纤维检测

纤维检测

纤维检测

检测范围

天然纤维:植物纤维,动物纤维,矿物纤维

化学纤维:人造纤维,合成纤维,无机纤维

人造纤维:黏胶纤维、醋酸纤维、铜氨纤维、再生纤维素纤维、再生蛋白质纤维、再生淀粉纤维、再生合成纤维。

合成纤维:聚酯纤维(涤纶)、聚酰胺纤维(锦纶或尼龙)、聚乙烯醇纤维(维纶)、聚丙烯腈纤维(腈纶)、聚丙烯纤维(丙纶)、聚氯乙烯纤维(氯纶)等。

无机纤维:玻璃纤维,金属纤维和碳纤维等。

检测项目

成分分析:化纤成分鉴别化纤用化学品成分定量化学分析定性化学分析

理化指标检测:纤维双折射率熔点溶解性纯度含油

率密度梯度

阻燃性能:燃烧性能燃烧等级阻燃性能

电学性能:防静电等

纤维素含量的测定

纤维素的测定------比色法 纤维素由葡萄糖基组成,它是组成植物细胞壁的基本成分。其含量的多少关系到植物的机械组织是否发达,作物抗倒伏、抗病虫害的能力是否较强,并且影响到粮食作物、纤维作物和蔬菜作物等的产量和品质。 在各种粮食中纤维素的含量各不相同,与籽粒皮层厚薄成正比。同种粮食中,原粮纤维素 维素含量最高,加工粗加工精度越高,纤维素含呈越少,如小麦标准粉约O.7%.稻谷约9.0%,糙米约1.0%,白米约0 4%。因此,根据纤维素的含量的测定,可以判别籽粒皮层的厚薄,粮食加工精度高低和营养价值评估。 纤维素的测定方法有酸碱醇醚法、酸性洗涤剂法、碘量法及比色法。第一个是国标法,但比较繁琐,后者操作比较简单。 一、方法原理 纤维素是由葡萄糖基组成的多糖,在酸性条件下加热使其水解成葡萄糖。然后在浓硫酸作用下,使单糖脱水生成糠醛类化合物。利用蒽酮试剂与糠醛类化合物的蓝绿色反应即可进行比色测定。 二、仪器和试剂 1.主要仪器恒温水浴、冰罐、电炉、玻璃坩埚、漏斗、定时钟、分光光度计等。 2.试剂60%H2SO4溶液、浓H2SO4。 2%蒽酮试剂:2g蒽酮溶解于100rnl乙酸乙酯中,贮置于棕色试剂瓶中。 纤维素标准液:准确称取100mg纯纤维素,放入100Inl量瓶中,将量瓶放入冰浴中,然后加冷的60%H2SO4 60—70ml,在冷的条件下消化处理20—30min,然后用60%H2SO4稀释至刻度,摇匀。吸取此液5.0ml放入另一50ml量瓶中,将量瓶放入冰浴中,加蒸馏水稀释刻度,则每毫升含100μg纤维素。 三、操作步骤 1.绘制纤维素标准曲线 (1)取6支小试管,分别放入0、0.40、0.80、1.20、1.60、2.00ml纤维素标准液。然后分别加入2.00、1.60、1.20、0.80、0.40、0ml蒸馏,摇匀。则每管依次含纤维素0、40、80、120、160、200μg。 (2)向每管加0.5ml%蒽酮试剂,再沿管壁加5.0ml浓H2SO4,塞上塞子,微微摇动,促使乙酸乙酯水解,当管内出现蒽酮絮状物时,再剧烈摇动促进蒽酮溶解,然后立即放入沸水浴中加热10min ,取出冷却。 (3)在分光光度计上620urn波长下比色,测出各管消光值。 (4)以所测得的消光值为纵坐标,以纤维素含量为横坐标,绘制纤维素标准曲线。 2.样品的测定 (1)准确称取风干的样品100mg,放入100rnl量瓶中,将量瓶放入冰浴中,加冷的60%H2SO4。60—70ml,在冷的条件下消化处理半小时,然后用60%H2SO4。稀释至刻度,摇匀,用玻璃坩埚漏斗过滤。 (2)吸取上述滤液5.0ml,放入5ml量瓶中,将量瓶置于冰浴中,加蒸馏水释至刻度,摇匀。 (3)吸取上液2.0ml,加0.5ml 2%蒽酮试剂,再沿管壁加5.0ml浓H2SO4,盖上塞子,以后操

土壤纤维素酶测定方法

纤维素酶 一、试剂: 1)醋酸缓冲液(pH 5.5):164.08 g无水醋酸钠(C2H3O2Na)溶于700 ml去离子水,用醋酸(C2H4O2)调节pH至5.5,用去离子水稀释至1 L。 2)CMC溶液(0.7%,w:v):7 g羧甲基纤维素钠盐溶于1 L醋酸缓冲液,45℃下搅拌2 h,此溶液在4℃下可存放7天。 3)还原糖试剂: 试剂A:16 g无水碳酸钠(Na2CO3)和0.9 g氰化钾(KCN)溶于去离子水并稀释至1 L。试剂B:0.5 g六氰铁钾(K4Fe(CN)6)溶于去离子水并稀释至1 L,贮于棕色瓶中。 试剂C:1.5 g 硫酸铁铵(NH4SO4Fe2(SO4)2·H2O)、1 g十二烷基硫酸钠(C12H25O4SNa)和4.2 ml浓硫酸溶于50℃去离子水,冷却后稀释至1 L。 4)水合葡萄糖溶液:28 mg水合葡萄糖溶于少量去离子水中,并定容至1 L。 二、仪器设备 恒温培养箱,水浴锅,分光光度计,搅拌器,三角瓶 三、操作步骤 取10.00 g(耕地)或5.00 g(林地)新鲜土壤(<2 mm)于100 ml三角瓶中,加15 ml 醋酸缓冲液和15 ml CMC溶液,盖上塞子,于50℃下培养24 h,过滤。同时做空白对照,但在培养结束时才加入15 ml CMC溶液,并迅速过滤。 取2.00 ml滤液于50 ml容量瓶中,并用去离子水定容至刻度。吸取2.00 ml稀释液于20 ml试管中,加2.00 ml还原糖试剂A和2.00 ml还原糖试剂B,盖紧混匀,在100℃水浴中加热15 min 后,立即至于20℃水中冷却5 min。加10.00 ml还原糖试剂C,混匀,20℃下静置显色60 min,于690 nm波长处比色测定(要求在30 min内完成)。 标准曲线:吸取0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 ml水合葡萄糖溶液,用去离子水稀释至2 ml,同上加入还原糖试剂A、B、C后,比色测定还原糖含量。c) 空白: 无土空白:不加土样,其余操作与样品试验相同,整个试验设置一个,重复一次。 无基质空白:以等体积水代替基质,每个土样设置一个。 四、结果计算 土壤纤维素酶活性(μg·g-1·(24 h)-1)=(C*V*f)/ dwt 式中C为样品的葡萄糖含量(μg·ml-1);V为土壤溶液体积(30 ml);f为稀释倍数(25);

化纤行业情况

一、化纤行业基础信息 1、产品类型 化学纤维是用天然高分子化合物或人工合成的高分子化合物为原料,经过制备纺丝原液、纺丝和后处理等工序制得的具有纺织性能的纤维。 化学纤维的商品名称,中国暂行规定合成短纤维一律名"纶"(例如,锦纶、涤纶),纤维素短纤维一律名"纤"(例如,粘纤、铜氨纤),长丝则在末尾加一"丝"字,或将"纶"、"纤"、改为"丝"。人造纤维的短纤维一律叫"纤"(如粘纤、富纤),合成纤维的短纤维一律叫"纶"(如锦纶、涤纶)。如果是长纤维,就在名称末尾加"丝"或"长丝"(如粘胶丝、涤纶丝、腈纶长丝)。 短丝、长丝和短纤维 用途:(1)长丝、短丝:制作袜子、内衣、衬衣、运动衫、滑雪衫、雨衣;(2)短纤维:可与棉、毛和粘胶纤维混纺,使混纺织物具有良好的耐磨性和强度。 长丝是指连续的纤维,如蚕丝及化纤制丝时喷出的连续丝束。通常用几十根或数十根单根长丝并合在一起织造,织物表面光滑,光泽较强,常用作夏季面料。 短纤维是指长度在几毫米至几十毫米的纤维,如棉、毛、麻等天然纤维,也可以是由长丝切断后制成。短纤维必须经纺纱工序,使纤维间加捻抱合后才能形成连续的纱线,用于织造。短纤维织物表面有毛羽,丰满蓬松,常用于秋冬织物。 聚合生产得到的聚酯原料一般加工成约4*5*2毫米的片状颗粒,通称聚酯切片。聚酯生产的工艺路线有直接酯化法(PTA法)和酯交换法(DMT法)。PTA法具有原料消耗低、反应时间短等优势,自80年代起己成为聚酯的主要工艺和首选技术路线。大规模生产线的为连续生产工艺,半连续及间歇生产工艺则适合中、小型多种生产装置。聚酯的用途现包括纤维,各类容器、包装材料、薄膜、胶片、工程塑料等领域。 合成纤维是由合成的高分子化合物制成的,常用的合成纤维有涤纶、锦纶、腈纶、氯纶、维纶、氨纶、聚烯烃弹力丝等。 (1)、涤纶涤纶的学名叫聚对苯二甲酸乙二酯(PET),简称聚酯纤维。涤纶是中国的商品名称,国外有称"大可纶","特利纶","帝特纶"等。

范式法测定纤维素

原理 采用范氏(Van Soest)的洗涤纤维分析法测定中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)原理: 植物性饲料经中性洗涤剂煮沸处理,不溶解的残渣为中性洗涤纤维,主要为细胞壁成分,其中包括半纤维素、纤维素、木质素和硅酸盐。植物性饲料经酸性洗涤剂处理,剩余的残渣为酸性洗涤纤维,其中包括纤维素、木质素和硅酸盐。酸性洗涤纤维经72%硫酸处理后的残渣为木质素和硅酸盐,从酸性洗涤纤维值中减去72%硫酸处理后的残渣为饲料的纤维素含量。将72%硫酸处理后的残渣灰化,在 灰化过程中逸出的部分为酸性洗涤木质素(ADL)的含量。 试剂的配制 中性洗涤剂(3%十二烷基硫酸钠):准确称取18.6g乙二胺四乙酸二钠(EDTA,C10H14O8Na2?2H2O,分析纯)和6.8g硼酸钠(Na2B4O7?10H2O,分析纯)放入烧杯中,加入少量蒸馏水,加热溶解后, 再加入30g十二烷基硫酸钠(C12H25NaO4S,分析纯)和 10ml乙二醇乙醚(C4H10O2,分析纯);再称取4.56 g无水磷酸氢二钠(Na2HPO4,分析纯)置于另一烧杯中,加入少量蒸馏水微微加热溶解后,倒入前一个烧杯中,在容量瓶中稀释至1000ml,其中pH 值约为6.9~7.1(pH值一般勿需调整); 1N 硫酸:量取约27.87 ml浓硫酸(分析纯,比重1.84,98%),徐徐加入已装有500ml蒸馏水的烧杯中,冷却后注入1000ml容量瓶定容,标定;酸性洗涤剂(2%十六烷三甲基溴化铵):称取20g十六烷三甲基溴化铵(CTAB,分析纯)溶于1000ml1N硫酸,必要时过滤; 中性洗涤纤维测定 准确称取1.0000g样品(通过40目筛)置于直筒烧杯中,加入100ml中性洗涤剂和数滴十氢化萘及0.5g无水亚硫酸钠。将烧杯套上冷凝装置于电炉上,在5~10min内煮沸,并持续保持微沸60min。煮沸完毕后,取下直筒烧杯,将烧杯中溶液倒入安装在抽滤瓶上的已知重量的玻璃坩埚中进行过滤,将烧杯中的残渣全部移入,并用沸水冲洗玻璃坩埚与残渣,直洗至滤液呈中性为止。用20ml丙酮冲洗二次,抽滤。将玻璃坩埚置于105℃烘箱中烘2h后,在干燥器中冷却30 min称重,直称至恒重。 酸性洗涤纤维测定 准确称取1.0000g样品(通过40目筛)置于直筒烧杯中,加入100 ml酸性洗涤剂和数滴十氢化萘及0.5g无水亚硫酸钠。将烧杯套上冷凝装置于电炉上,在5~10min内煮沸,并持续保持微沸60min。趁热用已知重量的玻璃坩埚抽滤,并用沸水反复冲洗玻璃坩埚及残渣至滤液呈中性为止。用少量丙酮冲洗残渣至抽下的丙酮液呈无色为止,并抽净丙酮。将玻璃坩埚置于105℃烘箱中烘2h后,在干燥器中冷却30 min称重,直称至恒重。 酸性洗涤木质素和酸不溶灰分(AIA)测定将酸性洗涤纤维加入72%硫酸,在20℃消化 3h后过滤,并冲洗至中性。消化过程中溶解部分为纤维素,不溶解的残渣为酸性洗涤木质素和酸不溶灰分,将残渣烘干并灼烧灰化后即可得出酸性洗涤木质素和酸不溶灰分的含量。 结果计算 中性洗涤纤维含量的计算:NDF(%)=(W1-W2)/ W×100 式中: W1—玻璃坩埚和NDF重(gW2—玻璃坩埚重(g) W—试样重(g) 酸性洗涤纤维含量的计算:ADF(%)=(G1-G2)/G×100 式中: G1—玻璃坩埚和ADF重(g) G2—玻璃坩埚重(g) W—试样重(g) 半纤维素含量的计算:半纤维素(%)=NDF(%)-ADF(%) 纤维素含量的计算:纤维素=ADF(%)-经72%硫酸处理后的残渣(%)

测定纤维素酶活实验方法总结及优化方案

DNS法测定酶活实验方法总结及优化方案 目前纤维素酶没有统一的测定方法,诸多因素影响纤维素酶酶活测定大小的比较。选择适宜的酶活测定条件,提高测定结果的准确性,可根据有关资料中采用的测定条件,以及通过控制变量法对酶活力测定中的主要影响因素进行研究。 目前实验室采用测酶活方法: 1、葡萄糖标准曲线制作: 530nm比色。 2、酶活测定方法:

考虑到酶液中培养基成分会对吸光值造成一定的影响,所以空白管0还是采用先将酶高温灭活的方法,后面保持实验条件一致,显色时间与标准曲线的显色时间保持一致。 单位酶活的计算:T n k OD ml U 1000 1 )/(???=酶活力 n :稀释倍数; K :曲线斜率; T :反应时间,min ; 1000:mg 换算成ug. 以下是近期所做的实验结果: 葡萄糖标准曲线 两种产纤维素酶细菌不同测试结果

测定结果 实验结论:从以上几种对酶液的处理方法来看,183的酶活要比R2高,两种菌都是以胞外酶为主。目前尚没找到有关于加缓冲溶液并且超声破碎的文献,所得测量结果与前面三种方法均不符,这一步需另外探索。 根据《纤维素酶活力测定条件研究》(夏服宝等,《饲料工业》2005年第26卷第16期)和《影响纤维素酶活力测定的几个因素》(刘妙莲等,中国食品发酵工业研究所)这两篇文献,实验室可先从底物浓度、温度、DNS用量、显色时间以及对菌体的超声破碎时间这几方面进行探索,进而优化实验方法。 刚果红染色法:常用的刚果红染色法有两种, 一种是先培养微生物,再加入刚果红进行颜色反应,另一种是在倒平板 时就加入刚果红。方法一在长出茵落的培养基上,覆盖质量浓度为1 mg /mI。的CR溶液,10~15 min后,倒去CR溶液,加入物质的量浓度为l mol/I。的NaCI溶液,15 min后倒掉NaCl溶液,此时,产生纤维素酶的 茵落周围将会出现透明圈。 方法二配制质量浓度为10 mg/mI。的CR溶液,灭菌后,按照每200 mI。培养基加入1 mI。的比例加入CR溶液,混匀后倒平板。等培养基上长 出茵落后,产生纤维素酶的菌落周围将会出现明显的透明圈。 两种刚果红染色法的比较刚果红在筛选纤维素分解菌上的应用已经 有超过20年的历史,课本中给出了两种方法。 方法一是传统的方法,缺点是操作繁琐,加入刚果红溶液会使菌落之间 发生混杂;其优点是这样显示出的颜色反应基本上是纤维素分解菌的作用。 方法二的优点是操作简便,不存在菌落混杂问题,缺点是由于在纤维素 粉和琼脂、土豆汁中都含有淀粉类物质,可以使能够产生淀粉酶的微生物出

化学纤维质量指标及其检测方法

化学纤维质量指标及其检测方法 一:纤维长度 1.名义长度:切断长度:棉型纤维(30—40mm);毛型纤维(70—150mm);中长纤维(51—65mm)。 超长纤维:长度超过一定界限的短纤维 倍长纤维:长度超过名义长度2倍及以上 2.长度偏差率:长度偏差率=,反映短纤维长度均匀性 二:细度(线密度、纤度) 1.定义:纤维粗细程度 2.表示法: (1)公制支数Nm:1克重的纤维所具有的长度米数;Nm↑→纤维越细 (2)旦Dn:9000米长的纤维所具有的重量克数;Dn↑→纤维越粗 (3)特Tex:1000米长的纤维所具有的重量克数;Dn↑→纤维越粗 三:吸湿性: 1.定义:标准温湿度(20℃、65%相对湿度)下,纤维吸收或放出气态水的能力; 2.表示法:回潮率、含湿率 3.纤维吸湿原因: (1)纤维大分子结构(亲水基团) (2)纤维结晶度 (3)纤维表面吸湿 4.大小:羊毛>粘胶>麻、蚕丝>棉>醋酯>维纶、锦纶>腈纶>涤纶>氯纶、丙纶5.增加吸湿方法: (1)化学改性:大分子上引入亲水基 (2)物理改性:纤维中造成有规律的毛细孔 (3)表面处理: 四:密度: 1.大小:氨纶>粘胶>麻>涤纶、蚕丝>棉、羊毛>维纶>腈纶>锦纶>丙纶 五:热收缩: 1.定义:受热条件下,纤维形态尺寸的收缩,温度降低后不可逆 2.表示法:沸水收缩率、热空气收缩率、过热蒸汽收缩率 六:拉伸性能: 1.断裂强度cN/tex: (1)绝对强度:N或cN;纤维断裂时承受的最大负荷

(2)强度极限:cN/cm2 (3)相对强度:cN/tex; 麻、锦纶、丙纶>涤纶>维纶>腈纶、棉、蚕丝>粘胶>羊毛、氨纶 (4)湿强度:润湿下的强度;回潮率↑→湿强<干强(合成纤维与再生纤维的区别) (5)影响:断裂强度↑→断头↓→绕辊↓ 2.断裂伸长%:应力 (1)定义:拉伸至断裂时试样产生的伸长P (2)表示法:绝对伸长、相对伸长(绝对伸长/试样长度) (3)影响:断裂伸长↑→手感柔软↑、毛丝↓、断头↓→应变% →织物变形↑→→→→→→→→→→10—30%为佳 3.初始模量cN/tex: (1)定义:试样在小负荷(1%伸长)下变形的难易(材料刚性)——应力应变曲线初始一段直线的斜率 (2)影响:纤维柔性↓、结晶度↑、取向度↑→初始模量↑→刚性↑→织物变形↓、织物挺括、不易起皱 (3)大小:涤纶>腈纶、维纶、粘胶>丙纶>锦纶 4.断裂功、断裂比功、功系数: (1)定义:材料拉伸至断裂时外力所做的功(负荷伸长曲线下的面积) (2)断裂比功:单位长度或单位线密度的试样断裂时外力所做的功(应力应变曲线下的面积) (3)功系数:负荷伸长曲线下的面积与断裂伸长和断裂强度乘积之比 (4)表征:三者↑→纤维耐冲击↑、耐磨↑、韧性↑ 5.屈服点、屈服应力、屈服应变: (1)屈服点:拉伸曲线中起始一段直线向延伸区过渡的转折点P (2)影响:屈服点以前:纤维形变(弹性形变——可恢复); 屈服点以后:纤维形变(塑性形变——永久性变); 屈服点高→难产生塑性形变→织物尺寸稳定性 6.回弹性: (1)定义:材料在外力作用(拉伸或压缩)产生形变;外力去除后,恢复原状的能力 (2)表示法:一次负荷回弹性质(回弹率、弹性功);多次负荷回弹性质 (3)影响:回弹性↑→织物抗皱、挺括 氨纶>锦纶>涤纶>腈纶>粘胶 七:耐疲劳性: 1.定义:纤维耐多次变形性(应力循环次数) 2.影响:纤维弹性↑→应力循环次数↑→耐疲劳性↑(锦纶)

化学纤维行业基本情况

化学纤维行业基本情况 第一节行业范围界定 一、行业定义及代码 化学纤维是用天然高分子化合物或人工合成的高分子化合物为原料,经过制 备纺丝原液、纺丝和后处理等工序制得的具有纺织性能的纤维,简称化纤。 化学纤维根据功能和性质不同,可分为中低端的常规传统产品,以及高端的 差异化产品和功能性产品;根据所用高分子化合物来源不同,可分为以天然高分 子物质为原料的人造纤维和以合成高分子物质为原料的合成纤维。目前,我国合 成纤维产量约占化纤总产量的九成,主要包括涤纶、棉纶、腈纶和氨纶等。 本报告所适用范围为《国民经济行业分类》(GB-T4754-2017)中的“化学 纤维制造业”(C28),包括纤维素纤维原料及纤维制造(281)、合成纤维制造(282)。 表1化学纤维制造行业子行业及主要产品 粘胶纤维用途广泛,主要包括长丝作衬里、美 丽绸、旗帜、飘带、轮胎帘子线等;短纤维作 仿棉、仿毛、混纺、交织等。 锦纶长丝,多用于针织和丝绸工业;锦纶短纤, 大都与羊毛或毛型化纤混纺,作华达呢,凡尼 丁等。在工业上锦纶主要用于帘子线和渔网, 也可作地毯,绳索,传送带,筛网等。 涤纶长丝常作为低弹丝,制作各种纺织品;涤 纶短纤与棉、毛、麻等均可混纺,在工业上涤 纶短纤一般用于轮胎、帘子线、渔网、绳索、 滤布以及缘绝材料等。

资料来源:世经未来 二、行业产业链结构 从行业产业链来看,化纤行业的上游为提炼煤炭、石油和天然气等石化行业以及棉短线、木浆、甘蔗浆等浆粕行业,为其提供生产所需各类原材料。平均来看,原材料成本能够占到化纤企业总成本的60-80%,因此原材料价格变化直接影响化纤企业盈利水平。化纤行业下游主要对应纺织加工行业,化纤及下游加工行业所生产产品除主要用于服装、家纺行业外,在生命科学、航空航天、医疗卫生、电子信息等诸多领域的应用逐渐增多,成为行业发展新的增长点。 资料来源:世经未来 图1化学纤维行业上下游产业链结构

纤维素的测定方法

实验原理 植物的主要化学成分是纤维素、半纤维素和木质素这三部分。它们是构成植物细胞壁的主要组分。其中,纤维素组成微细纤维,构成纤维细胞壁的网状骨架,而半纤维素和木质素是填充在纤维和微细纤维之间的“粘合剂”和“填充剂”。 1. 纤维素 生物制粉末在加热的情况下用醋酸和硝酸的混合液处理,在这种情况下,细胞间的物质被溶解,纤维素也分解成单个的纤维,木质素、半纤维素和其它的物质也被除去。淀粉、多缩戊糖和其它物质受到了水解。用水洗涤除去杂质以后,纤维素在硫酸存在下被重铬酸钾氧化成二氧化碳和水。 C6H10O5 + 4K2Cr2O7 + 16H2SO4 = 6CO2 + 4Cr2(SO4)3 + 4K2SO4 + 21H2O 过剩的重铬酸钾用硫酸亚铁铵溶液滴定,再用硫酸亚铁铵滴定同量的但是未与纤维 素反应的重铬酸钾,根据差值可以求得纤维素的含量。 2. 半纤维素 用沸腾的80%硝酸钙溶液使淀粉溶解,同时将干扰测定半纤维素的溶于水的其它碳水化合物除掉。将沉淀用蒸馏水冲洗以后,用较高浓度的盐酸,大大缩短半纤维素的水解时间,水解得到的糖溶液,稀释到一定体积,用氢氧化钠溶液中和,其中的总糖量用铜碘法测定。 铜碘法原理:半纤维素水解后生成的糖在碱性环境和加热的情况下将二价铜还原成一价铜,一价铜以Cu2O的形式沉淀出来。用碘量法测定Cu2O的量,从而计算出半纤维素的含量。 测定还原性糖的铜碱试剂中含有KIO3和KI,它们在酸性条件下会发生反应,也不会干扰糖和铜离子的反应。加入酸以后,会发生反应释放出碘: KIO3+ 5KI +3H2SO4= 3I2+ 3K2SO4+3H2O 加入草酸以后,碘与氧化亚铜发生反应: Cu2O + I2+ H2C2O4= CuC2O4+ CuI2+ H2O 过剩的碘用Na2S2O3溶液滴定:2Na2S2O3 + I2 = Na2S4O6 + 2NaI 3. 木质素 用1%的醋酸处理以分离出糖、有机酸和其它可溶性化合物。然后用丙酮处理,分离出叶绿素、拟脂、脂肪和其它脂溶性化合物。将沉淀用蒸馏水洗涤以后,在硫酸存在下,用重铬酸钾氧化水解产物中的木质素: C11H12O4 + 8K2Cr2O7 + 32H2SO4 = 11CO2 + 8K2SO4 + 8Cr2(SO4)3 + 32H2O

纤维含量的检测过程中的注意事项

纤维含量的检测过程中的注意事项 纤维含量的检测过程中的注意事项 一、纤维含量检测在纤维制品检验中的重要性 纤维制品检验包括许多项目,从大的方面讲有外观质量、内在质量。一般情况下,外观质量因受抽样量的限制大多数是在抽样现场检验,内在质量通常所说的物理指标在实验室内检测,包括内容很多,如强力、密度、缩水、色牢度、纤维含量等等。除了安全指标外最能体现纤维制品的品质项目就属于纤维信含量。不同的纤维含量织物有相关性能不同,如涤棉产品涤棉混纺比50/50、80/20的织物断裂强力、织物风格、织物的舒适度等不同;因棉纤维、涤纶纤维的价格不同,产品的价格不同。因此我国及国际的标准中都对其有相应的规定和考核。我国也因其重要专门制定了纤维制品纤维含量标识标准,FZ/T01053-2007。作为质检部门,我们的义务是准确地检测纤维含量,向社会提供公正数据。不仅对生产者负责,还要对消费者负责。同时出据准确公正的数据提高我们部门在社会上的声誉。因此日常检验过程中应充分认识纤维含量的重要性。 二、纤维含量的表示方法 纤维含量的表示方法有以下几种: 1.纤维质量含量:指样品中某种纤维的质量占总纤维质量的百分比,通常以净干质量为基础的净干质量百分数、以净干质量为基础结合公定回潮率的质量百分数、以净干质量为基础结合公定回潮率及预处理中非纤维物质和纤维物质的损失率的质量百分数。具体的计算方法,由于时间的关系不多讲,大家可以查标准G B/T2910.1-2009第10章相关内容。 2.纤维体积含量: 样品中某种纤维的体积占所有纤维体积的百分比。在日常的检验中运用的较少。 3.纤维根数含量 样品中某种纤维的根数占所有纤维根数的百分比。这种做法比较简单,在显微镜下做即可。通常在检一些新型纤维与其它纤维混纺,新型纤维还没有检测方法,或者同一种纤维中赋于特种功能与常规纤维混在一起时使用。 三、纤维含量检测的基本步骤 样品---取样---预处理____定性分析___1.如果样品是由一组份组成,直接出据检验结果。

土壤纤维素酶活性测定(3,5- 二硝基水杨酸比色法)

土壤纤维素酶活性测定(3,5-二硝基水杨酸比色法) 一、原理 纤维素是植物残体进入土壤的碳水化合物的重要组分之一。在纤维素酶作用下,它的最初水解产物是纤维二糖,在纤二糖酶作用下,纤维二糖分解成葡萄糖。所以,纤维素酶是碳素循环中的一个重要的酶。纤维素酶解所生成的还原糖与?3,5-二硝基水杨酸反应而生成橙色的3-氨基-5-硝基水杨酸。颜色深度与还原糖量相关,因而可 用测定还原糖量来表示蔗糖酶的活性。 二、试剂 1)甲苯 2)1%羧甲基纤维素溶液:1g羧甲基纤维素钠,用50%的乙醇溶至100ml。 3)pH5.5醋酸盐缓冲液: 0.2mol/L醋酸溶液11.55ml95%冰醋酸溶至1L; 0.2mol/L醋酸钠溶液16.4gC2H3O2Na或27.22gC2H3O2Na.3H2O溶至1L; 取11ml0.2mol/L醋酸溶液和88ml0.2mol/L醋酸钠溶液混匀即成PH5.5醋酸盐缓冲液。4)3,5-二硝基水杨酸溶液:称1.25g二硝基水杨酸,溶于50ml2mol/LNaOH和125ml 水中,再加75g酒石酸钾钠,用水稀释至250ml(保存期不过7天)。 5)葡萄糖标准液(1mg/mL) 预先将分析纯葡萄糖置80℃烘箱内约12小时。准确称取50mg葡萄糖于烧杯中,用蒸馏水溶解后,移至50mL容量瓶中,定容,摇匀(冰箱中4℃保存期约一星期)。 若该溶液发生混浊和出现絮状物现象,则应弃之,重新配制。 三、操作步骤 葡萄糖标准曲线:分别吸1mg/mL的标准葡糖糖溶液0、0.1、0.2、0.4、0.6、0.8mL 于试管中,再补加蒸馏水至1mL,加DNS溶液3ml混匀,于沸腾水浴中加热5min,

常用纤维的检验方法

常用纖維的檢驗方法1、利用手觸摸質感的辨別 2、利用燃燒來鑑別

成分布料之中英對照

基本的天然纖維: 棉---cotton 羊毛---wool 蠶絲---silk 麻--- leaf fiber 較長見的人造纖維: 聚酯纖維,學名: PET fiber (polyester fiber),俗名:特多龍(Tetoron,日本商標名) 聚醯胺纖維,學名: PA fiber(polyamide fiber),俗名:尼龍(Nylon,美國商標名) 聚丙烯腈,學名: PAN fiber(polyacrylonitrile fiber),俗名:開司米龍(Cashmilon,日本商標名) 聚乙烯醇纖維,學名: PVA fiber (polyvinyl alcohol fiber),俗名:維尼龍(Vinylon,日本商標名) 聚丙烯纖維,學名: PP fiber (polypropylene fiber)

聚氯乙烯纖維,學名: PVC fiber (polyvinyl chloride fiber) 聚乙烯纖維,學名: PE fiber (polyethylene fiber) 聚氨基甲酸酯纖維,學名: PU fiber (polyurethane fiber),俗名: 萊卡(Lycra,美國杜邦商標名); Spandex(美國商標名) 粘膠纖維---viscose fiber, viscose rayon 醋酸纖維---acetate fiber 三醋酸纖維---triacetate fiber PBT, PTT, PLA等許多的新興纖維材料: 尼龍nylon 彈性纖維lycra 聚酯纖維polyester-----以上都是人造纖維man-made fiber 鏍瑩rayon-----天然纖維加工而成

纺织品纤维含量检测中的常见误判

纺织品纤维含量检测中的常见误判 摘要:随着我国纺织技术的不断精进,国内多数纺织类产品的纺织密度逐渐上升,但是纺织产品中的纤维含量仍然需要依靠人工进行过检验,因此时常出现误 判及漏检等问题。为了有效提升检验数据的精准度,技术人员需要明确当前作为 常见的纤维含量检测误判面料种类以及误判原因,如此一来,即可有效防止误判 及漏检问题的出现。 关键词:纺织品;纤维含量;技术检测;误判;漏检 引言:截至目前,国内的纺织产业众多,但是纺织类产品的纤维含量检测仍 需人工操作。具体而言,面料类型、常用试剂、纤维溶解性变化、新型纤维或者 不常见纤维经前处理等都是影响纺织品纤维含量检测的主要因素。随着时代的不 断推进,纺织品行业的纤维含量检测工作面临着全新的挑战,技术检测想要符合 新时代的发展需求就必须严格要求自身,提升检测质量。 一、纺织品纤维含量检测现状 众所周知,人们的生活离不开衣、食、住、行四个方面,其中的“衣”即为衣服。服装作为人们的生活必需品,从始至终都是每个层级的人身份的象征,因此 人们非常注重服装的材料与外观。结合本文核心,牛仔面料、纯丝光棉面料以及 色织提花面料等等都是日常生活中常见的面料种类,然而在纤维含量检测过程中,以上也都是较易出现误判与漏检的面料类型。现阶段,纺织类商品的纤维含量检 测主要依靠人工,因此较易出现误判及漏检等问题,从而在很大程度上降低了纺 织类商品的总体质量。 二、常见的纤维含量检测误判面料 (一)牛仔面料 研究表明,牛仔面料的检测数据较易出现漏检问题,其中漏检问题最大的就 是1%-2%含量再生纤维素纤维的样品。这里我们首先排除技术人员经验不足及身 体状况等影响因素后得出,该种面料发生漏检的主要原因在于牛仔面料的颜色、 显微镜的观察程度等息息相关。结合既往经验分析,导致牛仔面料经常漏检的主 要原因与再生纤维素纤维的形态有关[1]。 (二)纯丝光棉面料 结合当前国内纺织品生产加工现状而言,其纤维含量的技术检测直接影响了 纺织类商品的最终质量,甚至是销售企业的营业额。根据市场行业分析,纯丝光 棉面料的组成部分较多,因此分组相对复杂,但是这种面料从外观及手感上无法 感知差异。近年来,国内曾出现莱赛尔纤维、亚麻纤维与桑蚕丝纤维等等,但是 通过检测后发现,纯丝光棉面料中的亚麻纤维及桑蚕丝纤维含量较低,丝光棉、 莱赛尔和桑蚕丝形态相似,从而导致该种面料较易出现误判漏检等问题[2]。 (三)外观图案无差异的面料 部分情况下,服装生产商为了提高服装的舒适度与牵拉度,在服装的不同位 置加入不同纤维,如此构成的服装更舒适、更强力。对于检测工作而言,加入纤 维的位置如果是差异明显的部分,则不会影响最终的检测结果;但是如果加入纤 维的位置明显差异较小,那么在不易察觉的情况下则会较易漏检,甚至出现误判。举例来说,诸如针织毛衫前片上部和下部纤维组分不同、提花图案完全相同的两 个样品面料成分不同等等都是影响纤维含量检测结果的主要因素。 (四)下脚纤维面料 实际上,下脚纤维面料同牛仔面料、纯丝光棉面料一样,属于经常出现误判、

纤维素酶的检测方法

纤维素CMC酶、FPA酶和半纤维素酶测定 1.纤维素CMC酶 1.0标题 用3.5一二硝基水杨酸法测定纤维素CMC酶活性单位。 2.0范围 生产分析和质量控制部门适用。 3.0原理 纤维素CMC酶(EC3.2.1.4)水解羧基纤维素分子中β-1.4葡萄糖苷键,释放出的还原糖(以葡萄糖计)与3.5二硝基水杨酸(DNS)反应,产生颜色变化,这种颜色变化与释放还原糖(以葡萄糖计)的量成正比关系,即与酶样品中的酶活性成正比。通过在550nm的光吸收值查对标准曲线(以葡萄糖为标准物)可以确定还原糖产生的量,从而确定出酶的活力单位。 4.0试剂 4.1无水醋酸钠(分析纯) 4.2冰醋酸(分析纯) 4.3 3.5-二硝基水杨酸 4.4无水葡萄糖 4.5四水酒石酸钾钠(分析纯) 4.6氢氧化钠(分析纯) 4.7重蒸苯酚(分析纯) 4.8无水亚硫酸钠(分析纯) 4.9叠氮化钠(分析纯) 4.10羧甲基纤维素钠 5.0仪器 5.1水浴锅(恒温)50±1℃ 5.2电热干燥箱80±1℃ 5.3 722型分光光度机计 5.4分析天平感量0.1㎎ 5.5一级玻璃制品 5.6电冰箱 6.0试剂的准备 6.1乙酸-乙酸钠缓冲溶液(PH=4.8) 溶液A:量取冰醋酸6ml,定容至1000ml,制成0.1M醋酸钠溶液。 溶液B:称取8.2g醋酸钠,溶解后容至1000ml,制成0.1M醋酸钠溶液。 以A:B=4:6的比例混合,低温冷藏备用。 6.2 DNS试剂: 溶液A:称分析纯NaOH 104g溶于1300ml水中,加入30g分析纯3.5一二硝基水杨酸。 溶液B:称分析纯酒石酸钾钠910g,溶于2500ml热水中,再称取25g重蒸苯酚和25g无水亚硫酸钠加入酒石酸钾钠溶液。 将A、B溶液混合,定容至5000ml,贮存于棕色瓶中,暗处放置一星期后可使用。 6.3 CMC溶液:用羧甲基纤维素钠(CMC)以PH4.8醋酸缓冲液配成1%的溶液。 7.0标准曲线制作: 7.1无水葡萄糖80℃烘干至恒重。 7.2准确称取1.000g溶于1000ml水中,加10mg叠氮化钠防腐,4℃冷藏备用。 7.3标准葡萄糖曲线制作

化学纤维种类、结构等详细介绍

化学纤维 合成纤维是将人工合成的、具有适宜分子量并具有可溶(或可熔)性的线型聚合物,经纺丝成形和后处理而制得的化学纤维。通常将这类具有成纤性能的聚合物称为成纤聚合物。与天然纤维和人造纤维相比,合成纤维的原料是由人工合成方法制得的,生产不受自然条件的限制。合成纤维除了具有化学纤维的一般优越性能,如强度高、质轻、易洗快干、弹性好、不怕霉蛀等外,不同品种的合成纤维各具有某些独特性能。 1.定义 合成纤维(synthetics)是化学纤维的一种,是用合成高分子化合物做原料而制得的化学纤维的统称。它以小分子的有机化合物为原料,经加聚反应或缩聚反应合成的线型有机高分子化合物,如聚丙烯腈、聚酯、聚酰胺等。从纤维的分类可以看出它属于化学纤维的一个类别。 2.主要品种 3.结构分类 1.、碳链合成纤维,如聚丙烯纤维(丙纶)、聚丙烯腈纤维(腈纶)、聚乙烯醇缩甲醛纤维(维尼纶); 2、杂链合成纤维,如聚酰胺纤维(锦纶)、聚对苯二甲酸乙二酯(涤纶)等。

4.功用分类 1、耐高温纤维,如聚苯咪唑纤维; 2、耐高温腐蚀纤维,如聚四氟乙烯; 3、高强度纤维,如聚对苯二甲酰对苯二胺; 4、耐辐射纤维,如聚酰亚胺纤维; 5、另外还有阻燃纤维、高分子光导纤维等。 超细纤维 纤维细度达0.5→0.35→0.25→0.27(dpf)的涤纶,规格有:50/144、50/216、50/288超细涤纶。还有杜邦公司生产的超细尼龙Tactel纤维,直径小于10μm。做成服装具有极佳柔软手感、透气防水防风效果。复合纤维 主要由PET/COPET或PET/PA组成,海岛型纤维:细度可达0.04-0.06dpf,还有易收缩海岛型复合纤维,可做仿麂皮绒外衣、家纺和工业用布。复合分割型纤维细度为0.15-0.23(dpf),有DTY丝80/36×12,也可做仿麂皮、桃皮绒纺织品。 吸湿排汗纤维 纺织品要达到吸湿排汗功能的方法可采用:(1)纤维截面异形化:Y字型、十字形、W形和骨头形等,增加表面积,纤维表面有更多的凹槽,可提高传递水气效果。(2)中空或多孔纤维:利用毛细

纤维含量的测定

纤维含量的测定 高峻凤主编.植物生理学实验指导.高等教育出版社,2006,12:144-148 一:原理: 植物组织中的还原糖,蔗糖在80%的乙醇溶液中溶解,而淀粉及大部分蛋白质沉淀,当用4.6mol.L-1高氯酸(HClO4)溶解淀粉后,也可使蛋白质,纤维素等沉淀,再以0.1mol.L-1NaOH溶解蛋白质,热水和丙酮除去果胶和脂质后,剩余的沉淀可用于纤维素含量的测定。糖与浓硫酸作用脱水生成糠醛,可与蒽酮缩合生成蓝绿色物质。在620nm有最大吸收,而在10-100μg颜色与糖含量成正比。用于己酮糖和己醛糖测定。 二:仪器: 离心机,分析天平,三用水浴,容量瓶,10ml离心管,铝试管架,分光光度计,沸水浴,移液管,15-25ml具塞刻度管8支,18*180mm试管12支试剂: 80%乙醇溶液,9.2 mol.L-1及4.6 mol.L-1高氯酸,0.1 mol.L-1NaOH溶液,60%H2SO4, 葡萄糖标准液:称取分析纯葡萄糖(80℃烘干)100mg,溶于蒸馏水中,定容至100ml,即1mg .L-1标准溶液,用时稀释10倍,即为100μg.L-1标准液蒽酮-硫酸试剂:称取0.2g蒽酮,和0.1g硫脲置烧杯中,缓缓加入100ml 浓硫酸,搅拌溶解后应呈淡黄的透明溶液。 3,5-二硝基水杨酸(DNS)试剂:精确称量1g3,5-二硝基水杨酸(DNS),溶于20ml2 mol.L-1NaOH溶液中,加入50ml蒸馏水,再加入30g酒石酸钠,溶解后用蒸馏水定容至100ml 纤维素标准液:准确称量100mg,在冰浴下加入60-70ml预冷的60%硫酸,在0-2℃水解12h,然后用60%硫酸稀释至100ml刻度,摇匀。将此液在冰浴下稀释10倍,即为100μg.ml-1之标准液。 三:材料:新鲜组织 四:方法步骤: 1,提取分离 (1)称取植物干样0.500g于10ml离心管中,加入5-6ml80%乙醇溶液,80℃水浴30min,期间不时搅拌。用少量80%乙醇冲洗玻璃棒,并将 溶液冷却至室温后3500g下离心10min,上清液转入25ml容量瓶中, 再向沉淀中加入5-6ml80%乙醇,如上述重复浸提2次,将上清液合 并于25ml容量瓶中,并定容至刻度。该提取液御用测定还原糖和可 溶性糖。 (2)向沉淀中加入2ml蒸馏水,在沸水中浴中糊化15min,冷却后加入2ml9.2mol.L-1。HclO4,搅拌15min后,加蒸馏水4ml,混匀,在4000g 下离心10min,上清液转入50ml容量瓶。再向沉淀中加入 2ml4.6mol.L-1HClO4,搅拌提取15min,加入5min蒸馏水,混匀后 离心10min,合并上清液,用蒸馏水洗沉淀2次,每次5ml,合并上 清液并用蒸馏水定容至刻度,该提取液用于测定淀粉。沉淀用于纤维 素的测定。

纤维素酶活力测定方法_张瑞萍

测试与标准 纤维素酶活力测定方法 张瑞萍 南通工学院(226007) 摘 要 用DN S 为显色剂,分别以滤纸和CM C 为底物,以滤纸糖酶活性(FP A )和羧甲基纤维素酶活性(CM C a se )表征纤维素酶活力。确定酶活测定用波长为530nm,参比溶液应为失活酶、底物和DN S 等共热的反应物;比较了两种底物的酶活力测定方法。结果表明,CM C a se 比FP A 高,说明酶对水溶性底物有较高的活力,也表明吸附对酶的活性部位与纤维素分子链段的结合及催化均有很大影响;对于不同牌号的纤维素酶,织物的酶减量率与CM C 酶活力关系密切。 叙 词: 测试 纤维素酶 活度中图分类号: TS197 纤维素酶是多组分复合物,各组分的底物专一性不同。纤维素酶作用的底物比较复杂,反应产物不同,致使纤维素酶活力测定方法很多,各国的方法亦不统一。我们选择滤纸、CM C 为底物,原理系利用纤维素酶催化水解纤维素,产生纤维多糖、二糖及葡萄糖等还原糖,与显色剂反应,求出还原糖的浓度,间接求出酶的活力。由不同底物测得的酶活力分别称作FPA (滤纸糖酶活力)和CM C ase (羧甲基纤维素酶酶活力)。本文分析确定酶活力测定的主要条件,比较两种底物的酶活力测定方法的结果,探讨纤维素酶活力与织物减量率的关系,为酶在生产中的利用提供依据。 1 实验方法 1.1 化学药品、材料 纤维素酶(工业品),DNS 试剂(自配),冰醋酸,醋酸钠,葡萄糖(均为分析纯),滤纸(定性),羧甲基纤维素酶CM C (试剂级),纯棉针织物半制品(南通针织厂)。 1.2 FPA 滤纸酶活力和CMC 酶活力的测定 取适当稀释的酶液,分别以滤纸或1%的CM C 溶液为底物,于50℃恒温水解反应1h ;然后加入显色剂DNS,沸水浴中煮沸5min;再加入蒸馏水,于530nm 测定吸光度OD 值。 酶活可定义为:每毫升酶液1min 产生1mg 葡萄糖为一个单位( )。 1.3 针织物酶减量率的测定 将酶处理前后的试样在烘箱中105℃烘至恒重。减量率= 处理前织物干重-处理后织物干重 处理前织物干重 ×100% 2 结果与讨论 2.1 显色剂的选择 选用DNS ,在碱性条件下与还原糖反应,生成有色化合物,用分光光度计比色,确定低分子糖含量。 碱性条件下DNS 与还原糖共热反应如下: O 2N OH O 2N CO OH +还原糖  H 2N OH CO OH O 2N DN S(黄色) 3-氨基-5-硝基水杨酸(棕红色) 生成的棕红色氨基化合物系比色法测定基础。2.2 最大吸收波长的确定 选取490~580nm 波长对显色液进行比色。由图1可知,不同浓度的葡萄糖溶液在490~500nm 处有最大吸收,DNS 在此波长下也有较明显的吸收。为了排除DNS 的干扰,选择在波长 530nm 处进行测定,此波长下的葡萄糖吸收虽有所降低,然而符合“吸收最大、干扰最小”的原则。 图1 D NS 与葡萄糖的吸收曲线 2.3 底物及酶本身含糖量的影响 在实验过程中发现,底物特别是滤纸,也含有一定的还原糖,在碱性的DNS 试剂中也会发色。而且,试验所用的纤维素酶是一种工业级的复合酶,品种不同,其本身含糖量也不同。为了排除这类还原糖的干扰,参比溶液取失活后的酶、底物、DNS 等共热的反应物。2.4 葡萄糖标准曲线 用不同浓度的葡萄糖溶液作为标准溶液,与DNS 共热反应显色后,测出其吸光度OD 值(见图2)。标准曲线的线性相关系数R 2为0.9991(见图2),线性相当好,可以用于酶活力的测定。 38 印 染(2002No .8) www .cdfn .com .cn

化学纤维技术专业简介

化学纤维技术 化学纤维技术专业是我院传统和重点专业,有着30多年的发展历史,是我院最早设置的专业之一,多年的发展与积淀,使该专业形成了特色鲜明的发展优势。本专业秉承工学结合﹑产学研并举的发展思路,全力打造名师授课(本专业有教授一名、副教授两名、硕士研究生两名,形成了结构合理的教师梯队),把培养有思想﹑懂管理﹑会技术的高素质复合型人才作为工作方向,同时努力与企业界合作,加强技术交流和人员交往,把实现学生就业作为工作的重点,实现了专业发展与学生发展的双赢。 培养目标:本专业培养具有扎实的科学文化理论基础,掌握较熟练的从事高分子材料加工技术、工艺设计、技术管理、新产品开发和科学研究的高级专门应用型人才。 就业领域:该专业毕业生就业前景十分广阔,学生毕业后可在橡胶、塑料、化纤、无纺布、涂料、化工助剂以及高分子材料等相关行业从事技术、管理、产品设计和开发、产品检验等工作,也可在科研,贸易和营销等领域从事相关工作。由于该专业与省内外大型企业(主要有:潍坊海化集团、潍坊亚星集团、天德化工、海龙集团、泰鹏集团、青岛喜盈门集团、青岛即发集团、齐荣纺织有限公司等)开展了长期而富有成果的合作,使得高分子专业毕业生的就业前景良好,而且就业质量较高。 染整技术 染整技术专业作为我院重点专业之一,师资力量雄厚,办学条件优越,有实力雄厚的相关企业作为实验基地,旨在培养染整类高素质高级应用型人才。染整技术专业为纺织工业的龙头专业,对纺织工业的发展起者举足轻重的作用。是纺织工业中自动化,技术化较高的专业。 培养目标:本专业培养掌握各种纤维及其染整加工工艺及基本原理,能够从事纤维及其制品染整生产、工艺设计、技术管理、新产品开发和科学研究的高级专门应用型人才。 就业方向:该专业毕业生就业前景十分广阔,学生毕业后可在印染及相关行业技术的生产管理、纺织品贸易、染料助剂的生产和营销、染整新产品开发等方面工作。 应用化工技术 随着经济结构、产业结构和产品结构调整的不断深化,我国化学工业已成为对GDP贡献最大的领头雁行业,也是第一产业中名副其实的支柱行业。特别是近年来迅速崛起的中小型企业,以精细化工为主的化学工程企业在第一产业的经济比重越来越大,这种强劲的发展态势,对该专业人才,尤其是对能适应中小型企事业单位需要的精细化工方面的人才,无论从数量上,还是质量上都提出了更多和更高的要求,该专业堪称为目前最热门专业。 培养目标:本专业主要培养适应市场经济发展需要的,能在化工、纺织、建材、炼油、冶金、能源、轻工、医药等企事业单位从事科学研究、工程设计、技术开发、产品生产和市场运营等方面工作的实用专业技术人才。 就业方向:在化工、纺织、建材、炼油、冶金、能源、轻工等企事业单位从事科技研发,产品

相关文档
最新文档