传热学上机报告

传热学上机报告
传热学上机报告

会计实训课程会计分录上机实训分析报告

会计实训课程会计分录上机实训报告

————————————————————————————————作者:————————————————————————————————日期: 2

上机实训报告 经济与管理系 实训课程:会计学原理 专业班级:会计专业1304 学号:2013xxxx 姓名:xxxx 2014年05 月05 日

实训项目名称会计学原理 实训目的1. 通过会计实训,巩固我们的专业知识;对已学的专业理论知识,通过实践操作进行巩固,让我们对会计核算方法有一个全面、完整的感性认识;增强我们的操作能力,通过理论与实践的联系,提高我们的动手操作能力、总结分析能力,让我们学以致用。 2.这次实训不仅使得我们每个人掌握填制和审核原始凭证与记账凭证,登记账薄的会计工作技能和方法,而且对所学理论有一个较系统、完整的认识,最终达到会计理论,会计实践相结合的目的。 3..实验目的 根据模拟的企业业务,掌握各种凭证,帐表的填制规定及方法,使我能比较系统、全面的掌握制造企业会计核算的基本程序和方法,将理论运用于实际,更好的熟悉会计的基本工作及操作步骤。 实训时间与地点 星期四上午3-4节10:20-12:00 机房六7-13周 实训内容1,填制原始凭证 2,填制复式记账凭证 3,对日记账进行正确的登记 4,进行错账更正 5、,记账规则与结账 6,对银行存款余额调节表进行编制 7,熟练地掌握科目汇总表账务处理程序8,编制总账 9,对账务报表进行编制

实训中遇到的问题及解决办法 1.粗心马虎频频出错 我在多次失败中琢磨慢工出细活的道理来,一笔一笔的计算,一行一行的画线,做着做着,成就感就慢慢儿的有了,最后,看着自己做出来的整整齐齐的账页,很舒心。我也同时懂得做事情都要认真细心,不能急躁。 2.有一特殊的分录,就是借方是库存现金,贷方是银行存款,只要编制银行存款付款凭证,但是我两边都记了。而登记账簿时,两方都要记,而我却只记了银行存款。 3.记账凭证中的记账符号,在登记账簿时只要有记到就要打钩的,但是我忘了,到最后才一起打钩,这是错误的。 4.登记账簿时,由于认真地在记账凭证中找,导致少记了一些凭证,到后来还要从新再写,既浪费时间又十分麻烦。 5.编制报表时,待处理财产损溢不用记入资产负债表,因为它已经被弄得管理费用处理掉了,在这边停滞了很久。还有未分配利润在总账中找不到,原来未分配利润包含在利润分配里面,在这边也考虑了很久。 总结 在本次会计模拟实训中,我们充当单位的记账人员,掌握了应该如何处理具体的会计业务,弥补我们在课堂学习中实践知识不足的缺陷,掌握书本中学不到的具体技巧,缩短从会计理论学习到实际操作的距离,也可通过实训的仿真性,使我们感到实训的真实性,增强积极参与实训的兴趣。会计理论来自于会计实践,是会计实践经验的概括总结,同时又对会计实践工作加以指导,所以我们在会计专业学习中,不仅需要构建出较完整的理论框架,而且还要树立起完整的操作理念。刚开始记账时,我久久不敢下笔,怕自己会记错,总想确定答案正确后,再正式写到记账凭证上。我认识到在实际工作中,不可能有人让你确定会计分录对不对,然后再记账。俗话说胆大心细,做会计不但心细很重要,胆大也是必不可少的,若是一直担心这个错担心那个不对,怕是到了月底还做不好帐。想明白后我就大胆登记记账凭证,虽然还是常错,只好撕了重写。我们还在学习阶段,当然不可能百分百正确,学的是方法。作为一名未来的会计人员,我们现在刚刚起步,往后会学到更多的东西,并且有很多东西需要我们自己去挖掘。况且会计学科是一门实践操作性很强的学科,所以会计理论教学与会计模拟实训联系紧密,两者有机衔接、紧密配合,才能显著提高我们掌握知识的水平。在课本上我们所学到的理论知识只是为我们的实际执业注明框架、指明方向、提供相应的方法论,真正的职业技巧是要我们从以后的实际工作中慢慢汲取的。希望接下来的日子里,学校能给我们更多的实习课,以便我们能不断的查漏补缺,这样更能帮助我们财会专业的学生学好专业课,为以后走向社会奠定良好的基础。

80210127传热学C

《传热学C》课程教学大纲 课程编号:80210127 课程名称:传热学C 英文名称:Heat Transfer C 总学时:24 学分:1.5 适用对象:机械工程及其自动化专业,测控技术及仪器专业 先修课程:高等数学,流体力学 一、课程性质、目的和任务 传热学C是机械工程及其自动化专业和测控技术及仪器专业的一门专业选修课程。其目的在于使学生掌握有关热量传递的基本理论知识,具备一定的传热学分析计算能力。它不仅为以后专业课的学习提供必要的理论基础,也是培养提高学生综合分析能力和解决工程实际问题能力的重要环节之一。 二、教学内容、方法及基本要求 教学内容 1.绪论 了解传热学与工程热力学在研究内容和方法上的异同。认清传热学的研究对象及其在工程和科学技术中的应用。掌握热量传递的基本方式:导热、对流和热辐射的概念和所传递热量的计算公式。了解复合换热过程的计算方法,了解辐射换热表面传热系数的概念。认识到工程实际问题的热量传递过程往往不是单一的方式而是多种形式的组合,以加深传热过程的概念及传热方程的理解。初步理解热阻在分析传热问题中的重要地位。 2.导热基本定律及稳态导热 掌握傅里叶定律的意义和应用方法,了解常见材料导热系数的大致范围。理解推导导热微分方程的理论依据和思路,以及导热微分方程中各项的物理意义,能够正确书写导热问题的初始条件和三类边界条件。能应用傅里叶定律或导热微分方程对常物性、无内热源的一维稳态导热问题(平壁、圆筒壁)进行分析求解,得出温度场及导热量的计算公式。了解肋片在工程中的应用场合。加深理解热阻概念及其在分析导热问题时的重要性。 3.非稳态导热 了解非稳态导热过程的特点。掌握集总参数法的分析求解方法,了解其限制条件。 4.对流换热 牛顿冷却公式是对流换热计算的基础,要求重点掌握。理解影响对流换热的因素。掌握流动边界层和温度边界层的概念。理解相似原理在指导对流换热实验中的作用,准则方程的导出。掌握实验数据的整理方法。掌握管内换热入口段与充分发展段的概念。掌握定型尺寸和定性温度的概念。能正确和熟练地运用准则方程(实验关联式)计算简单的对流换热问题。了解有限空间自然对流换热的概念。掌握强化单相流体对流换热的途径。 5.凝结与沸腾换热

软件实训报告范文精选5篇

软件实训报告范文精选5篇 实训报告是展示自身实训收获成长的重要报告,那么实训报告该如何写呢?小编精选了一些关于实训报告的优秀范例,一起来看看吧。 软件开发项目实训总结 时间过的好快啊,为期三个礼拜的实训生活即将结束了,短短的三个礼拜让我们收获很大,专业知识、编程水平都有很大的提高。刚开始三天的高强度的课程安排让我们受益匪浅;接下来的上机实训又让我们可以巩固了课程。这让我觉得实习生活充实而有意义。辅导老师配好了环境之后,我们开始了项目的制作,这次项目实训算是自己小学期间主要完成的项目。最后,自己的努力还是有收获的,看着电脑上记录得满满的代码,看着自己的项目最终能够运行成功,就觉得很有成就感。 在本次的实训中,除了让我明白工作中需要能力,素质,知识之外,更重要的是学会了如何去完成一个任务,懂得了享受工作。当遇到问题,冷静,想办法一点一点的排除障碍,到最后获取成功,一种自信心由然而生,这就是工作的乐趣。有时候也需要虚心请教,从别人的身上真得能学习到不自己没有的东西,每一次的挫折只能使我更接近成功。除此以外,我还学会了如何更好地与别人沟通,如何更好地去陈述自己的观点,如何说服别人认同自己的观点。这次所学知识与实际的应用,理论与实际的相结合,让我大开眼界。也是对以前所

学知识的一个初审吧!这次实习对于我以后学习、找工作也真是受益菲浅,在短短的一个星期中让我初步从理性回到感性的重新认识,也让我初步的认识这个社会,对于以后做人所应把握的方向也有所启发!相信这些宝贵的经验会成为我今后成功的重要的基石。 在此,我非常感谢学院领导和指导老师对这次实训的大力支持。 软件开发项目实训总结 一、实训目的: 通过对java语言、sql数据库的应用以及sql语言的复习和锻炼,并且通过使用MyEclipse开发平台设计管理项目,以达到充分熟悉开发平台及应用设计。同时掌握并实践软件项目设计规范及其开发流程:需求分析、概要设计、详细设计、代码编写等,以便提前适应软件公司开发流程、环境和工作要求。 二、实训内容: 1. 项目:(“xx网”) 2. 完成(用户注册、登录、列表、购物车、删除、修改)等功能 3. 数据库设计、SQL应用 4.项目实战 三、实训总结: 转眼间实训已过去一段时间,之前的兴奋、喜悦如今已经让我熟悉,在实训的每一天都会让我有成为一名真正的财富者拥有的冲动。也许,在这期间不一定会让一个人有着翻天覆地的变化,但变化就是这样一点一点产生的。通过这一期的实训,虽然倍感折磨,但是收获

传热学实验指导书22页

[实验一]用球体法测定粒状材料的导热系数 一、实验目的 1、巩固和深化稳态导热的基本理论,学习测定粒状材料的热导率的方法。 2、确定热导率和温度之间的函数关系。 二、实验原理 热导率是表征材料导热能力的物理量,其单位为W/(m ·K),对于不同的材料,热导率是不同的。对于同一种材料,热导率还取决于它的化学纯度,物理状态(温度、压力、成分、容积、重量和吸湿性等)和结构情况。各种材料的热导率都是专门实验测定出来的,然后汇成图表,工程计算时,可以直接从图表中查取。 球体法就是应用沿球半径方向一维稳态导热的基本原理测定粒状和纤维状材料导热系数的实验方法。 设有一空心球体,若内外表面的温度各为t 1和t 2并维持不变,根据傅立叶导热定律: dr dt r dr dt A λπλφ24-=-= (1) 边界条件 2 211t t r r t t r r ====时时 (2) 1、若λ= 常数,则由(1)(2)式求得 1 22121122121) (2)(4d d t t d d r r t t r r --=--=πλπλφ[W] ) (2) (212112t t d d d d --= πφλ [W/(m ·K)] (3) 2、若λ≠ 常数,(1)式变为 dr dt t r ) (42λπφ-= (4) 由(4)式,得 将上式右侧分子分母同乘以(t 2-t 1),得 )()(412122 2 1 2 1 t t t t dt t r dr t t r r ---=?? λπφ (5) 式中 1 22 1 )(t t dt t t t -?λ项显然就是λ在t 1和t 2范围内的积分平均值,用m λ表示即

传热学上机C程序源答案之一维稳态导热的数值计算

一维稳态导热的数值计算 1.1物理问题 一个等截面直肋,处于温度t ∞=80 的流体中。肋表面与流体之间的对流换热系数为 h =45W/(m 2?℃),肋基处温度t w =300℃,肋端绝热。肋片由铝合金制成,其导热系数为λ=110W/(m ?℃),肋片厚度为δ=0.01m ,高度为H=0.1m 。试计算肋内的温度分布及肋的总换热量。 1.2数学描述及其解析解 引入无量纲过余温度θ = t?t ∞t w ?t ∞ ,则无量纲温度描述的肋片导热微分方程及其边界条件: 22 20d m dx θθ-= x=0,θ=θw =1 x=H, 0x θ?=? 其中m = 上述数学模型的解析解为:[()] ()() w ch m x H t t t t ch mH ∞∞--=-? ()()w hp t t th mH m ∞?= - 1.3数值离散 1.3.1区域离散 计算区域总节点数取N 。 1.3.2微分方程的离散 对任一借点i 有:22 2 0i d m dx θ θ??-= ??? 用θ在节点i 的二阶差分代替θ在节点i 的二阶导数,得:211 2 20i i i i m x θθθθ+--+-= 整理成迭代形式:()1122 1 2i i i m x θθθ+-=++ (i=2,3……,N-1) 1.3.3边界条件离散 补充方程为:11w θθ==

右边界为第二类边界条件,边界节点N 的向后差分得:1 0N N x θθ--= ,将此式整理为 迭代形式,得:N 1N θθ-= 1.3.4最终离散格式 11w θθ== ()1122 1 2i i i m x θθθ+-= ++ (i=2,3……,N-1) N 1N θθ-= 1.3.5代数方程组的求解及其程序 假定一个温度场的初始发布,给出各节点的温度初值:01θ,02θ,….,0 N θ。将这些初值代 入离散格式方程组进行迭代计算,直至收敛。假设第K 步迭代完成,则K+1次迭代计算式为: K 11w θθ+= () 11 11 2212i i K K K i m x θθθ+-++= ++ (i=2,3……,N-1) 1 11N K K N θθ-++= #include #include #define N 11 main() { inti; float cha;/*cha 含义下面用到时会提到*/ float t[N],a[N],b[N]; float h,t1,t0,r,D,H,x,m,A,p; /*r 代表λ,x 代表Δx ,D 代表δ*/ printf("\t\t\t 一维稳态导热问题\t\t"); printf("\n\t\t\t\t\t\t----何鹏举\n"); printf("\n 题目:补充材料练习题一\n"); printf("已知:h=45,t1=80, t0=200, r=110, D=0.01, H=0.1 (ISO)\n"); /*下面根据题目赋值*/ h=45.0; t1=80.0; t0=300.0; r=110.0; D=0.01; H=0.1; x=H/N; A=3.1415926*D*D/4; p=3.1415926*D; m=sqrt((h*p)/(r*A)); /*x 代表步长,p 代表周长,A 代表面积*/ printf("\n 请首先假定一个温度场的初始分布,即给出各节点的温度初值:\n");

传热学上机实验

传热学上机实验 班级: 学号: 姓名:

一:实验问题 一个长方形截面的冷空气通道的尺寸如附图所示。假设在垂直于纸面的方向上冷空气及通道墙壁的温度变化很小,可以忽略。试用数值方法计算下列两种情况下通道壁面中的温度分布及每米长度上通过壁面的冷量损失: (1)内、外壁面分别维持在10℃及30℃; (2)内、外壁面与流体发生对流传热,且有λ=0.53W/(m·K),t f1=10°C、h1=20W/(m2·K), t f2=30°C、h2=4W/(m2·K)。

二:问题分析与求解 本题采用数值解法,将长方形截面离散成31×23个点,用有限个离散点的值的集合来代替整个截面上温度的分布,通过求解按傅里叶导热定律、牛顿冷却公式及热平衡法建立的代数方程,来获得整个长方形截面的温度分布,进而求出其通过壁面的冷量损失。 1. 建立控制方程及定解条件 对于第一问,其给出了边界上的温度,属于第一类边界条件。 ????? ??? ??=?==??+??C C y t x t 301002222外壁温内壁温 对于第二问,其给出了边界上的边界上物体与周围流体间的表面传热系数h 及周围流体的温度 t f ,属于第三类边界条件。 ()?????? ?-=??? ????-=??+??f w w t t h n t y t x t λ02222 2. 确定节点(区域离散化) 用一系列与坐标轴平行的网格线把长方形截面划分为31×23个节点。则步长为0.1m ,记为△x=△y=0.1m 。

3. 建立节点物理量的代数方程 对于第一问有如下离散方程: ()()()()()()()()()()? ??? ???? ? ????? ???+++==?==?==?==?==?==?==?==?=+-+-代表内部点,,点41 26~6,1018,26~6,106,18~6,10,2618~6,10,631~1,3023,31~1,301,23~1,30,3123~1,30,11,1,,1,1,n m t t t t t n C m t n C m t n C n t n C n t n C m t n C m t n C n t n C n t n m n m n m n m n m 对于第二问有如下离散方程: 对于外部角点(1,1)、(1,23)、(31,1)、(31,,23)有: ()()02 222,1,,22,,1,22 =??-+-?+??-+-?±±x y t t t t x h y x t t t t y h n m n m n m f n m n m n m f λλ 得到: ()()()()????? ??? ?? ? ++ =++=++=++=22,3123,3023,312,311,301,3122 ,123,223,12,11,21,11865331400186533140018653314001865331400t t t t t t t t t t t t 同理可得: 对于内部角点(6,6)(6,18)(26,6)(26,18) ,有 ()() ()()()()()()????? ??? ??? ++++ =++++ =++++=++++=7,2618,2518,2719,2618,267,266,256,275,266,2618 ,717,619,618,518,67,66,75,66,56,671853359533592000718533595335920007185335953359200071853359533592000t t t t t t t t t t t t t t t t t t t t

ERP实训报告心得

篇一:erp实训心得总结 erp沙盘模拟实训总结体会 2012年大三的上学期我们工商管理专业开设了erp课程,在理论学习阶段我开始对它有了一定的了解认识。随后在第七周,我们以小组的形式在实验楼模拟实验室开始了模拟实训。这次实训以理论为基础,使我开始了对企业经营有了深入的了解,有了很深的体会。 我是第一次接触erp沙盘这个企业经营的模拟软件,从刚开始的迷茫,到实训时的不断努力,再到最后的了解与回味,erp沙盘模拟实训让我学到了很多,懂得了很多。 记得第一次到实验室后,面对一堆模拟工具,新奇在心理占据了上风。虽然在老师的指导下我们已经对小组成员进行了分工,但是由于没有进行从充分的准备。我们的小组成员,并没有各尽其责,没有计划性的事实生产经营。于是在实训过程中一系列问题出现了。 不管是在实训过程中还是实训结束,我都深深的体会到,要经营企业并不是想像中的那么简单。不管你是企业的总裁还是财务总监、采购总监、营销总监、生产总监,每一步的决策和计划都要全方面的考虑,而不能凭主观臆断来盲目的进行决策,那样做的后果只会使企业陷入困境甚至破产。在做每一个决定的时候,我们要全方面的进行详细的分析与计算,任何一个细节没有考虑周全就可能导致全局的困境。对于我们这些还没有走出校园的人来说,的确是一件充满挑战和困难的事情。开始的时候,每个人都在担心究竟该怎样经营下去,才不会让企业破产,正式上机操作的时候又是困难重重,由于经营规则理解的不透彻,很多时候会出现错误,到后来, 每一步的操作都要确认好几遍才放心。实践和理论相差还是很大的,我们这些习惯啃书本的学生要想适应社会还需要更多的磨练与实践。 在经营过程中,我们遇到了资金不足、生产能力不足或过剩、如何进行市场开发和产品转产、如何合理投放广告接生产单等一系列的问题。这些问题已经让我们手忙脚乱,焦头烂额了,但是还有很多情况是我们在现实生活中没有接触过的问题,在操作的过程中就发现自己做了很多的不合理的决定,例如未能及早开发新产品、投资生产线的建设、市场的开发不及时、广告投放不是太多造成浪费就是太少拿不到想要的订单等等。来回味一下实习的过程,有很多的事情需要我们用心的理解和记忆,这些是书本上无法学到的,也是以后走向社会很需要的东西。 记得第一次上机,在老师的指导下我们开始了模拟训练,我们开始从最初的初始年开始经营。但是没有多久,我们的问题就开始出现,而之后老师会进行点评指导。随后我就知道了老师的目的。这是一种很好的练习方法,因为在实际的操作过程中才能发现平时不会注意却又是非常重要的操作,只有经过失败才能找到最佳的投资方案,才能牢牢记住该做的事情。虽然在前一天我们小组经过了一番讨论,自以为没有什么大的问题,谁知一上机就手忙脚乱。因为不熟悉操作,一上来就错过了年初的长期贷款,建造生产线的时候不知道每一个季度都要投资,结果导致生产线都只是建造了一季度就停滞在那,浪费了宝贵的时间,而已经建成的生产线又没有进行生产,有是一大损失,最后一季度,我们竟然忘记了开发市场,结果可想而知,即使投放了大笔的广告费都无济于事,没有开发市场就不可能拿到订单。总的来说,第一次的上机是惨不忍睹的结局,但是我们从中明 白了很多步骤的操作规定,这也为我们接下来的训练带来了不小的帮助,在以后的实训中有的组出现了我们第一次的情况,可是正式经营已经开始了,他们只能自认倒霉了。 在第二次上机前,我们有花时间讨论策略,由于有了第一天上机时的经验,我们对接下来的经营制定了详细的计划。我们小组的成员聚在一起,商讨贷款的额度,生产线的建设,产品的开发与市场的开拓,每一项的工作被我们具体的分析到位,并列出了前两年的经营表格,清晰的表明在每一季度需要干的事情。第二次上机的时候,由于我们的事先准备,我们很快就完成了第一年的经营,沾沾自喜的我们马上被一个残酷的事实击倒了,由于我们的权益只剩下29m,我们在第二年中将无法得到长期贷款和短期贷款。我们开始精打细算,试图从每一个步骤省下钱来,在第二年的经营中,我们拼尽全力,不惜放弃一些产品的开发,放弃更多的利益实施应收账款的贴现。在这个时候,很多的组都出现了更为严重的事情,权益为0,面临破

传热学题目培训讲学

传热学题目

传热学 1.热流密度 q 与热流量的关系为(以下式子 A 为传热面积,λ为导热系数,h 为对流传热系数):( ) (A)q=φA (B)q=φ/A (C)q=λφ (D)q=hφ 2.如果在水冷壁的管子里结了一层水垢,其他条件不变,管壁温度与无水垢时相比将:( ) (A)不变 (B)提高 (C)降低 (D)随机改变 3. 当采用加肋片的方法增强传热时,最有效的办法是将肋片加在哪一侧? ( ) (A)传热系数较大的一侧(B)传热系数较小的一侧 (C)流体温度较高的一侧(D)流体温度较低的一侧 4. 导温系数的物理意义是什么? ( ) (A)表明材料导热能力的强弱 (B)反映了材料的储热能力 (C)反映材料传播温度变化的能力 (D)表明导热系数大的材料一定是导温系数大的材料 5. 温度梯度表示温度场内的某一点等温面上什么方向的温度变化率? ( ) (A)切线方向 (B)法线方向 (C)任意方向 (D)温度降低方向 6. 接触热阻的存在使相接触的两个导热壁面之间产生什么影响? ( ) (A)出现温差 (B)出现临界热流

(C)促进传热 (D)没有影响 7. 金属含有较多的杂质,则其导热系数将如何变化? ( ) (A)变大(B)变小 (C)不变(D)可能变大,也可能变小 8. 物体之间发生热传导的动力是什么? ( ) (A)温度场 (B)温差 (C)等温面 (D)微观粒子运动 9. 通过大平壁导热时,大平壁内的温度分布规律是下述哪一种?( ) (A)直线 (B)双曲线 (C)抛物线 (D)对数曲线 10. 已知某一导热平壁的两侧壁面温差是 30℃,材料的导热系数是 22W/(m. K),通过的热流密度是 300W/m2,则该平壁的壁厚是多少? ( ) (A) 220m (B)22m (C)2.2m (D)0.22m 11. 第二类边界条件是什么? ( ) (A)已知物体边界上的温度分布。 (B)已知物体表面与周围介质之间的传热情况。 (C)已知物体边界上的热流密度。 (D)已知物体边界上流体的温度与流速。

传热学实验

一、实验目的 1、了解对流换热的实验研究方法; 2、测定空气横向流过管束表面时的平均放热系数α,并将实验数据整理成准数方程式; 3、学习测量风速、温度、热量的基本技能。 二、主要实验设备 本对流实验在一实验风洞中进行。实验风洞主要由风洞本体、风机、构架、实验管及其加热器、水银温度计、倾斜式微压计、皮托管、电位差计、功率表以及调压变压器等组成。 三、实验原理 根据相似理论,流体强制流过物体时的放热系数α与流体流速、物体几何参数、物体间的相对几何位置以及物性等的关系可用下列准数方程式描述: Pr)(Re,f Nu = 实验研究表明,空气横向流过管束表面时,由于空气普郎特数(Pr=0.7)为常数,故一般可将上式整理成下列的指数形式, n C Nu Re = 式中 C,n 均为常数,由实验确定, Nu ——努塞尔特准数 λ ad Nu = Re ——雷诺准数 v d ω= Re 上述各准则中,α——壁面平均对流换热系数[?2/m W ℃] d ——实验管外径,作为定性尺寸,[m] λ——空气导热系数,[?2/m W ℃] ω——空气流过实验管外最窄截面处流速,[m/s] ν——空气运动粘度,]/[2s m 定性温度:空气边界层平均温度)(2 1 f w m t t t +=。 式中:m t ——实验管壁面平均温度[℃]

f t ——空气平均温度本实验的任务在于确定C 与 n 的数值,首先使空气流速一定,然后测定有关的数据:电流I 、电压 V 、管壁温度w t 、空气温度f t 、微压计动压头h 。至于α和ω在实验中无法直接测得,可通过计算求得,而物性参数可在有关书中查得。得到一组数据后,可得一组 Re 、Nu 值;改变空气流速,又得到一组数据,再得一组 Nu 、Re 值;改变几次空气流速,就可得到一系列的实验数据。 四、实验数据及处理结果 1.测试所得原始数据 表1测试数据表 2.数据分析与计算 ◆表2热电偶测管温度平均值 ◆已知管长L=450mm,管直径d=40mm ,求得管表面积为205655 .0m L d A =??=π ◆空气进出口的平均绝对温度[K]:K T T T f 15.273)(2 1 21++= ,(见表3)由差值法及查表可知,热电偶

西安交通大学传热学大作业

《传热学》上机大作业 二维导热物体温度场的数值模拟 学校:西安交通大学 姓名:张晓璐 学号:10031133 班级:能动A06

一.问题(4-23) 有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。 第一种情况:内外壁分别维持在10C ?和30C ? 第二种情况:内外壁与流体发生对流传热,且有C t f ?=101, )/(2021k m W h ?=,C t f ?=302,)/(422k m W h ?=,K m W ?=/53.0λ

二.问题分析 1.控制方程 02222=??+??y t x t 2.边界条件 所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图: 对上图所示各边界: 边界1:由对称性可知:此边界绝热,0=w q 。 边界2:情况一:第一类边界条件 C t w ?=10 情况二:第三类边界条件

)()( 11f w w w t t h n t q -=??-=λ 边界3:情况一:第一类边界条件 C t w ?=30 情况二:第三类边界条件 )()( 22f w w w t t h n t q -=??-=λ 三:区域离散化及公式推导 如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。利用热平衡法列出各个节点温度的代数方程。 第一种情况: 内部角点:

《传热学》实验:平板导热系数测定实验

《传热学》实验一: 准稳态平板导热系数测定实验 一、 实验目的 1.快速测量绝热材料(不良导体)的导热系数和比热,掌握其测试原理和方法。 2.掌握使用热电偶测量温差的方法。 二、 实验原理 本实验是根据第二类边界条件,无限大平板的导热问题来设计的。 设平板厚度为δ2,初始温度为0t ,平板两面受恒定的热流密度c q 均匀加热(见图1)。求任何瞬间沿平板厚度方向的温度分布()τ,x t 。 导热微分方程、初始条件和第二类边界条件如下: ()()22,,x x t a x t ??=??τττ ()00,t x t = (),0c t q x δτλ ?+=? ()0,0=??x t τ 方程的解为: ()()()()2212002132,1cos exp 6n c n n n n q x x t x t F ατδτδμμλδδμδ∞+=??-??-=-+--?? ????? ∑ (1) 式中: τ——时间; λ——平板的导热系数; α——平板的导温系数;123n n n μβδ==,,,, ; 02a F τδ =——傅里叶准则; 0t ——初始温度; c q ——沿x 方向从端面向平板加热的恒定热流密度。 随着时间τ的延长,0F 数变大,式(1)中级数和项愈小。当5.00>F 时,级数和项变得很小,可以忽略,式(1)变成: 图1

()20221,26c q x t x t δαττλδδ??-=+- ??? (2) 由此可见,当5.00>F 后,平板各处温度和时间成线性关系,温度随时间变化的速率是常数,并且到处相同。这种状态称为准稳态。 在准稳态时,平板中心面0=x 处的温度为: ()0210,6c q t t δαττλδ??-=- ??? 平板加热面x δ=处为: ()?? ? ??+=-31,20δτλδτδa q t t c 此两面的温差为: ()()λ δττδc q t t t ?=-=?21,0, (3) 如已知c q 和δ,再测出t ?,就可以由式(3)求出导热系数: t q c ?=2δλ (4) 实际上,无限大平板是无法实现的,实验中是用有限尺寸的试件。一般可以认为,试件的横向尺寸是厚度的6倍以上时,两侧散热对试件中心的温度影响可以忽略不计。试件两端面中心处的温度差就是无限大平板时两端面的温度差。 根据热平衡原理,在准稳态时,有下列关系: τ δρd dt F c F q c ????=? (5) 式中: F ——试件的横截面积; c ——试件的比热; ρ——其密度; τd dt ——准稳态时的温升速率。实验时,τ d dt 以试件中心处为准。 由式(5)可得比热: τ δρd dt q c c ??= 按定义,材料的导温系数可表示为 2()()2c c c t t c q t λδλδδδαρττ ===??? m 2/s 综上所述,应用恒热流准稳态平板法测试材料热物性时,在一个实验上可同时测出材料的三个重要热物性:导热系数、比热容和导温系数。 三、 实验装置 非(准)稳态法热物性测定仪内,实验本体由四块厚度均为δ、面积均为F 的被测试材重叠在一起组成。 在第一块与第二块试件之间夹着一个薄型的片状电加热器,在第三块和第四

课程实训报告

信息工程学院课程实训报告 姓名:谢成林 学号:45 实训名称:C/C++项目实训 所在班级:14级软件工程2班 实训时间: 2015年6月8日-2015年6月18日 实训地点:工B201 实训教师: 实训企业:上海杰普软件科技有限公司 实训成绩: 宿州学院信息工程学院实习实训中心制

三、项目开发过程(1写明项目开发需要用到的C/C++知识点,并给出相关重要代码,并在代码后做出注释。2 写出在项目开发环境下的开发步骤,尽可能详细。可续页。) 1、相应的知识点 1、导包:如果需要用到其他包中的类就需要导包 本次实训主要使用的包 工具包 布局画界面 布局画界面 部分 2数组 数组有基本数据类型和引用型数据类型,有一维和二维,二维是存放一维的数组,二维数组一般确定一个有X,Y轴坐标的位置。 而且数组的初始化也有静态的和动态,不得混用。 以下是利用数组添加图片,添加鼠标的事件监听等。

3产生随机数 利用随机数产生1到81的随机数 4鼠标点击事件 BUTTON1左击,BUTTON2中击,BUTTON3右击。 5、结构体语 (1)if条件语句 有些代码只能在满足条件之后可以执行的。 if(条件){} .else{} 多支语句 本次实训不仅利用if语句判断是否右击,解决了雷数的加减问题,还解决了所点击是否为雷,随后找出所雷并标出的问题等。

(2)循环语句 有些代码重复执行 循环语句可以很好的执行重复执行的代码,就如以下,利用for循环很好的解决了初级,中级,高级布雷任务等。 6界面和菜单

(1)界面 从图中的可以看出总的桌布是JFrame布局方式是BolderLayout然后添加Jpanel桌布添加相应的组件和文本框放置在桌布JFrame的北方,以同样方式然后设置网格布局放置在JFrame中间这就是以下界面的生成。 桌布 JFrame:可独立的存在,自动调节大小,有最小化最大化和关闭。 Jpanel:不可独立的存在,必须借助JFrame才可以显示出来。 布局 FlowLayot:流式布局,可大可小 BolderLayout:有东南西北中区域,可按布局按位置存放 GridLayout:网格布局将容器分割成许多行和列,形似网格

《传热学》(第四版)习题附答案

第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式: )(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳 兹曼常数;T -辐射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 6. 用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析其原因。 答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 7. 什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 8.有两个外形相同的保温杯A 与B ,注入同样温度、同样体积的热水后不久,A 杯的外表面就可以感觉到热,而B 杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好?

传热学-强迫对流实验指导书(2014)

《传热学》实验指导书 实验名称:强迫流动单管管外放热系数的测定 实验类型: 验证性实验 学 时:2 适用对象: 热动、集控、建环、新能源等专业 一、实验目的 1.该项实验涉及较多课程知识,测量参数多,如风速、功率、温度,可考查学生的综合能力。 2.测量空气横向流过单管表面的平均表面传热系数h ,并将实验数据整理成准则方程式。 3.学习测量风速、温度、热量的基本技能,了解对流放热的实验研究方法。 二、实验原理 根据相似理论,流体受迫外掠物体时的表面传热系数h 与流速、物体几何形状及尺寸、流体物性间的关系可用下列准则方程式描述: ),(r e u P R f N = 实验研究表明,流体横掠单管表面时,一般可将上式整理成下列具体的指数形式: m n r m n e um P CR N ?= 式中:m n c ,,均为常数,由实验确定 努谢尔特准则---um N m um hd N λ= ---em R 雷诺准则 m em d R νμ= ---rm P 普朗特准则 m n rm P αν=

上述各准则中--d 实验管外径,作定性尺寸(米) --μ流体流过实验管外最窄面处流速,()/s m --λ流体导热系数()/K m W ? --α流体导温系数)/(2s m --ν流体运动粘度)/(2s m --h 表面传热系数)/(2K m W ? 准则角码m 表示用流体边界层平均温度)(2 1 f w m t t t -= 作定性温度。 鉴于实验中流体为空气,rm P =0.7,故准则式可化成: n em um CR N = 本实验的任务在于确定n c 与的数值。首先使空气流速一定,然后测定有关的数据:电流I 、电压V 、管壁温度w t 、空气温度f t 、测试段动压P 。至于表面传热系数h 和流速μ在实验中无法直接测量,可通过计算求得,而物性参数可在有关书中查到。得到一组数据后,即可得一组e R 、u N 值,改变空气流速,又得到一组数据,再得一组e R 、u N 值,改变几次空气流速,就可得到一系列的实验数据。 三、实验设备 本对流实验在一实验风洞中进行。实验风洞主要由风洞本体、风机、构架、实验管及其加热器、水银温度计、动压计、毕托管、电位差计、电流表、电压表以及调压变压器组成。 由于实验段前有两段整流,可使进入实验段前的气流稳定。毕托管置于测速段,测速段截面较实验段小,以使流速提高,测量准确。风量由风机出口挡板调节。

传热学课程上机实习

传热学计算机实习指导书 本指导书是为配合本科生传热学课中计算机应用方面的教学而编写的。 应用计算机解决工程实际问题,是现代工程技术人员所必备的技能。在传热学课程中引入计算机实习的目的,是使学生初步掌握用计算机求解传热问题的技能,从而提高学生应用计算机解决工程实际问题的能力。 大量的传热问题能够用计算机求解。研究如何用计算机求解传热问题的专门知识数值传热学(或称计算传热学)已经发展成了传热学的一个分支学科。传热学课中所涉及的只是数值传热学的初步知识。因此,本次计算机实习也仅仅是作为数值传热学的入门。 本指导书给出了三个练习题及相应的算法。这三个练习题分别涉及了一维稳态导热、二维稳态导热和一维非稳态导热。要求学生在掌握问题的数值计算方法的基础上,独立编写计算机程序并用所编的程序计算出这三个练习题的数值结果。 1 练习题一:一维稳态导热的数值计算 1.1 物理问题 图1示出了一个等截面直肋,处于温度t ∞=80℃的流体中。肋表面与流休之间的对流换热系 数为h=45W/m 2. ℃,肋基处温度t w =300℃,肋端绝热。肋片由铝合金制成,其导热系数为λ=110W/m ℃,肋片厚度为δ=0.01m ,高度为H=0.1m 。试计算肋内的温度分布及肋的总换热量。 1. 2数学描述及其解析解 引入无量纲过余温度∞ ∞ --=t t t t w θ,则以无量纲温度θ描述的肋片导热微分方程及其边界条 件为: 0,1,002 2 2=??====-x H x x m dx d θθθθ (1-2) (1-1) (1-3)

其中A hp m λ= (其中符号含义与教科书杨世铭陶文铨编著《传热学》相同,以下同)。 上述数学模型的解析解为: ()()[]() ()()m H th t t m hp m H ch H x m ch t t t t w w ∞∞∞-= -? -=-φ (1-4) 按式(1-4)计算得到的在肋内各点的温度由表1给出。 1. 3 数值离散 1.3.1 区域离散 在对方程(1-1)~(1-3)进行数值离散之前,应首先进行计算区域的离散。计算区域的离散如图1所示,总节点数取N 。 1.3.2 微分方程的离散 由于方程(1-1)在计算区域内部处处成立,因而对图1所示的各离散点亦成立。对任一节点i 有: 0222=-???? ??i i m dx d θθ 用θ在节点i 的二阶差分代替θ在节点i 的二阶导数,得: 0222 1 1=-?+--+i i i i m x θθθθ 整理上式成迭代形式: ()112 221 -++?+= i i i x m θθθ (i=2,3,…,N-1) (1-5) 1.3.3 边界条件离散 上面得到的离散方程式(1-5),对所有内部节点都成立,因此每个内部节点都可得出一个类似的方程。事实上,式(1-5)表达的是一个代数方程组。但这个方程组的个数少于未知数i θ (i=1,2, ……,N)的个数。因此,还需要根据边界条件补充进两个方程后代数方程组才封闭。左边界(x=0)为第一类边界条件,温度为已知,因此可以根据式(1-2)直接补充一个方程为: 11==-=∞w w t t θθ 右边界为第三类边界条件,由图1中边界节点N 的向后差分来代替式(1-3)中的导数,得: 01 =?--x N N θθ

传热学课程实验(1)

传热学实验1 顺流式换热器传热系数测定 [实验目的] 1. 熟悉换热器性能的测试方法; 2. 了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能特征; 3. 加深对顺流和逆流两种流动方式换热器换热能力差别的认识。 [实验原理] 换热器性能测试实验,主要对应用较广的间壁式换热器中的三种型式:套管式换热器、螺旋板式换热器和列管式换热器进行性能的测试。 图1实验装置简图 1.热水流量调节阀 2. 热水螺旋板、套管、列管启闭阀门组 3.热水流量计 4.换热器进口压力表 5.数显温度计 6.琴键转换开关 7.电压表 8.电流表 9.开关组10.冷水出口压力计11. 冷水螺旋板、套管、列管启闭阀门组12.逆顺流转换阀门组13.冷水流量调节阀 本实验装置换热形式为热水—冷水换热式,工作原理如图2所示。热水加热采用电加热方式,冷、热流体的进出口温度采用数显温度计,通过琴键开关来切换测点。 实验台参数: 1.换热器换热面积{F}: ⑴.套管式换热器具0.45 m2 ⑵.螺旋板式换热器0.65 m2 ⑶.列管式换热器 1.05 m2 2.电加热器总功率:9.0 kw 3.冷、热水泵: ⑴.允许工作温度:< 80 ℃ ⑵.额定流量: 3 m3/h

⑶.扬程:12 m ⑷.电机电压:220 V ⑸.电机功率:370 W 4.转子流量计: ⑴.型号:LZB-15 ⑵.流量:40-400升/小时 ⑶.允许温度范围:0―120 ℃ 1.冷水泵 2.冷水箱 3.冷水转子流量计 4.冷水顺逆流换向阀门组 5.列管式换热器 6.电加热水箱 7.热水转子流量计 8.回水箱 9. 热水泵10. 螺旋板式换热器11. 套管式换热器 [实验操作] 1.实验前准备: ⑴. 熟悉实验装置及使用仪表的工作原理和性能; ⑵. 打开所要实验的换热器阀门,关闭其它阀门; ⑶. 按顺流方式调整冷水换向阀门的开或关; ⑷. 向冷-热水箱充水,禁止水泵无水运行(热水泵启动,加热才能供电)。 2.实验操作: ⑴. 接通电源;启动热水泵(为了提高热水温升速度,可先不启动冷水泵),并调整好合适的流量; ⑵.调整温控仪,使加热水温控制在80℃以下的某一指定温度; ⑶.分别打开加热器开关(热水泵开关与加热开关已进行连锁); ⑷.利用数显温度计和温度测点选择琴键按钮,观测和检查换热器冷-热流体的进出口温度。待冷-热流体的温度基本稳定后,既可测读出相应测温点的温度数值,同时测读转子流量计显示的冷-热流体的流量读数;记录上述测试结果; ⑸.实验结束后,首先关闭电加热器开关,5分钟后切断全部电源。 [实验数据与处理]

相关文档
最新文档