(整理)光子晶体滤波器

(整理)光子晶体滤波器
(整理)光子晶体滤波器

光子晶体滤波器理论基础

2.1 光子晶体概述

2.1.1光子晶体概念

光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的:

(2.1)

其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。

从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程:

其中,0ε为平均相对介电常数,?? ?→r ε为相对介电常数的调制部分,他 =0,- E 2m + 2??? ??ψ?????????? ????? ???→→t V r r =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2)

随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常

图2.1光子禁带示意图

称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。

而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。

2.1.2光子能带理论

由电子的能带理论知道,当把电子的运动近似地看成单个电子在一个等效的周期性势场中运动时,电子的波函数Ψ满足薛定谔方程,即

2

2()2e h V r E m ψψ??-?+=??????

(2-3) 禁带

波矢

()()n V r V r R =+ (2-4) 其中h 为普朗克常数,e E 为电子能量,式(1-2)表示位能)(r V 具有周期性,其周期为晶格矢量n R 。

另一方面,一束频率为ω的光在不均匀的无损耗介质中传播时,它的电矢量E 所满足的麦克斯韦方程可写成

2

2

21022()()E E r E E c c ωωεε-?+???-= (2-5)

其中0ε是常数,为介质的平均介电常数; 1()r ε是扰动介电常数,c 为真空中的光速。而当光子是在一个介电常数作周期性变化的介质中传播时,令'n

R 为变化的周期,则 '11()()n r r R εε=+ (2-6)

比较式(1-1)和式(1-3),可以看出它们的形式有某种相似之处,从而建立如下的类比关系

2

12()()r V r c ωε-- (2-7) 即介电常数的变化相当于位能的变化。 0ε相当于电子的能量本征值。

从光子及电子运动方程的可类比性得出:在一个折射率周期变化的结构中,光子的运动将类似于在周期性势能变化下电子的运动。因此,折射率周期变化的结构应具有光子的能带结构及相应的光子能隙。所谓能带、

电子能隙

ω

ω

k

光子能隙

k

能隙是指光子的频率ω与波矢k的某种关系,如图1-1所示。

由此可见,光子的k-ω曲线是线性的,而电子的k-ω曲线是抛物线型的。这里可用描述电子能带结构的布里渊区来描述光子的能带结构。布里渊区是在波矢空间中的一些特定区域,在每个布里渊区内部,频率随波矢连续变化,属于一个布里渊区的能级构成一个能带。在布里渊区的边界上频率作为波矢的函数发生突变,即出现能隙。这样对于存在光子能隙的介质来说,不是所有频率的光都能在其中传播的,相应于光子能隙区域的那些频率的光将不能通过介质,而是被全部反射出去[15]。这些被禁止的频率区间通常被称为“光子带隙”(Photonic Band Gap)。通常称具有光子带隙(PBG)的空间结构材料为光子晶体,这一概念最先是在1987年分别由S.John和E.Yablonovitch等人提出来的。

进一步研究可以发现,随着光在晶体中的传播方向的改变,光子带隙的位置也会改变,可能在某一个方向被禁止的光线在其他的方向却能传播,这种光子带隙被称为不完全光子带隙。在考虑到作为玻色子的光子和费米子的电子的不同以后,发现对于二维的密堆积排列和三维面心立方结构,通过改变晶格常量和对称性,可以使所有方向上的能隙重合,也就是说可以存在完全光子带隙。后来的研究表明,要得到完全光子带隙,晶体的电容率对比值还要大于 2.0。事实上影响光子带隙产生的因素还有很多。由于在光子晶体中频率落在光子带隙内的电磁波不能传播,因此它具有许多特殊的物理现象,例如:抑制自发辐射、能量转移、光子压缩态、光双稳和光开关等。此外,光子晶体的应用价值很大程度上还在于缺陷态的存在。类似普通晶体中的掺杂或缺陷会在电子禁带中造成允许能级,同样的在一定程度上破坏了光子晶体的对称性(加入或取出一部分物质),可以在光子带隙中产生很窄的允许频带,也就是说可以做出对某一特定波长透明的窗口,频率与之吻合的光波被局域在该窗口,一旦偏离,强度会迅速衰减。

2.1.3光子晶体的结构

一维光子晶体把在一维一个方向上具有光子频率禁带的材料称为一维光子晶体。图2-3(a)给出的是一种简单一维的光子晶体结构,它是有两种介质交替叠层而成的,其中的黑色部分为一种介质,黑色与黑色之间为

另一种介质所填充。这种结构在垂直于介质片的方向上介电常数是空间位置的周期性函数,而在平行于介质片平面的方向上介电常数不随空间位置而变化。这种结构的光子晶体在光纤和半导体激光器中己得到了应用。所谓的布拉格光纤和半导体激光器的分布反馈式谐振腔实际上就是一维光子晶体。

二维光子晶体把在二维空间各方向上具有光子频率禁带特性的材料称为二维光子晶体。图2-3(b)给出的是一种典型的二维光子晶体结构,它是由许多介质杆平行而均匀地排列而成的。这种结构在垂直于介质柱的方向上介电常数是空间位置的周期性函数,而在平行于介质柱的方向上介电常数不随空间位置而变化。长波长二维光子晶体多通过上下两个带孔的薄片将细小的介质杆或金属杆固定住,薄片孔的排列决定该光子晶体的结构。而短波长二维光子晶体多采用在半导体基片上打孔的方法来制造,这时图2-3(b)中的圆柱介质变成了空气柱或真空圆柱,而其中圆柱体之间的空间则变成了半导体材料。

三维光子晶体三维光子晶体是指在三维空间各方向上都具有光子频率禁带特性的材料。图2-3(c)是一种典型的三维光子晶体结构。美国贝尔通讯研究所的E.Yablonovitch创造出了世界上第一个具有完全光子频率禁带的三维光子晶体,它是一种由许多面心立方体构成的空间周期性结构,也称为钻石结构[16]。

(a)(b)(c)

图2-3 光子晶体的结构

Fig.2-3 The structure of photonic crystal

2.1.4 光子晶体的理论研究方法

在设计和分析光子晶体时,人们最关心的是它的透射系数随入射波长的变化,这就涉及到分析光子晶体的带隙结构,最早使用的方法是标量波

法,虽然它能推算出能带结构,但它不能很好地解释实验现象:面心立方结构的光子晶体具有光子带隙。随后,人们意识到光波是矢量波,它应该满足麦克斯韦方程。因此出现了矢量波法。随着研究的深入,运用的方法也越来越多,它们的核心都是解麦克斯韦方程。下面介绍几种最常用的计算方法。

(1)频域法

平面波展开法 这是在光子晶体能带研究中用得比较早和用得最多的一种方法。主要是将电磁场以平面波的形式展开,何启明等人在预言光子禁带的存在的文章中便是用的这种方法。电磁场在倒格矢空间以平面波叠加的形式展开,可以将麦克斯韦方程组化成一个本征方程,求解本征值便得到传播的光子的本征频率。但是,这种方法有明显的缺点:计算量与平面波的波数有很大关系,几乎正比于所用波数的立方,因此会受到较严格的约束,对某些情况显得无能为力。如当光子晶体结构复杂或处理有缺陷的体系时,需要大量平面波,可能因为计算能力的限制而不能计算或者难以准确计算。如果介电常数不是恒值而是随频率变化,就没有一个确定的本征方程形式,而且有可能在展开中出现发散,导致根本无法求解。

转移矩阵方法 由磁场在实空间格点位置展开,将麦克斯韦方程组化成转移矩阵形式,同样变成本征值求解问题。转移矩阵表示一层(面)格点的场强与紧邻的另一层(面)格点场强的关系,它假设在构成的空间中在同一个格点层(面)上有相同的态和相同的频率,这样可以利用麦克斯韦方程组将场从一个位置外推到整个晶体空间。这种方法对介电常数随频率变化的金属系统特别有效,由于转移矩阵小,矩阵元少,计算量较前者大大降低,只与实空间格点数的平方成正比,精确度也非常高,而且还可以计算反射系数及透射系数。

(2)时域法

时域法是解麦克斯韦方程的时域形式

D H J t ???=

+? (2-8)B E t

???=? (2-9) FDTD (finite-difference time-domain )时域有限差分法

1966年由Yee 首先提出,其基本做法是:将问题空间沿3个坐标轴分成很多网格单元(Δx ,Δy ,Δz ),用中心有限差分式来表示函数对空间和时间的偏导数,然后带入麦克斯韦方程,再利用布里渊区边界的周期条件,求出结果。在执行FDTD 算法时,随着时间的增长,保证算法的稳定性是一个重要问题,应选择

min min min min(,,)2x y z t c

????= (2-10) 但是,有限差分法没有考虑晶格格点的形状,如果遇到具有特殊格点形状的光子晶体,就很难得到精确解。

此外,在研究有缺陷的光子晶体时,还可用超元胞法和格林函数法,在此就不一一列举了[17]。

上述的理论计算方法只是在给定光子晶体的结构组成后才能定量定性地得出准确的结论。虽然我们知道有几个参数(如介电常数比、填充比、晶格结构等)对光子禁带有影响,但到底是什么物理机制在光子禁带的形成中起了决定作用,尚无明确的结论。例如,如果要得到一定频率范围的光子禁带,我们应该采用何种光子晶体结构尚不能准确把握。由于这方面的研究仅有十几年历史,还有大量的工作需要去做。

2.1.5 光子晶体制备的实验方法

目前实验和实际应用的光子晶体都是人工制备的。自然界中也有极少光子晶体材料存在,例如蛋白石。光子晶体的晶格尺寸与光波波长相当,因此波长越长的光子晶体越易制造。微波波段的光子晶体晶格常量在毫米量级,用机械加工的办法即可实现。把直径为毫米量级的介质柱相互平行地排成阵列,或者在介质基底上打孔形成相互平行的空气柱,当微波在平行于圆柱轴线的平面上传播时,就会形成光子带隙。最早的二维和三维光子晶体就是这样制作的。

第一个具有完全光子带隙的光子晶体结构是E.Yablonovitch 研究小组于1991年设计出来的。他们在特殊制备的面心立方晶体结构中,从一定方向观察到了不完全的光子带隙的存在。随后,他们用活性离子束依次从3个相差120°的方向在介质基底材料上打出近似椭圆圆柱形的空间空洞,

消除了空间对称性引起的能级简并,最终得到了真正具有完全光子带隙的三维光子晶体(如图2-4和图2-5所示)。Yablonovitch 得到的光子带隙的位置处在微波波段,能隙中心频率为1.45GHz 。

如果采用激光刻蚀、粒子束刻蚀、反应粒子束刻蚀等先进的半导体加工技术,可以比较容易的得到远红外波段的二维光子晶体,甚至可以将频率提高到红外和可见光波段。但是,由于加工工艺水平的局限,即使是红外波段的三维光子晶体,制备上也有很大的困难,较为可能的是,在半导体基片上通过镀膜、光刻、腐蚀这几个过程反复循环形成方形电介质柱周期堆积,有可能构成工作在光学波段的光子晶体。

机械加工困难使人们把目光投向其他的方面。这时,具有自组织特性的胶体晶体引起了人们的注意。早在60年代,人们就发现,悬浮在水中的分散聚苯乙烯乳胶球由于吸附了离子带有负电荷,相互排斥而自发排列成与晶体类似的有序结构,其周期由胶体颗粒浓度决定。

图2-4第一块光子晶体结构图

Fig.2-4The structure of the first

3-D photonic crystal

图2-5第一块光子晶体生成图 Fig.2-5 The creation of the first 3-D photonic crystal

研究人员在胶体溶液中放入基片,胶体颗粒和基片带不同的电荷,一定浓度和电荷密度的胶体颗粒在静电作用下自组织成有序结构并吸附到基片表面,形成面心立方(FCC)和体心立方(BCC)结构的胶体晶体,晶体的密排面平行于基片表面。不通过静电力的作用,而采用加速度力场,如用重力场或者离心力把胶体颗粒沉积在基片上、容器底,也可以得到胶体晶体。由于胶体颗粒的尺寸在微米量级以下,因此可以用之制备近红外和可见光波段的光子晶体。然而,这样得到的晶体在平行于基底表面方向虽然是密排的有序结构,但在垂直方向上却是无序的,其光子带隙一般出现在某些特定的方向,不能称之为真正光子晶体。如果利用激光干涉光场的局限作用或者外加电场在垂直生长层面方向排列胶体颗粒使之更加有序,能够得到品质较好的晶体,但这样制备的晶体体积一般较小。此外,由于化学成分的限制,胶体生长的光子晶体多为聚苯乙烯体系和二氧化硅胶体体系,其电容率对比值不能太大,这也决定了胶体光子晶体的光子能带比较窄。

目前,实际应用研究较多的还有反蛋白石法制备光子晶体。蛋白石是一种常见宝石,其结构为可见光波段的二氧化硅小球的最紧密堆积或者面心立方点阵。反蛋白石结构就是指空气小球或其他低电容率小球以密堆积排列在高电容率的连续介质中,制备的方法是在具有蛋白石结构的模版缝隙中填充高折射率介质,如Si,Ge,TiO2等,然后用腐蚀、煅烧的办法去掉原来的模版材料,形成的光子晶体,并满足材料互联和折射率周期性变化至少为2倍的宽能隙要求。用这种方法已经制备出了可见光波段和近红外波段的光子晶体,现在研究的重点和难点主要集中在模版的选择、填充上。反蛋白石法制备光学波段特别是可见光波段的光子晶体有简单、廉价的优点,比较机械和刻蚀制作的光子晶体,也存在尺寸小、机械强度低的缺点[17]。

2.2 光波分复用技术

2.2.1光波分复用技术概述

随着通讯容量的不断增加,通讯系统面临着急需扩容的问题。目前扩容的方法主要有:空分复用(SDM),时分复用(TDM)和波分复用(WDM)等。

SDM必须铺设新的光缆线路,无疑成本高,耗时长。

TDM则是通过时间分割来提高每秒钟传输的信息量,即以扩大单根光纤的传输容量实现更高的比特率。TDM有三个主要的问题:一是必须采用高速率的设备来替换原来的光传输设备;二是高的数据速率受到光纤色散和非线性的限制;三是因为受到电子器件物理极限的限制,一般认为传输速率高于40Gbit/s是困难的。

近年来,WDM的应用使光纤带宽资源得到进一步的利用,尤其是密集波分复用(DWDM)技术。这种技术采用原来铺设的光纤,使单根光纤的传输容量在高速率的TDM的基础上按信道数成倍数增加。WDM既不要铺设新光缆,又不必废弃原有的光传输设备,可迅速达到扩容的目的,所以许多人认为,直至10Gbit/s或者甚至40Gbit/s尚可采用TDM扩容方法,速率再高,必须考虑采用WDM方式。可见,WDM具有巨大的应用潜力。

波分复用(WDM)的实质是频分复用(FDM),只是光波通常更多采用波长而不用频率来描述而已。目前,广泛应用的光纤通讯窗口为1310nm 和1550nm两个波段,其中1310nm窗口的低损耗区波长约为1260nm~1360nm;1550nm窗口的低损耗区波长为1480nm~1580nm。两个波段共有大约200nm的工作区,相当于光纤30THz的常宽资源。若用100GHz 滤光片来进行波分复用,则可有250个信道数。显然,迄今远没有开发运用光纤的带宽资源。也说明波分复用还有很大的潜力,还有许多研发工作要做。

早期,人们把1310nm和1550nm两个波段的复用叫WDM;后来随着EDFA的应用,把1550nm波段分成许多个波长的复用,叫做DWDM,其相邻信道波长间隔一般小于2nm。今天,实际上光纤通讯系统都在向着DWDM系统发展,但人们仍习惯于统称WDM系统,或者说DWDM只是WDM的一种特殊形式。

2.2.2 波分复用基本原理

图2-6是波分复用系统示意图。由图可以看出,在发送端,波分复用器(MUX)把激光分成n个光载波长(信道),并复用至一根光纤。由于光波在光纤中传输时会不断衰减,所以传输信号需要用波长980nm或1480nm半导体激光泵浦的EDFA光纤放大器放大。最后到达接收端,再将复用的各个信道分开,即所谓解复用(DEMUX)。信道波长可以是等间

隔的,也可以是不等间隔的。信号在传输过程中需要上下(Add/Drop),故有光插分复用器。此外还有色散补偿、光学特性监控等等。

通常,WDM系统主要包括以下技术:第一是分波合波(Mux/Demux)技术。目前大量使用的是薄膜干涉滤光片。这主要是因为薄膜干涉滤光片具有较好的光学性能、较高的稳定性和较低的生产成本。第二是光放大,主要采用在1550nm附近工作带宽为30nm~40nm的EDFA。第三是克服色散和非线性技术。第四是节点技术,即光交叉连接(OXC)和光分插(ODAM)。第五网络监测、控制和管理技术。[18]

2.2.3 波分复用技术的特点

1.光波分复用器是一个无源纤维光学器件,不含有电子电源,因而器件具有结构简单、体积小、可靠,易于和光纤耦合等特点;

2.由于每个不同波长信道的光信号在同一光纤中是独立传输的,不互相调制,因而光波复用通信能实现同时在一根光纤中传输多种信息,包括声音、视频、图象、数据、文字、图形等,实现多媒体传输;

3.波分复用器件具有互易性,即一个器件既可合波又可分波,因此可以在一根光纤上实现全双工通信(双向传输)。

THz波段的F_P光子晶体滤波器

THz 波段的F -P 光子晶体滤波器 * 周 梅 1) 陈效双 2)- 王少伟 2) 张建标 2) 陆 卫 2) 1)(中国农业大学理学院应用物理系,北京 100083) 2)(中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083) (2005年11月23日收到;2005年12月11日收到修改稿) 理论上设计了一系列一维非周期光子晶体,这些光子晶体具有超窄带滤波的特性.并利用成熟的半导体工艺制备出了具有此性能的滤波器.通过比对理论和实验上的透射光谱,得到了两者符合较好的结果. 关键词:THz 波段,F -P 滤波器,非周期,光子带隙 PACC :7820P,4270Q *国家重点基础研究发展规划(973)(批准号:2001CB61040),中国科学院/百人计划0基金(批准号:200012),国家自然科学基金重点项目(批准号:10234040),上海科学技术委员会重点基金项目(批准号:02DJ14066)和上海市自然科学基金(批准号:03ZR14023)资助的课题.-E -mail:xschen@mail.si https://www.360docs.net/doc/c610753287.html, 11引言 THz(Terahertz)波段是介于红外与微波之间的一个波段,其频率范围一般在011)10THz(1THz=1012 Hz),具有广泛的应用前景,而以往却是研究得最少.由于最近发现THz 波段在医学影像、化学检测与分析、天文学甚至无线通讯等领域有着巨大的应用潜力 [1)3] ,使得人们对该领域产生了很大的兴趣. 最近THz 波段激光器(414THz)的研制成功[1] ,无疑 将对该领域起到极大的促进作用.众所周知,对于任何波段电磁波的应用都有三个重要环节:光源、传输和探测,只有对这三个重要环节的研究都有所突破,才能真正实现THz 波段的应用.目前对THz 波段的研究主要集中在THz 光源和探测上,控制其传输方面的研究相对较少. 光子带隙作为光子晶体的一个基本特性,具有控制电磁波传输的能力 [4)6] ,可应用于如滤波器、偏 振器及反射器等许多光学元件[7)10] ,因此对THz 波 段光子晶体的研究有利于人们对THz 波段电磁波传输的调控.尽管大部分光子晶体材料的实验研究都集中在微波 [9,11,12] 、红外 [13,14] 及可见 [15,16] 波段,但 是最近,人们也通过微机械加工[17] 、激光快速原位 成形(laser rapid prototyping )等方法[8,18,19] 制备出了 THz 波段的光子晶体,这些对THz 波段光子晶体的 研究和应用都具有相当重要的意义. 作为最简单的一维光子晶体,其理论研究和实验研究都已经比较成熟 [20] ,而且早在光子晶体的概 念提出之前就已经得到广泛应用.比如光学薄膜中的K P 4高反膜就属于一种特殊结构的一维光子晶体,在激光和光学设备中应用广泛.然而,这种多层膜的高反区(反射率高于95%的区域,high refractive region,HRR)较窄,除了增大高、低折射率层的折射率反差外[21] ,如果适当地引入无序,也可以使HRR 变宽[6,22] .当前对一维系统光局域的理论[23)30] 和实 验 [31] 研究表明,如果在一维多层周期膜系(一维光 子晶体)中引入无序,光就会被局域起来.因此,可以利用这种特性,来实现光子晶体的一些特殊用途.本文就是利用这样的特性,在理论上设计了THz 波段的F -P 光子晶体滤波器,并借助于成熟的半导体工艺制备出具备此性质的样品. 21THz 波段F -P 滤波器的设计 常规的超窄带通滤光片多采用类似于F -P 干涉仪的结构,即在两个K P 4膜系构造的高反射层间夹共振腔的设计.这种设计可以给出带宽非常窄的滤光片,但它对膜系中厚度的涨落非常敏感.只要膜层厚度出现微小的涨落,就会使滤光片的性能明显退化.为此,我们提出用非周期型的膜系替代常规的两 第55卷第7期2006年7月1000-3290P 2006P 55(07)P 3725-05 物 理 学 报 AC TA PHYSIC A SINICA Vol.55,No.7,July,2006 n 2006Chin.Phys.Soc.

可重构或可调谐微波滤波器技术

可重构或可调谐微波滤波器技术 电子可重构,或者说电调微波滤波器由于其在改善现在及未来微波系统容量中不断提高的重要性而正吸引着人们越来越多的关注来对其进行研究和开发。例如,崭露头脚的超宽带(UWB)技术要求使用很宽的无线电频谱。然而,作为资源的频谱是宝贵而有限的,因此,频谱总是被用于多种用途,这意味着当诸如UWB 无线系统这种操作受到关注时,频谱上充满着不期望的信号。在这种情况下,现存的时时处处都在发生变化的不期望的窄带无线电信号有可能会干扰UWB 系统的波段。这种问题的解决方案是在UWB 带通滤波器的通带上引入了一个可进行电切换或电调谐的狭窄的抑制带(陷波)。这种电子可重构滤波器也是宽带雷达或电子军用系统所渴望得到的。我们可以来未雨绸缪地考虑未来的认知无线电和雷达应用,可以肯定的是,可进行电子重构的微波滤波器将会在无线系统中起到一个更重要的作用。 一般来说,为了开发电子可重构滤波器,有源切换元件或调谐元件,如半导体p-i-n 和变容器二极管,射频(RF)微机电系统(MEMS)或其它基于功能性材料的元件,包括铁电体变容器,需要被集成进入无源滤波器结构中。由于微带线滤波器[1]能够便于以很小的尺寸来完成这类集成,因此,人们对于在微带线的基础上开发可调谐或可重构滤波器的兴趣日益增加[2]-[36]。这些滤波器可以分类为可调谐梳状带通滤波器[2]-[9],射频微机电系统可调谐滤波器[10]-[15],压电传感器(PET)可调谐滤波器[17]-[19],可调谐高温超导(HTS)滤波器[21]-[23],可重构UWB 滤波器[24]-25],可调谐双频段滤波器[26],可调谐带阻滤波器[27]-[31],可重构/可调谐双模滤波器[32]-[36],以及基于可切换延迟线的可重构带通滤波器。下面,我们将要介绍若干新近开发出来的典型的电子可重构微带线滤波器。 可调谐梳状滤波器 微带线梳状滤波器是开发可调谐或者说可重构带通滤波器颇受欢迎的结构[2]-[9]。图1 是一个3-极点可调谐梳状滤波器的示意图,其中每一个长度小于工作频率的四分之一波长的微带线谐振器的一端是短路相接的,另一端则加载一只变容器。在这个例子中,变容器是基于铁电体钛酸锶钡(BST)薄膜的。每一个BST 变容器的偏置网络包含有一个与变容器相串联的隔直电容器。带通滤波器的中心频率可以通过改变施加到变容器的直流偏置来进行电子调谐。

光子晶体传感器——开题报告重点

1.研究的背景和意义 1.1光子晶体的发展背景及意义 微波波段的逞隙常称为电磁带隙(ElectromagneticBand-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。光子晶体是指具有光子带隙(Photonic Band-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG结构。所谓的光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。这一概念最初是在光学领域提出的,现在它的研究范围已扩展到微波与声波波段。由于这种结构的周期尺寸与“禁带”的中心频率对应的波长可比拟,所以这种结构在微波波段比在光波波段更容易实现。微波波段的逞隙常称为电磁带隙(Electromagnetic Band-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。 1.2光子晶体传感器的优点 光子晶体传感器是利用光子晶体的特性做城的传感器。光传感器由于具有不受电磁干扰、灵敏度高等优点,已引起人们的广泛兴趣。新型光学微传感器能够准确测定周围介质的物理、化学、生物性质,它的设计对于实际应用和科学研究具有重要意义。 2.国内外研究的现状: 3.拟采取的解决方案; 与半导体晶格对电子波函数的调制相类似,光子带隙材料能够调制具有相应波长的电磁波---当电磁波在光子带隙材料中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构。能带与能带之间出现带隙,即光子带隙。所具能量处在光子带隙内的光子,不能进入该晶体。因而光子带隙的变化可以从光的频率的变化上反映出来,从而反映出外界环境的变化。 4.预期得到的结果、 我们希望通过一系列的调查研究探索,能够选择合适的材料,通过软件和合适的算法来分析出材料的光子晶体带隙结构及其受到外界环境影响时的变化规律,根据此规律提出一种理论上可行的光子晶体传感器的方案。并通过软件仿真等手段,验证此方案的准确性。5.课题进度计划 三月份:确立研究方向,根据以前所搜集的资料,研究内容,目标方法,步骤和进度做出开题报告。 四月份:分析材料结构,根据调查、分析所得的数据作出以后研究、设计的流程图。

微波光子学及其链路研究进展与应用综述

微波光子学及其链路研究进展与应用综述 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

微波光子学及其链路研究进展与应用综述 摘要:微波光子学以光子技术为工具,生成、处理、传输微波/毫米波信号,注重微波与光子在概念、器件和系统方面的结合。微波光子学典型研究包括了微波信号的光产生、处理和转换,微波信号在光链路中的分配和传输等。微波光子链路技术与传统电子技术相比则具有非常明显的优势:重量轻,易于铺设,抗电磁干扰,低损耗,高带宽等。本文通过对微波光子链路领域相关文献的阅读与学习,对该领域的研究进展和技术应用进行简要综述。 关键词:微波光子学;微波光子链路;系统应用 引言 微波光子学(MicrowavePhotonics,MWP)作为微波与光子技术结合的一种新兴学科,发展迅速。在过去30年中,微波光子学在理论、器件、关键技术和系统应用层面都取得了进步与发展,某些应用甚至已经实现了实用化。在船舰、机载、卫星、雷达系统、无线通信等或民用或军用领域的复杂多元化电磁环境中,微波光子信息处理技术的地位日益凸显,有着广阔的应用前景。 微波光子链路(MicrowavePhotonicLink,MPL)也得益于微波光子学快速的发展与进步而受到广泛地关注与研究。光生毫米波技术、光纤无线电(ROF)技术、光控相控阵技术等作为微波光子学技术的分支,近年来已成为国内外研究热点。微波光子链路作为这些技术的重要组成部分,优势明显,在电子战、雷达、遥感探测、无线通信等领域得到广泛应用。 一、微波光子学及微波光子链路的研究进展与研究现状 微波光子学及其链路背景 光波分复用技术及掺铒光纤放大器(EDFA)出现后,光通信得到迅速发展。无线通信容量需求也不断发展增加,应用于光纤系统中光发射和接收中的微波技术也在迅速发展。传统的微波传输介质在长距离传输时具有很大损耗,但光纤系统具有低损耗、高带宽特性,对于微波传输和处理相当具有吸引力。

光子晶体滤波器

光子晶体滤波器理论基础 2.1 光子晶体概述 2.1.1光子晶体概念 光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的: (2.1) 其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。  =0,- E 2m + 2??? ??ψ?????????? ????? ???→→t V r r

从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程: 其中,0ε为平均相对介电常数,??? ??→r ε为相对介电常数的调制部分,他 随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常 图2.1光子禁带示意图 称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。 而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。 =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2)

微波滤波器的设计与仿真开题报告

毕业论文开题报告 题目微波滤波器的设计与仿真 学生姓名薛新月学号 1113024098 所在院(系) 物理与电信工程学院 专业班级通信 1103 班 指导教师薛转花 2015 年 3 月 7 日

题目微波滤波器的设计与仿真 一、选题的目的及研究意义 随着科技不断进步,无线通信前所未有的融入到生活中,尤其是贴近日常应用的短距离无线数据业务更是迅猛发展。例如WLAN、WIFI、蓝牙等短距离无线的广泛应用。极大的推动了滤波器技术的发展,也对滤波器的性能提出了更高的要求。微波滤波器是现代微波中继通信、微波卫星通信、电子对抗等系统中必不可少的组成部分。微波滤波技术广泛应用于卫星通信、移动通信、雷达系统、导航系统等,可谓无处不在。微波滤波技术的发展经历了半个多世纪,可谓品种繁多,性能各异。可按频率响应特性分为低通、高通、带通、带阻;也可按网络函数分为最大平坦型、切比雪夫型、线性相位型和椭圆函数型;还可按工作模式、频带、频段等进行划分。面对现代通信系统对滤波器性能要求日趋严格,微波滤波技术朝着体积小、重量轻、低损耗、高可靠性、高温补性能等的综合性滤波器发展。 随着无线通信的个人化、宽带化,越来越需要人性化和高性能的终端设备,促使了包括滤波器在内的射频元器件的微型化和可集成化,同时也产生了各种结构和性能的射频滤波器来满足体积小、重量轻的系统要求。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 研究现状:微带滤波器在通信、信号处理、雷达等各种电路系统中具有广泛用途。随着移动通信、电子对抗和导航技术的飞速发展,对新的微波元器件的需求和现有器件性能的改善提出了更高的要求。发达国家都在利用新材料和新技术来提高器件性能和集成度,同时,尽可能地降低成本,减小器件尺寸和降低功耗。与国外相比,我国的微带滤波器的发展还有一定的差距。 目前,国外已有相应公司在大量生产微滤波器器件,比较著名的公司有美国的DLI、TRANS-TECH、日本MURATA、英国的FILTRONIC公司等。他们生产的各种微波介质陶瓷滤波器、双工器、谐振器、介质天线等产品已用于微波基地站、手机及无绳电话等产品中,取得了显著的经济和社会效益。 发展趋势:随着现代材料科学与电子信息科学技术的交叉渗透,新材料和制造工艺技术的发展,如单片集成电路、MEMS、LTCC等工艺,极大地带动了微带和其他类型滤波器的飞速发展。全国固态化的各类片式高频、微带滤波器和中频滤波器,向着高性能、低成本、小型化、高频化等各方面飞快发展。 研究方法:微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通

微波光子滤波器在复杂电磁环境下的应用

光纤光栅技术与应用专题讲座(四) 第7讲 微波光子滤波器在复杂电磁环境下的应用 Ξ 丁小玉1,张宝富2,谢 畅3(1.解放军理工大学通信工程学院研究生3队,江苏南京210007;2.解放军理工大学通信工程学院电信工程系; 3.解放军理工大学通信工程学院研究生1队) 摘 要:随着空间电磁信号越来越密集,电磁环境尤其是战场电磁环境变得更加复杂化,对各种通信设备和 武器装备构成了威胁。以无线方式传播的微波信号遭到了严重的干扰和压制,通信系统的距离大为缩短、性能急剧下降甚至无法实现通信。针对日益复杂的电磁环境,人们利用光纤的巨大带宽和天生的抗电磁干扰优势,采用光子学的方法产生、传输和处理微波信号,从而开辟了一个崭新的研究领域即微波光子学,微波光子滤波器是其重要的应用领域之一。在复杂电磁环境下,通过微波光子滤波器技术对微波信号进行处理可获得优越的性能,因而在军事通信中获得了广泛的应用。文中对微波光子滤波器的基本概念、结构原理、关键技术与实现方法进行了详细和深入的介绍,并探讨了其在复杂电磁环境下的应用。 关键词:复杂电磁环境;微波光子滤波器;光载无线;延时单元 中图分类号:TN 253文献标识码:A 文章编号:CN 3221289(2009)022******* Ap p lica t i o n o f P ho ton ic 2m i c row a ve F ilte r i n C om p lica ted El e c trom ag ne t i c Env iro nm e n t D IN G X ia o 2y u 1,ZH AN G B ao 2f u 2,X I E Ch ang 3 (1.Postgradua te Team 3I C E ,PLAU ST ,N anji ng 210007,C hina ; 2.D epa r t m en t of Te lecomm unicat i ons Engineer ing I C E,PLAU ST; 3.Postgradua te T eam 1I C E,PLAU ST ) A b s t r a c t :A s the density of elect rom agne tic signals is denser and denser in the space ,the e lect rom agnet ic envir onm ent ,especia lly the ba t tle f ield electrom agne tic environm en t becom es m ore and m ore com p lica ted .It threa tens the c omm unicat i on equi pm ent s and the w eapon fu rnishm ent . T he m icrow ave signa ls using w irele ss suffe rs from se ri ou s jamm ing and supp ression,and the c om 2m unica tion distance and p erfo r m ance sha rp ly dec reases ,and even can not car ry ou t com m unica 2t i on.F aced w ith the m ore and m o re com pl ica ted elect rom agne tic environm ent,the p hoton ic m ethod w a s adop ted by u sing op t ica l fibe r ’s advant age of g reat w ide bandw idth and ant i 2jamm ing to generate,t ran s m it and p roce ss m icrow ave signals .A ne w study a rea ca lled m icrow ave pho tonic s w a s op ened ,w ith the m icrow ave pho tonic filte r a s one of the m o st i m portan t app lica tions .In c om 2p lica ted elect rom agne tic environm ent,bet ter perfo r m ances can be ga ined by using m icrow ave photonic filte r to p r ocess m icrow ave signal s,so the f ilt er can be w idely app lied in t he m ilita ry comm un ica t i on .In this p aper ,the basic concep t ,the st ructu re and p rinciple and the key technology f 2f 2 第30卷第2期  2009年6月军 事 通 信 技 术Journa l of M ilita ry Comm un i ca ti ons Techno l ogy V ol .30No .2Jun .2009 Ξ收稿日期22;修回日期2326 作者简介丁小玉(3),女,硕士生o the photonic m icro w ave ilter were introduced and its app licati ons under co mp licated electro :20090110:200902:198-.

微波滤波器的发展历史趋势及种类

微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。 发展历史: 在1937年,由W.P Mason和R.A.Sykes发表的文章中首先研究了微波滤波器,他们是利用了ABCD参数推导出了大量有用滤波器相位和衰减函数。应用映像参数方法当时主要在美国各大实验室中,例如在Mn’实验室里,他们重点研究波导滤波器,而在Harvard实验室重点研究宽带低通、带通同轴及窄带可调谐滤波器。映像参数方法的工作大多在MIT实验室由Fano和Lawson完成,他们的著作对于微波滤波器有比较清晰的介绍,甚至在40年后还有应用价值。在随后的微波滤波器理论的研究和发展过程中,许多专家和学者作出了重大的贡献。Cohn在集总元件低通滤波器原型机的基础上第一个提出了方便实用的直接耦合空腔滤波器理论。上世纪60年代,G.L.Matthaei在其专著中对微波滤波器的经典设计方法作出了较全面、系统的介绍,但主要针对最平坦型和契比雪夫型,未涉及椭圆函数型和广义契比雪夫型。70年代初,A.E.Williams和Kurzrok提出用于分析交叉耦合的低阶滤波器。A.E.Atia,A.E.Williams和R.W.Newcomb对交叉耦合合展开研究,总结出传输零点对称分布时的偶模网络和相应的偶模矩阵的综合方法。Levy建立了集总和分布原型的元件公式间的联系,给出了推导原型元件的简单而准确的公式;Rhode建立起了线性相位滤波器理论。1999年Richard J.Cameron把广义契比雪夫滤波器的传输零点由实数扩展到复数,从而将传输零点和时延结合起来研究,提出用循环递归的方法构成广义契比雪夫的传输和反射函数多项式,根据导纳矩阵和部分分式展开求取留数,再利用施密特正交变换的方法综合耦合矩阵,其矩阵综合和消零计算量较大。如何将不可实现或不是最简的耦合元素消零成为研究热点,但目前国际上主要采用相似变换(矩阵旋转)尽可能多地消去非零元。这一系列贡献,都可以说是微波滤波器发展史上的重大突破。

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

微波射频滤波器归类

摘要:按微波滤波器的传输线的种类进行了分类,并按照这种分类方法对各种微波滤波器的性能指标、设计方法进行了详细的介绍。 关键词:微波滤波器;性能指标;设计方法 前言:随着现代微波通信,尤其是卫星通信和移动通信的发展,系统对通道的选择性越来越高,这对微波滤波器的设计提出了更高的要求,而微波滤波器作为通信系统中的重要部分,其性能的优劣往往决定了整个通信系统的质量。因此研究微波滤波器的性能指标和设计方法具有重要意义。 微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。 微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器;按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型;根据工作频带的宽窄可分为窄带和宽带滤波器;按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。本文是按照传输线的分类来对各种微波滤波器的主要特性进行详尽的分析。 一、微带滤波器 主要性能指标: 频率范围:500MHz~6GHz 带宽:10%~30% 插入损耗:5dB(随带宽不同而不同) 输入输出形式:SMA、N、L16等 输入输出驻波:1.8:1 微带滤波器主要包括平行耦合微带线滤波器、发夹型滤波器、微带类椭圆函数滤波器。 半波长平行耦合微带线带通滤波器是微波集成电路中广为应用的带通滤波器形式。其结构紧凑、第二寄生通带的中心频率位于主通带中心频率的3倍处、适应频率范围较大、适用于宽带滤波器时相对带宽可达20%。其缺点为插损较大,同时,谐振器在一个方向依次摆开,

微波光子滤波器的研究进展及其在ROF系统中的应用

微波光子滤波器的研究进展及其在ROF系统中的应用 1微波光子滤波器概述 1.1微波光子滤波器的发展及应用 微波光子滤波器是一个利用光学方法处理微波信号并实现滤波功能的光学子系统。传统电子技术的滤波技术是直接将射频信号下变频后在电路中进行处理,相对缺少灵活性,系统易受电磁波的干扰;受到频带及采样频率等电子瓶颈的限制。而微波光子滤波技术是在光域上处理载有的电信号,利用光纤、光学链路、光电子器件等对信号采样、加权、相加等处理。由于微波光子滤波器是用光学的方法处理微波信号,它可以克服传统的电滤波器的“电子”瓶颈。传统的采样频率最高只能达到几千兆赫兹左右,而微波光信号处理则可以达到上千亿赫兹,这将给高速无线通信提供良好的基础。比起传统的电子滤波器,微波光子滤波器用光学的方法处理微波信号,这种方法利用了光纤延迟线损耗小、抗电磁干扰、体积小、重量轻、能提供较宽的工作带宽和高速的取样频率等优势;并且微波光子滤波器更容易实现可调和可重构。这些优点使得微波光子滤波器的应用非常广泛。 微波光子滤波器可以在现代高速光纤无线接入网中得到广泛的应用。既可以应用到地面雷达系统中,也可以应用到从通用移动通信系统(UMTS: universal Mobile Telecommunication system)到固定接入微蜂窝网络中的宽带无线接入网及相关标准中(例如无线局域网(WLAN: Wireless Local Area Network)、全球互操作性微波接入(WIMAx: world Interoperability for Microwave Access) 以及局域多点分布服务(LMDS: Local Multipoint Distribution Service),另外,由于重量轻的特点,微波光子滤波器的在数字卫星通信系统中也有广泛的应用。这些技术都希望通过提高微波频率,减小微波信号的覆盖范围来提高传输的信道容量,而利用ROF 系统技术提高系统的传输容量,它利用宽带光纤无线技术能实现大容量无线射频信号的有线传输和超宽带无线接入。 1.2微波光子滤波器的研究现状 微波光子滤波器的研究兴起于国外,早在1976年,wilter和V ander Heuvel第一次提出了把光纤作为色散介质应用在微波信号处理中,他们最早认识到光纤的低损耗和大带宽的特性使其在宽带延迟线方面有广阔的前景。在20世纪70年代,一些研究人员如C.Chang,H.F.Taylor:等人致力于研究如何用利用多模光纤实现基于离散时间微波信号的光处理。在20世纪80年代,美国斯坦福大学Goodman,Shaw等人进行了大量的理论和实验研究,集中在用单模光纤延迟线实现微波光子处理技术。此后,更多的抽样元件和色散机制被应用于微波滤波器的研究,使其能够在更复杂的时域和频域上进行信号处理。20世纪80年代末,随着光放大器、耦合器、调制器、电光开关等光电器件的发展,微波光子处理的方法更加灵活,但是大多数研究仍然是集中在光纤的延迟线基础上。然而,光纤布拉格光栅(FBG)和阵列波导光栅(A WG)的出现给全光微波信号处理的应用提供了更为广阔的前景,提高了微波光子信号处理的重构性以及可调节性。 此后,D.B Hunte和R.A.Minasian等人第一个提出了单光源的连续可调滤波器,实验中耦合器两个不同输入端分别连接长凋啾光栅,通过调节光源的波长,可以线性控制其在光栅中反射点,从而控制了两个反射波的时间延迟。2001年J.Mora等人研究了基于阵列激光器的多光源微波光子滤波器,它可以快速而独立的重构和调节滤波器,但是成本太高;而将光纤光栅(FBG)应用在基于光源切片的微波光子滤波器的方法不仅可以降低成本,而且使得滤波器具有更多的灵活性;由于微波光子滤波器频率响应的周期性使得它的实际应用受到了一定的限制,2005年,J.Capmany和J.Mora等人研究了单频响应的微波光子滤波器,文章中

第2章 光子晶体及光子晶体滤波器的理论基础

第2章 光子晶体及光子晶体滤波器理论基础 2.1 光子晶体概述 2.1.1光子晶体概念 光子晶体也叫光子带隙材料(PBG ),它的概念是在1987年分别由S .John 和E .Yablonovitch 等人提出来的。经过几十年的发展,光子晶体已成为人们非常关注的领域。所谓光子晶体,是一种介电常量呈空间周期性分布的人工介质结构,它具有光子禁带,频率和能量处于禁带内的光子无法进入光子晶体内部,在光子晶体内部完全被禁止存在[12-14]。在固体物理研究发现,晶体中的周期性排列的原子所产生的周期性电势场中的电子有一个特殊的约束作用。在这样的空间周期性电势场中的电子运动是由如下的薛定谔方程决定的: (2.1) 其中)(r V →是电子的势能函数,它有空间周期性。我们求解以上方程(2.1) 可以发现,电子能量E只能取某些特殊值,在某些能量区间内方程无解―― 即电子能量不能落在在这样的能量区间,通常称之为能量禁带。研究发现, 电子在这种周期性结构中的德布罗意波长与晶体的晶格常数有大致相同数 量级。 从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电 磁场所服从的规律是如下所示的Maxell 方程:  =0,- E 2m + 2??? ??ψ????? ????? ????? ???→→t V r r

其中,0ε为平均相对介电常数,??? ??→r ε为相对介电常数的调制部分,他 随空间位置作周期性变化,C为真空中的光速,ω为电磁波的频率, ()t r E , 是电磁波的电矢量,可以看到方程式 1.1)和(1.2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常 图2.1光子禁带示意图 称这些被禁止的频率区间为"光子频率禁带"(Photonic Band Gap ),如图2.1所示,而将具有"光子频率禁带"的材料称作为光子晶体。 而我们正是利用光子晶体的“光子频率禁带”这一特点来制作滤波器,使其满足我们需要的波段要求,具有较大的实际意义。 2.1.2光子能带理论 错误!未找到引用源。 由电子的能带理论知道,当把电子的运动近似地 =0,-+C+??? ??→????????????? ????? ???→t r E r εεω0222(1.2) 禁带 波矢

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

光纤激光器的分类

光纤激光器的分类 光纤激光器种类很多,根据其激射机理、器件结构和输出激光特性的不同可以有多种不同的分类方式。根据目前光纤激光器技术的发展情况,其分类方式和相应的激光器类型主要有以下几种: (1)按增益介质分类为: a)晶体光纤激光器。工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和Nd3+:YAG单晶光纤激光器等。 b)非线性光学型光纤激光器。主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。 c)稀土类掺杂光纤激光器。向光纤中掺杂稀土类元素离子使之激活,(Nd3+、Er3+、Yb3+、Tm3+等,基质可以是石英玻璃、氟化锆玻璃、单晶)而制成光纤激光器。 d)塑料光纤激光器。向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。 (2)按谐振腔结构分类为F-P腔、环形腔、环路反射器光纤谐振腔以及“8”字形腔、DBR光纤激光器、DFB光纤激光器等。 (3)按光纤结构分类为单包层光纤激光器、双包层光纤激光器、光子晶体光纤激光器、特种光纤激光器。 (4)按输出激光特性分类为连续光纤激光器和脉冲光纤激光器,其中脉冲光纤激光器根据其脉冲形成原理又可分为调Q光纤激光器(脉冲宽度为ns量级)和锁模光纤激光器(脉冲宽度为ps或fs量级)。 (5)根据激光输出波长数目可分为单波长光纤激光器和多波长光纤激光器。 (6)根据激光输出波长的可调谐特性分为可调谐单波长激光器,可调谐多波长激光器。 (7)按激光输出波长的波段分类为S-波段(1460~1530 nm)、C-波段(1530~1565 nm)、L-波段(1565~1610 nm)。 (8)按照是否锁模,可以分为:连续光激光器和锁模激光器。通常的多波长激光器属于连续光激光器。 按照锁模器件而言,可以分为被动锁模激光器和主动锁模激光器。 其中被动锁模激光器又有: 等效/假饱和吸收体:非线性旋转锁模激光器(8字型,NOLM和NPR) 真饱和吸收体: SESAM或者纳米材料(碳纳米管或者石墨烯)。

相关文档
最新文档