地时间间隔(以 10MS 为时基单位) .然后计算给定滴斗 滴数(通过键盘)地时间间隔(以 10MS 为时基单位) .将此两个时间间隔进行比较,以决定步进电机 运行地方向 .该步进电机通过丝杠控制输液软管夹头地松紧, 来控制滴斗滴数 文档收集自网络,仅用于个人学习 4、方案比较 方案一地特点是:实现比较简单容易,原理上也是可行地,但由于本装置用于医疗,电弧 地产生, 可能对不同地药物有影响,同时传感器(电极)不能重复使用,以防止传染 . 文档收集自网络,仅用于 . 文档收集自网络,仅用于个人学 习

两种液体混合装置PLC控制系统设计说明

两种液体混合装置PLC控制系统设计 摘要 S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能价格比。 本系统使用S7-200PLC实现了对液体混合装置的自动控制要求。同时控制系统利用仿真设备不仅能满足两种液体混合的功能,而且可以扩展其功能满足多种液体混合系统的功能。提出了一种基于PLC 的多种液体混合控制系统设计思路, 提高了液体混合生产线的自动化程度和生产效率。文中详细介绍了系统的硬件设计、软件设计。其中硬件设计包液体混合装置的电路框图、输入/输出的分配表及外部接线;软件设计包括系统控制的梯形图、指令表及工作过程。在本装置设计中,液面传感器和电阀门以及搅动电机采用相应的钮子开关和发光二极管来模拟,另外还借助外围元件来完成本装置。整个程序采用结构化的设计方法, 具有调试方便, 维护简单, 移植性好的优点. 关键词:PLC ;液体混合装置;程序

目录 1 液体混合装置控制系统设计任务 (2) 1.1课程设计的目的 (2) 1.2设计容及要实现的目标 (2) 2 系统总体方案设计 (3) 2.1系统硬件配置及组成原理 (3) 2.2系统接线图设计 (3) 3 控制系统设计 (4) 3.1估算 (4) 3.2硬件电路设计 (4) 3.3选型 (6) 3.4分配表设计 (6) 3.5外部接线图设计 (7) 3.6控制程序流程图设计 (8) 3.7控制程序设计 (8) 3.8创新设计容 (10) 4 系统调试及结果分析 (11) 4.1系统调试 (11) 4.2结果分析 (11) 总结 (12) 致 (13) 参考文献 (14)

液体点滴速度监控装置

液体点滴速度监控装置 2007年6月9日

摘要: 液体点滴速度监控系统是能够实现自动监控液滴的速度并且能做出相应调整的自动控制系统。本文对系统如何实现自动监测、自动调节等功能作了详细的分析和研究,利用光电传感器采集液滴的速度变化信号和液位高度信号,用AT89S52作为中央处理器进行信号分析和处理,利用建立的模型通过直流电机进行控制液滴速度。主从站采用MAX487E 与单片机系统构成RS-485通讯接口进行数据和控制信息的传送。 问题重述 一、任务 设计并制作一个液体点滴速度监测与控制装置,示意图如右图所示。 二、要求 1、基本要求 (1)在滴斗处检测点滴速度,并制作一个数显装置,能动态显示点滴速度(滴/分)。 (2)通过改变h 2控制点滴速度,如右图所示;也可以通过控 制输液软管夹头的松紧等其它方式来控制点滴速度。点滴速度可用键盘设定并显示,设定范围为20~150(滴/分),控制误差范围为设定值±10%±1滴。 (3)调整时间≤3分钟(从改变设定值起到点滴速度基本稳定,能人工读出数据为止)。 (4)当h 1降到警戒值(2~3cm )时,能发出报警信号。 2、发挥部分 设计并制作一个由主站控制16个从站的有线监控系统。16个从站中,只有一个从站是按基本要求制作的一套点滴速度监控装置,其它从站为模拟从站 (仅要求制作一个模拟从站)。 (1)主站功能: a .具有定点和巡回检测两种方式。 b .可显示从站传输过来的从站号和点滴速度。 c .在巡回检测时,主站能任意设定要查询的从站数量、从站号和各从站的点滴速度。 d .收到从站发来的报警信号后,能声光报警并显示相应的从站号;可用手动方式解除报警状态。 (2)从站功能: a .能输出从站号、点滴速度和报警信号;从站号和点滴速度可以任意设定。 b .接收主站设定的点滴速度信息并显示。 c .对异常情况进行报警。 (3)主站和从站间的通信方式不限,通信协议自定,但应尽量减少信号传输线的数量。 (4)其它。 题目分析 h 1 h 2 电动机 滑轮 点滴移动支架 储液瓶 受液瓶 滴斗 滴速夹

两种液体混合控制装置

一、实验目的 1.了解三菱系列FX2N 可编程控制器的操作系统,熟悉FX2N系列指令。 2.通过用可编程控制器实现对交通灯的控制,掌握PLC的编程方法和程序调试方法,理解用PLC解决一个实际问题的全过程。 3.通过组态软件对液体混合装置控制系统的监控,熟悉PC机与PLC的通信硬件设备和组态软件MCGS的应用。 二、实验要求 1.利用PLC实现对液体混合装置控制系统的控制。 用PLC控制两种液体混合装置,SL1、SL2、SL3为液面传感器,液体A、B阀门与混合液阀门由电磁阀YV1、YV2、YV3控制,M为搅匀电机,控制要求如下:初始状态:装置投入运行时,液体A、B阀门关闭,混合液阀门打开2秒将容器放空后关闭。 启动操作:按下启动按钮SB1,装置就开始按下列约定的规律操作: 混合液体阀打开先将剩余液体放完。液体A阀门打开,液体A流入容器。当液面到达SL2时,SL2接通,关闭液体A阀门,打开液体B阀门。液面到达SL1时,关闭液体B阀门,搅匀电机开始搅匀。搅匀电机工作6秒后停止搅动,混合液体阀门打开,开始放出混合液体。当液面下降到SL3时,SL3由接通变为断开,再过2秒后,容器放空,混合液阀门关闭,开始下一周期。 停止操作:按下停止按钮SB2后,在当前的混合液操作处理完毕后,才停止操作(停在初始状态上)。 实验面板

2.利用组态软件中监控液体混合装置控制系统情况。 三、实验主要仪器设备 1.液体混合装置控制系统。 2.PLC编程软件。 3.组态软件MCGS。 4.导线若干、三菱PLC。 四、实验方案 本设计选用三菱公司的FX2N-32MR的PLC,它是一种整体式结构的小型PLC,并且指令丰富,功能强大,可靠性高,适应性好,结构紧凑,便于扩展,性价比高。并且有多种特殊功能模块或功能扩展板,可以实现多轴定位控制, 并且通过通信扩展板或特殊适配器可以实现多种通信和数据链接。 MCGS6.2通用版是北京昆仑通态数十位软件开发精英,历时整整一年时间,辛勤耕耘的结晶,MCGS6.2通用版无论在界面的友好性、内部功能的强大性、系统的可扩充性、用户的使用性以及设计理念上都有一个质的飞跃,是国内组态软件行业划时代的产品,必将带领国内的组态软件上一个新的台阶。 功能特点 ·全中文可视化组态软件,简洁、大方,使用方便灵活 ·完善的中文在线帮助系统和多媒体教程 ·真正的32位程序,支持多任务、多线程,运行于Win95/98/NT/2000平台·提供近百种绘图工具和基本图符,快速构造图形界面 ·支持数据采集板卡、智能模块、智能仪表、PLC、变频器、网络设备等700多种国内外众多常用设备 ·支持温控曲线、计划曲线、实时曲线、历史曲线、XY曲线等多种工控曲线 ·支持ODBC接口,可与SQL Server、Oracle、Access等关系型数据库互联·支持OPC接口、DDE接口和OLE技术,可方便的与其他各种程序和设备互联 ·提供渐进色、旋转动画、透明位图、流动块等多种动画方式,可以达到良好的动画效果 ·上千个精美的图库元件,保证快速的构建精美的动画效果 ·功能强大的网络数据同步、网络数据库同步构建,保证多个系统完美结合·完善的网络体系结构,可以支持最新流行的各种通讯方式,包括电话通讯网,宽带通讯网,ISDN通讯网,GPRS通讯网和无线通讯网 通过三菱PLC与MCGS6.2通用版的连接结合,来实现液体混合装置。 五、实验步骤 输入、输出点分配表 输入点输出点 地址作用地址作用

输液计算滴数

我国临床常用的输液器滴系数有10、15、20滴/ml3种型号,根据输液器滴系数可进行如下公式推理,每小时输入的毫升数(ml/h)=(滴/min)x60(min/h)/滴系数(滴/ml)。 因此,当滴系数为10、15、20滴/ml时,分别代入上述公式即可得出: (1)滴系数为10滴/ml,则:每小时输入的毫升数=(滴数/min)x6。 (2)滴系数为15滴/ml,则:每小时输入的毫升数=(滴数/min)x4。 (3)滴系数为20滴/ml,则:每小时输入的毫升数=(滴数/min)x3。 每个输液器其滴系数是固定不变的,故在已知每小时输入的毫升数和每分钟滴数两者之间的任意一个变量,利用上述3个公式,即可得出另一个变量。 1.已知输入液体的总量和预计输完所用的时间,求每分钟滴数。 每分钟滴数=液体的总量(ml)×滴系数(滴/毫升)/输液所用时间(min) 2.已知输入液体的总量和每分钟滴数,求输完液体所用的时间。 输液所用时间(h)=液体的总量(ml)×滴系数(滴/毫升)/[每分钟滴数(滴/分)×60(min)] 或者输液所用时间(min)=液体的总量(ml)×滴系数(滴/毫升)/每分钟滴数(滴/分) 成人静脉输液的滴速为多少? ⒈ 一般速度:补充每日正常生理消耗量的输液以及为了输入某些液物(如抗菌素、激素、维生素、止血液、治疗肝脏疾病的输助药等)时,一般每分钟5ml左右。通常所说的输液速度每分钟60~80滴,就是指这类情况。静滴氯化钾,如速度过快可使血清钾突然上升引起高血钾,从而抑制心肌,以致使心脏停搏于舒张期状态。因为血清钾达7.5毫当量/升时,即有可能发生死亡。如果把1克氯化钾(13.9毫当量)直接推入血液,那么在短暂时间内,就可使血清钾水平从原来的基础上立即增高3~3.5毫当量/升,显然是极危险的。所以氯化钾的输注速度,一般要求稀释成0.3%的浓度,每分钟4~6ml。葡萄糖溶液如输入过快,则机体对葡萄糖不能充分利用,部分葡萄糖就会从尿中排出。据分析,每公斤体重,每小时接受葡萄糖的限度大约为0.5g。因此,成人输注10%的葡萄糖时,以每分钟5~6ml较为适宜。此外,输入生理盐水时,也不宜过快,因为生理盐水中,只有钠的溶度和血浆相近似,而氯的含量却远远高于血浆浓度(生理盐水的氯浓度154毫当量/升,血浆的氯浓度只有103毫当量/升),输液过快的结果,可使氯离子在体内迅速增多。如肾功能健全时,过多的氯离子尚可由尿中排出,以保持离子间平衡;如肾功能不全,则可造成高氯性的酸中毒。 ⒉ 快速:严重脱水病人,如心肺功能良好,一般应以每分钟10ml左右的速度进行补救,全日总输量宜在6~8小时完成,以便输液完毕后病人得以休息。血容量严重不足的休克病人,抢救开始1~2小时内的输液速度每分钟应在15ml以上。因为,倘若在2小时内输入2000ml液体,就可使一个休克病人迅速好转的话,若慢速输入,使2000ml液体在24小时内缓缓滴入,则对休克无济于事。急性肾功能衰竭进行试探性补救时,常给10%葡萄糖溶解500ml,以每分钟15~25ml 速度输入。为了扩容输入5%碳酸氢钠或低分子右旋糖肝,为了降低颅内压或急性肾功能衰竭而早期使用甘露醇时,每分钟均需以10ml左右的速度进行。 快速静滴时,要注意观察病情,因为静脉输液过快,血溶量骤然增加,心肺负荷过度,严重者可导致心力衰竭、肺水肿,这种情况尤其多见于原有心肺疾患的病

液滴速度监控装置

液体点滴速度监控装置设计 长沙大学 07级电子专业徐姿龙泽亮 摘要:本系统为一个液滴的速度检测与控制装置。以单片为核心,由水滴速度测试系统、水速控制系统、显示装置、单片机系统、键盘系统和报警等系统组成。应用水的压强随着高度差的变化而变化的原理,利用控制步进电动机的升降来控制点滴速度。点滴速度可用键盘来设定,键盘系统为独立式按键系统,红外对管是为检测液滴的速度提供脉冲。从改变设定值起到点滴速度基本稳定整个过程的调整时间小于3分钟。同时在水到达警戒线以下时能发出报警信号。以上为系统的一个结点,我们还建立了一个由主站控制16 个从站的有线监控系统。每个从站都可以和主站通信。主站可以工作在定点和巡回检测两种方式下,可以显示从站传输来的从站号和点滴速度,16个从站中,只有一个从站是按基本要求制作的一套点滴速度监控装置,其它从站为模拟从站(仅制作了一个模拟从站)。 关键字:点滴速度,红外对管,步进电动机,51单片机 Abstract: A droplet of the system for speed detection and control devices. AT89C51 to a single core test system from the speed drops, water speed control systems, display devices, microcontroller systems, keyboard systems, and alarm system.Application of water pressure as the height difference and change the principle, the use of stepper motor control to control the drip rate of take-off and landing. Drip rate of the keyboard can be used to set the keyboard for stand-alone system, key systems, infrared detection of the tube is to provide the pulse rate of droplets. Change settings from drip to play the basic stability of the speed of adjustment of the process time of less than 3 minutes. At the same time to reach the warning level in the water can be issued when the following warning signals. This system of a node, we also established a master control station 16 of the cable from the monitoring system. Each slave and master can be communication. Master station can be fixed and roving in the detection of two ways, we can show that transmission from station to station and from the drip rate, can be set to the number of inquiries from the station from the station number, the speed bit by bit from the station. Keyword: little speed, infrared to control, stepper motor, 51 single-chip

液体混合装置控制的模拟 (二)

目录 1课题的内容和设计要求 (1) 1.1控制系统简介 (1) 1.2控制要求 (2) 2系统整体方案设计 (3) 2.1总体方案选择说明 (3) 2.2控制方式选择 (3) 2.3操作界面 (3) 3 PLC控制系统的硬件选择 (3) 3.1硬件接线图 (4) 4 PLC控制系统系统程序设计 (4) 4.1 I/O分配表 (4) 4.2流程图 (5) 4.3 顺序功能图 (6) 4.4电气元件接线图 (7) 5梯形图程序与说明 (8) 6调试情况 (26) 7 总结 (27) 附录 (28) 1 电气元件布置图 (28) 2 电气原理图 (29)

1课题的内容和设计要求 1.1控制系统简介 液体混合装置控制的模拟实验面板图如图所示。 本装置为两种液体混合装置,SL1、SL2、SL3为液面传感器,液体A、B的阀门与混合液阀门由电磁阀YV1、YV2、YV3控制,M为搅动混合电机。SA1、SA2为工作流程选择开关,SA3为单次工作和循环工作的选择开关。SB1、SB2为启动和停止开关。

1.2控制要求 (1)初始状态:装置投入运行时,液体A、B的阀门关闭,放出混合液的阀门打开5秒,将容器放空后关闭。 (2)启动:按下启动按钮SB1,装置就开始按下列工作流程进行:如表所示。 (3)停止:按下停止按钮SB2后,完成本次循环,并停在原位,恢复原位状态。 工作流程表

2系统整体方案设计 2.1总体方案选择说明 刚开始拿到这个实训课题时还不知道如何下手,然后通过网上查找相关的资料得出了自己的设计思想。 首先根据课题的要求画出了大致的顺序功能图,然后根据课题要求有3个工作流程,我们就把这3个工作流程分作对应的3个工作功能块。在OB1中通过开关SA1、SA2开关,来选择工作流程方式。当SA1接通时选择工作流程1;当SA2接通时选择工作流程2;当SA3接通时选择工作流程3。 2.2控制方式选择 由于PLC控制系统较继电-接触器控制系统有许多优点,如硬件电路简单,修改程序容易,可靠性高等,所以本设计选择PLC控制系统。 2.3操作界面 学校实验室提供的安装了STEP 7-Micro/WIN32编程软件的计算机(PC)一台;PC/PPI电缆一根;THSMS-B型实验装置。 3 PLC控制系统的硬件选择 刚开始拿到这个实训课题时还不知道如何下手,然后通过网上查找相关的资料得出了自己的设计思想。 首先根据课程设计要求我们做出了I/O分配表,然后在做出了流程图,接着根据流程图画出了系统流程图。之后,用PLC做出LAD图,通过流程一、流程二、流程三的分别调试、更改、修正、直到成功的满足课设要求之后。再根据LAD 图画出了原理图,进而得出了混合液体装置控制的接线图和器件分配图。 梯形图编程语言是一沿用了种图形化的编程语言,它沿用了继电器控制中的触点、线圈、串并联等术语和图形符号,与传统的继电器控制原理图非常相似,但又加入了许多功能强又使用灵活的指令,他比较直观,形象,对于那些熟悉继电器的人来说,易被接受。 其硬件选择的是学校实验室提供的安装了STEP 7-Micro/WIN32编程软件的

补液计算公式.pdf

补液计算公式 补液原则:先快后慢、先胶后晶、先浓后浅、先盐后糖、见尿补钾、却啥补啥。 注:休克时先晶后胶。 补液量=1/2累计损失量当天额外损失量每天正常需要量。 粗略计算补液量=尿量+500ml。若发热病人+300ml×n 1.补钾: 补钾原则:①补钾以口服补较安全。②补钾的速度不宜快。一般<20 mmol/h。 ③浓度一般1000ml液体中不超过3g。④见尿补钾。尿量在>30ml/h。 细胞外液钾离子总含量仅为60mmol左右,输入不能过快,一定要见尿补钾。 ⑤低钾不宜给糖,因为糖酵解时消耗钾。100g糖=消耗2.8g 钾。(正常生理需要量氯化钾3克)慢补勤查! 轻度缺钾3.0——3.5mmol/L时,全天补钾量为6——8g。 中度缺钾2.5——3.0mmol/l时,全天补钾量为8——12g。 重度缺钾<2.5 mmol/l时,全天补钾量为12——18g。 2. 补钠:血清钠<130 mmol/L时,补液。先按总量的1/3——1/2补充。(正常生理需要量氯化钠4.5克) 公式: 应补Na+(mmol)=[142-病人血Na+(mmol/L)]×体重(kg)×0.6<女性为0.5> 应补生理盐水=[142-病人血Na+(mmol/L)] ×体重(kg)×3.5<女性为3.3> 氯化钠(克)=[142-病人血Na+(mmol/L)] ×体重(kg) /30

或=体重(kg)×〔142-病人血Na+(mmol/L)〕×0.6<女性为0.5>÷17 3.输液速度判定 每小时输入量(ml)=每分钟滴数×3 每分钟滴数(gtt/min)=输入液体总ml数÷[输液总时间(h)×3] 输液所需时间(h)=输入液体总ml数÷(每分钟滴数×3) 4.静脉输液滴进数计算法 每h输入量×每ml滴数(15gtt) ①已知每h输入量,则每min滴数=------------------------------------- 60(min) 每min滴数×60(min) ②已知每min滴数,则每h输入量=------------------------------ 每min相当滴数(15gtt) 5. 5%NB(ml)=〔CO2CP正常值-病人CO2CP〕×体重(kg)×0.6。 首日头2——4小时补给计算量的1/2。CO2CP正常值为22——29%。 如未测定二氧化碳结合力,可按5%碳酸氢钠每次溶液5ml/kg 计算 (此用量可提高10容积%)。必要时可于2~4 小时后重复应用。

液体点滴速度监控装置设计的程序

#include #define DB0_DB7 P0 #define busy 0x80 #define SCANPORT P1 sbit E=P2^2; sbit RW=P2^1; sbit RS=P2^0; //1110 1111, 1101 1111, 1011 1111, 0111 1111 unsigned char uca_LineScan[4]={0xEF,0xDF,0xBF,0x7F}; //列线扫描电压分为第1,2,3,4根列线unsigned char key_ctt[4]={0}; unsigned char speed_bcd[4]={0}; unsigned char speed_sc[2]; unsigned char yy=0,temp; unsigned int speed_ck[4]={0}; unsigned int di_xx[2]={0}; unsigned int ct=0,ttb=0,xx=0,tt3=0,speedct=0,speed=0,speedcd=10,cott=0; unsigned int time_sq[4]={0}; typedef unsigned char uchar; unsigned char code lcd3[]={"0123456789abcdef"}; unsigned char code lcdnow[]={"NOW:000"}; unsigned char code lcdset[]={"SET:000"}; unsigned char CONTROL[8]={0x38,0x18,0x98,0x88,0xC8,0x48,0x68,0x28}; unsigned char codes1[8]={0xb8,0x98,0xd8,0xc8,0xe8,0x68,0x78,0x38};//9,18,36,45,54,63,72,81度顺时针unsigned char codes2[8]={0xb8,0x98,0xd8,0xc8,0xe8,0x68,0x78,0x38};//9,18,36,45,54,63,72,81度逆时针unsigned char counts,pt; unsigned char uc_KeyTemp=0; unsigned char uc_ClickCount=0; unsigned char ucCount; bit flag=1; //度数,正反转,速度控制 bit a_ac=0;//比较系统标志 bit bleept=0;//报警标准 bit moto=0;//电机标志位 bit a_key=0; bit b_key=0; void vKeyProcess(unsigned char ucKeyCode); void bleep();//报警 void ac();//电机速度比校 void akey();//功能处理 void getspeed();//速度检侧 void stdisplay();//显示 void Delay(unsigned int t); void delay_50ms(unsigned int t); //延时 void SendCommand(unsigned char ch); //发送命令

多种液体混合装置

多种液体混合装置 一.实验目的: 1.结合多种液体自动混合系统,应用PLC技术对化工生产过程实 施控制。 2.学会使用PLC解决实际问题。 二.实验设备: 1.计算机(编程器)一台。 2.实验装置(含S7-200 24点CPU)一台。 3.多种液体自动混合实验模块一台。 4.连接导线若干。 三.实验的控制要求: 1.在初始状态,容器为空,电磁阀Y1,Y2,Y3,Y4,和搅拌机M以 及加热原件R均为OFF,页面传感器L1,L2,L3,和温度检测T 均为OFF. 2.液体混合操作过程; 按下启动按钮,电磁阀Y1闭合(Y1位ON),开始注入液体A,当液面达到L3时(L3位ON)----关闭电磁阀Y1(Y1OFF),液体A停止注入,同时,开启电磁阀Y2(Y2位ON注入B液体,当液面达到L2时(L2位ON)----关闭电磁阀Y2(Y2OFF),液体A停止注入,同时,开启电磁阀Y3(Y3位ON注入C液体,当液面达到L1时(L1位ON)----关闭电磁阀Y3(Y3OFF),液体C停止注入,然后开启搅拌电动机M,搅拌10S—停止搅拌,

加热(启动电炉R),--当温度(检测T动作)达到设定值时---停止加热(R为OFF),并放出混合液体(Y4为ON),至液体降至L3时,再经5S延时,---液体可以全部放完—停止放出(Y4为OFF)。液体混合过程结束。按下停止按钮,液体操作停止。四.实验内容及要求 1.按液体混合要求,设计设计PLC外部电路(配合使用通用器件 板开关元器件。 2.连接PLC外部(输入·输出)电路,编写用户程序; 3.输入,编辑,编译,下载,调试用户程序; 4.运行用户程序,观察程序运行结果。 五.SFC

输液速度的计算

药物输液速度计算大约每ml=15滴 (1)静脉输液速度与时间参考数据 液体量(ml)滴速(gtt/min)时间(h) 50030 4 50040 3 50060 2 (2)输液速度判定 每小时输入量(ml)=每分钟滴数×4 每分钟滴数(gtt/min)=输入液体总ml数÷[输液总时间(h)×4] 输液所需时间(h)=输入液体总ml数÷(每分钟滴数×4) 多巴胺(多巴酚丁胺):20mg/2ml/支 用量:1~20ug/kg/min;升压作用从5ug/kg/min 开始。0.5-2ug/kg/min扩血管利尿。 (多巴酚丁胺治疗量:2.5~10ml/h=2.5~10μg/kg/min) 极量:20ug/kg/min,超过10多考虑换间羟胺或去甲肾(septic shock充分液体复苏后可做首选) 配制: 50kg:150mg+NS35ml———1ml/h=1ug/kg/min 60kg:180mg+NS32ml———1ml/h=1ug/kg/min 70kg:210mg+NS29ml—-——1ml/h=1ug/kg/min 或多巴胺300mg+5%GS500ml iv drip (据体重12-18滴/min)约10ug/Kg/min 去甲肾上腺素:2mg/1ml/支 用量:2-60ug/min,not/kg/min!有效剂量多为4-10ug/min 配制:3支+ NS47ml 起始剂量1ml/h =2ug/min 硝普钠:50mg/支

用量:1~3ug/kg/min,从0.5ug/kg/min 调,每隔5-10min增加0.5-1μg,直到满意效果 极量:8ug/kg/min 配制:50mg + 5%GS 45ml 配50ml(1mg/ml) 50kg:1.5ml/h=0.5ug/kg/min 60kg:1.8ml/h=0.5ug/kg/min 70kg:2.1ml/h=0.5ug/kg/min 50㎎加入500 ml5%GS 3滴/min起始i.v.drip 附:避光,每6小时更换一次,一般不要超过72小时 硝酸甘油:5mg/1ml 用量:5~30ug/min,每5ug 开始调 配制:NG25mg+5%GS 250ml 或1支+ G.S/N.S 49ml 3ml/h开始泵入,每3ml/h=5ug/min NG5mg+5%GS 500ml 8~10滴/分钟开始 爱倍(二硝酸异山梨脂) :10mg/10ml/支 恒速泵:爱倍30mg + NS 20ml ,1ml/h=10μg/min 输液泵:爱倍30mg +液470ml ,10ml/h=10μg/min 最大量:可达20mg/h=333μg/min 鲁南欣康 用量:5~30ug/min,每5ug 开始调 配制:鲁南欣康40mg+溶液250ml 15ml/h=1mg/min 异舒吉:50mg/50ml/支 恒速泵:异舒吉50mg原液(50ml)IV 5ml/h(5mg/h)输液泵:异舒吉50mg+5%GS500ml iv drip (5mg/h = 50ml/h =13滴/min)

基于单片机系统的液体点滴速度监控装置设计

Xxxx 学院 学年论文(设计) 题目:基于单片机系统的液滴点滴 速度监控装置 学院专业级班 学生姓名学号 指导教师职称

目录 一、引言 (4) 二、系统总体设计 (4) 2.1系统原理框图及原理分析 (4) 2.2方案设计与论证 (5) 2.2.1电机驱动控制电路 (5) 2.2.2 数据采集 (6) 2.2.3键盘方案的选择 (7) 2.2.4系统最终方案确定 (8) 三、单片机系统设计 (8) 3.1 硬件设计 (8) 3.1.1单片机系统的硬件结构 (8) 3.1.2 液体滴速检测模块 (10) 3.2 软件设计 (11) 四、总结 (13) 参考文献 (14) 英文摘要 (16)

基于单片机系统的液体点滴速度监控装置设计 【摘要】:利用单片机设计一个智能化的液体点滴速度监测与控制系统。该系统由水滴速度测试系统、水速控制系统、显示装置、单片机系统、键盘和报警等系统组成。应用水的压强随着高度差的变化而变化的原理,利用控制步进电动机的升降来控制点滴速度。点滴速度可用键盘来设定,同时在水到达警戒线 (2cm~3cm)以下时能发出报警信号。 【关键词】:点滴速度,步进电动机,单片机 1 引言 目前各类医院中所使用的静脉输液器都是悬挂在病人的身体水

平线以上才能输液,这种传统的输液设施的输液速度难以准确控制,这对特护病人和对输液速度有较严格要求的病人是不方便的,也会加重医护人员的工作强度。本系统就是为了减少人力浪费,获得良好医疗效果而设计的液体点滴速度监控装置,利用这种装置可以通过电机控制储液瓶的高度来达到控速的目的;通过传感系统来确定点滴速度和对液位警戒线的检测;通过键盘设置液体点滴速度。 2 系统总体设计 2.1系统原理框图及原理分析 利用步进机和压强的原理来控制水滴的速度,有公式可以知道由于液面高度的不同而使压强不同,从而改变液滴的速度。这样的系统比控制输液软管的松紧更好控制,而且比较容易实现。1.8m的高度足以实现速度从20~150(滴/min)的调节。首先大概测出对应高度所对应的水滴速度,并记下来存在单片机内,需要使用时就直接调出来。在滴斗处用红外系统来测量水滴的速度,再在储液瓶到瓶口3cm处装一个对射式红外传感器来监控水位。当在键盘上按人某个点滴速度时,从单片机内调出相对应的某一个高度,然后控制步进电动机转动进行粗调,再利用红外系统进行反馈来细调,直到红外反馈和所按的速度一样为止。调好以后由于液面的下降和一些其他的因素,又会产生一些速度的变化,或者本身水滴的速度又不是均匀的,所以调好以后速度有可能自身就会发生变化。可以利用红外监控,智能化的调整高度来控制速度,即利用单片机随时自我调整。

液体点滴速度监控装置

D题:液体点滴速度监控装置 作者:赵立双(200407023007) 吴崇飞(200407023005) 吕可(200407023026) 单位:光电科学与工程学院学员二队

摘要 本系统以AT89S52单片机为核心建立了包括1个主站和16个从站的液体点滴速度控制装置。设计中采用光电手段对点滴速度和输液瓶中液面高度进行检测,通过步进电机牵引改变输液瓶的高度对点滴速度进行控制。系统中主站可以通过不同方式很好地实现与从站的通信和对从站的控制,并能有效地对从站发生的异常情况进行处理。另外,为提高该系统实用性,在从站上还增加了向主站发送呼叫请求的功能。 一、方案设计与论证 1.点滴速度与液面高度检测方案 方案一:利用药液的导电性,采用金属电极对点滴速度和液面高度进行检测,如图1所示。当液体连接两个金属电极时,电路导通;当液 体不连接两个金属电极时,Array电路断开。这样,对于点滴 速度检测:当液滴下落经过 金属电极时,电路中产生一 个电脉冲;对于液面高度检 测:当液面高度低于警戒线 后,检测电路断开,从而引 图1 起控制系统的中断处理。 方案二:采用光电传感器(由红外发光二极管与光电二极管组成)检测点滴速度和液面高度信号。光电传感器又有反射式与透射式两种。 考虑到无色液滴的反射系数较小,因此采用透射式光电传感器对点滴速 度和液面高度进行检测,如图2所示。当光电对管间没有液体时,达到光 电二极管的红外光最强,流过光电二极管的电流相应为最大;当光电二 极管间有液体时,由于液体对红外光的散射、反射和折射作用,使达到

光电二极管的光强减弱,流过光电二极管的电流相应减小。 比较以上两种方案: 方案一检测直接,获得的信号可不经处理直接供控制部分使用。但其探测器接触药液,会对药液造成污染,这在医疗器械中是绝对不允许存在的。方案二利用光电手段对检测量实施间接检 测,从而达到探测器与药液隔离,不对药液产生任何污染。但无色液体对红外光的散射、反射和折射作用不足够强,流过光电二极管的电流相应变化不大,因此就必须采用放大电路对光电二极管采集的信号进行放大,使信号满足后续电路的要求。 综合上面对两种方案的考虑,本设计选用方案二。 2. 点滴速度控制方案 方案一:改变一段输液管的输液截面积控制点滴速度。原理与现行的输液管控制阀原理相同。 方案二:改变输液瓶高度控制点滴速度。输液瓶高度的改变可直接影响输液管中压强的变化,根据点滴速度与输液管中压强的相关性,可以通过调整输液瓶的高度对点滴速度进行调整和控制。 比较以上两种方案: 方案一原理简单,但控制难度较大:输液管导通面积本来就不大,此方法控制点滴速度过于灵敏;输液管弹性欠佳,恢复原形时间过长,影响系统响应度;此方法必然在输液管上安装较大体积的控制部件,使系统的实际应用受到限制。方案二控制方法简单,可用步进电机调节输液瓶高度,控制点滴速度。综合以上分析,本设计选用方案二。 图2

相关文档
最新文档