边界元法

边界元法
边界元法

有限元变分原理

1有限元变分原理 有限元是求解偏微分方程的数值方法,在数学上属于变分法范畴,是古典的 Ritz-Galerkin方法与分片多项式插值的结合。古典的Ritz-Galerkin方法的试函 数是求解域内的连续函数,有限元法的试函数是分片多项式。作为变分法的试函 数产生了很大区别:古典的Ritz-Galerkin方法的试函数要求域内的连续或平方 可积且满足位移边界条件,试函数定义在泛函分析的Hilbert空间,或称为内积 空间。有限元法的试函数要求在单元域内连续或平方可积,且不用考虑位移边界 条件,因为有限元是以节点位移参数为未知数,可以直接代入位移边界条件,但 是单元间出现了连续性条件,即所谓的平面和三维弹性问题的C0连续,和薄板 问题的C1连续等,相对古典的Ritz-Galerkin方法的试函数是一种广义函数。有 限元试函数定义在泛函分析的Sobolev空间,或称为广义导数空间。 2 分片检验 2.1分片检验 长期以来在有限元收敛理论中的分片检验成为关注的焦点,同时也是一个疑难症。分片检验所以倍受关注,是因为它不仅可以用于检验单元的收敛性还可以用于构造收敛单元,而且十分方便。分片检验的研究大致经历了如下三个里程。第一,1965年Irons提出了不协调元的分片检验条件(Patch Test) [1,2],这是一个通过数值计算检验单元的收敛性的方法,可以通过对一小片有限元问题的数值计算检验单元的收敛性,也是有限元法中最实用的检验单元收敛性的方法,但是,作为一种数值检验的方法,在数学和力学原理上的提法都不够严密,而有限元的单元收敛性又是不能回避的问题。鉴于这个方法的有效性和实用性,人们一直对其开展系列的理论研究工作。1972年Strang首先给出分片检验的数学描述[3],后来,这个条件被解释成对一个单元的约束条件,称之为单体条件[4],这个条件使用很方便,可以做为单体的约束条件构造单元函数,但是,对这个分片检验一直缺少严格的数学证明。第二,1980年Stummel 基于严格的数学理论,建立了不协调元收敛的充分必要条件-广义分片检验[5],并且,通过举反例证明Irons的分片检验即不充分也不必要[6]。这个严格的理论是整体条件,而非单体条件,应用很困难,只限于用于少量单元的检验,而且需要有相当的泛函分析基础,对于大多数单元无法得到应用,更是无法用于指导构造不协调元,因此深入研究实用的不协调元收敛性条件是十分必要的。 此间,还推出了一些实用的充分条件,例如,F-E-M检验[7] 和IPT 检验[8]等,1995年建立了C0类非协调元收敛准则—强分片检验(SPT) [9],1997年基于加权Sobolev 空间理论,建立了轴对称非协调元收敛准则—强分片检验(ASPT) [10]。但是,数学的严格理论(例如,广义分片检验)难以在力学中应用,实用的力学准则(例如,分

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

一般有限元原理

一般有限元原理 一、基本理论 有限元单元法是数值计算方法中发展较早、应用最广的一种方法。利用有限元法,可以解决经典的传统的方法难以解决或无法求解的许多实际问题。其优点是部分地考虑边坡岩土体的非均质、不连续的介质特征,考虑岩土体的应力应变特征,可以避免将坡体视为刚体,过于简化边界条件的缺点,能够接近实际从应力应变的角度分析边坡的变形破坏机制。对了解边坡的应力分布及应变位移变化很有利。 有限单元法实质是变分法的一种特殊的有效形式,其基本思想是:把连续体离散化为一系列的连接单元,每个单元内可以任意指定各种不同的力学形态,从而可以在一定程度上更好地模拟地质体的实际情况,特殊的节理元,可以有效地模拟岩土体中的结构面。 在大多数情况下岩土体材料应采用非线形模型,其中包括岩体弹塑性、蠕变、不抗拉特性以及结构面性质的影响。下面简要叙述有限元法的求解过程和原理。 有限单元法的基本原理 1.有限单元法的实施步骤 有限元的重要步骤归纳起来,主要有以下几步: (1)建立离散化的计算模型,包括以一定型式的单元进行离散化,按照求解问题的具体条件确定荷载及边界条件; (2)建立单元的刚度矩阵; (3)由单元刚度矩阵组集总体刚度矩阵,并建立系统的整体方程组; (4)引入边界条件,解方程组,求得节点位移; (5)求各单元的应变、应力及主应力。 2位移模式与单元类型 在一般的有限单元法问题中,我们常以位移作为未知数,称为位移法。为保证解的收敛性,要求位移模式必须满足以下三条: (1)位移模式必须能包含单元的刚体位移。即当节点位移是由某个刚体位移所引起时,弹性体内不会有应变。 (2)位移模式必须能包含单元的常应变,即与位置坐标无关的那部分应变。

边界元与有限元

边界元与有限元 边界元法boundary element method 定义:将力学中的微分方程的定解问题化为边界积分方程的定解问题,再通过边界的离散化与待定函数的分片插值求解的数值方法。 所属学科:水利科技(一级学科) ;工程力学、工程结构、建筑材料(二级学科) ;工程力学(水利)(三级学科) 边界元法(boundary element method)是一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点.但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。 简介 边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。又称边界积分方程-边界元法。它以定义在边界上的边界积分方程为控制方程,通过对边界分元插值离散,化为代数方程组求解。它与基于偏微分方程的区域解法相比,由于降低了问题的维数,而显著降低了自由度数,边界的离散也比区域的离散方便得多,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。又由于它利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。特别是对于边界变量变化梯度较大的问题,如应力集中问题,或边界变量出现奇异性的裂纹问题,边界元法被公认为比有限元法更加精确高效。由于边界元法所利用的微分算子基本解能自动满足无限远处的条件,因而边界元法特别便于处理无限域以及半无限域问题。边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,

通用显式非线性有限元程序:LS-DYNA

通用显式非线性有限元程序:LS-DYNA LS-DYNA 是世界上最著名的通用显式非线性有限元分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维、三维非线性结构的碰撞、金属成型等非线性动力冲击问题,同时可以求解传热、流体及流固耦合问题。在工程应用领域被广泛认可为最佳的分析软件包。与实验的无数次对比证实了其计算的可靠性。 LS-DYNA 是功能齐全的几何非线性(大位移、大转动和大应变)、材料非线性(140多种材料动态模型)和接触非线性(50多种)软件。它以Lagrange 算法为主,兼有ALE 和Euler 算法;以显式求解为主,兼有隐式求解功能;以结构分析为主,兼有热分析、流体-结构耦合功能;以非线性动力分析为主,兼有静力分析功能(如动力分析前的预应力计算和薄板冲压成型后的回弹计算);是通用的结构分析非线性有限元程序。 特色功能 ? 显式求解为主,兼有隐式算法,适合于求解高度非线性问题; ? 具有多种求解算法,以Lagrange 算法为主,兼有ALE、Euler 算法、SPH (Smoothed Particle Hydrodynamics)光顺质点流体动力算法和边界元法BEM(Boundary Element Method); ? 具有160多种材料模型,是材料模型非常丰富的有限元软件; ? 具有50多种接触类型,是接触类型非常齐全的有限元软件; ? 极好的并行计算能力,包括分布式并行算法(MPP)和共享内存式并行(SMP); ? 良好的自适应网格剖分技术,包括自适应网格细分和粗化; ? 行业化的专用功能:如针对汽车行业的安全带单元、滑环、预紧器、牵引器、传感器、加速计、气囊等。 客户价值 ? 拥有显式和隐式算法,各向异性材料模型,使得板成型、回弹、预应力计算等,可以连续求解; ? 多种控制选项和用户子程序使得用户在定义和分析问题时有很大的灵活性; ? MPP 版本大幅度减少计算时间,计算效率随计算机数目增多而显著提高; ? 与大多数的CAD/CAE 软件集成并有接口。 广州有道科技培训中心 h t t p ://w w w .020f e a .c o m

(完整版)有限元法的基本原理

第二章有限元法的基本原理 有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。 2.1等效积分形式与加权余量法 加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。 2.1.1 微分方程的等效积分形式 工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组 12()()()0A A A ?? ?== ? ??? u u u M (在Ω内) (2-1) 域Ω可以是体积域、面积域等,如图2-1所示。同时未知函数u 还应满足边界条件 12()()()0B B B ?? ?== ? ??? u u u M (在Γ内) (2-2) 要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。所以在以上两式中采用了矩阵形式。 以二维稳态的热传导方程为例,其控制方程和定解条件如下: ()()()0A k k q x x y y φφφ????=++=???? (在Ω内) (2-3)

0()0q B k q n φφφφφ?-=Γ?=??-=Γ???(在上)(在上) (2-4) 这里φ表示温度(在渗流问题中对应压力);k 是流度或热传导系数(在渗流问题中对应流度/K μ);φ和q 是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n 是有关边界Γ的外法线方向;q 是源密度(在渗流问题中对应井的产量)。 在上述问题中,若k 和q 只是空间位置的函数时,问题是线性的。若k 和q 是φ及其导数的函数时,问题则是非线性的。 由于微分方程组(2-1)在域Ω中每一点都必须为零,因此就有 1122()(()())0u d v A u v A u d ΩΩ Ω≡++Ω≡? ?T V A L (2-5) 其中 12v V v ?? ?= ? ??? M (2-6) 其中V 是函数向量,它是一组和微分方程个数相等的任意函数。 式(2-5)是与微分方程组(2-1)完全等效的积分形式。我们可以说,若积分方程对于任意的V 都能成立,则微分方程(2-1)必然在域内任一点都得到满足。同理,假如边界条件(2-2)亦同时在边界上每一点都得到满足,对于一组任意函数,下式应当成立 1122 ()(()())0u d v B u v B u d ΓΓΓ≡++Γ≡??VB L 因此积分形式 ()()0u d u d ΓΓ Ω+Γ=??T T V A V B 对于所有的V 和V 都成立是等效于满足微分方程(2-1)和边界条件(2-2)。我们把(2-7)式称为微分方程的等效积分形式。 2.1.2等效积分的“弱”形式 在一般情况下,对(2-7)式进行分部积分得到另一种形式: ()()()()0T T v d v d ΩΓ Ω+Γ=??C D u E F u (2-8) 其中C ,D ,E ,F 是微分算子,它们中所包含的导数的阶数较(2-7)式的低,这样对函数u 只需要求较低阶的连续性就可以了。在(2-8)式中降低连续性要求是以提高V 和V 的连续性要求为代价的,由于原来对V 和V (在(2-7)式中)并无连续性要求,但是适当提高对其连续性的要求并不困难,因为它们是可以选择的已知函数。这种降低对函数u 连续性要求的作法在近似计算中,尤其是在有限单元法中是十分重要的。(2-8)式称为微分方程

有限元计算原理与方法..

1.有限元计算原理与方法 有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 1.1. 有限元分析的基本理论 有限元单元法的基本过程如下: 1.1.1.连续体的离散化 首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接 而成为一个整体。单元可采用各种类 型,对于三维有限元分析,可采用四 面 体单元、五西体单元和六面体 单元等。在Plaxis 3D Foundation 程序中,土体和桩体主要采用包 含6个高斯点的15节点二次楔 形体单元,该单元由水平面为6 节点的三角形单元和竖直面为四 边形8节点组成的,其局部坐标 下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的 8个成对节点四边形单元。 在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;

若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应 把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理; 若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布 荷载等效地移置到有关节点上去。 最后,还应建立一个适合所有单元的总体坐标系。 由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料 的由众多单元以一定方式连接成的离散物体。因此,用有限元法计算获得的结果 只是近似的,单元划分越细且又合理,计算结果精度就越高。与位移不同,应力 和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通 过对桩截面进行积分褥到。 1.1. 2. 单元位移插值函数的选取 在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移 作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]T f u v w =。 引入位移函数N (x,y,z )表示场变量在单元内的分布形态和变化规律,以便用 场变量在节点上的值来描述单元内任一点的场变量。因此在单元内建立的位移模 式为: {}[]{}e f N δ= (3-1) 其中:12315[][,,......]N IN IN IN IN =,I 为单位矩阵。 按等参元的特性,局部坐标(,,)ξηζ到整体坐标,,x y z ()的坐标转换也采用 与位移插值类似的表达式。经过坐标变化后子单元与母单元(局部坐标下的规则 单元)之间建立一种映射关系。不管内部单元或边界附近的单元均可选择相同的 位移函数,则为它们建立单元特性矩阵的方法是相同的。因此,对于15节点楔 形体单元体内各点位移在整体坐标系,,x y z ()下一般取:

边界元法发展综述

边界元法发展综述 刘娅君 学号:11080922005 从工程实际中提出的力学问题,一般可归结为数学的定解问题。但其中只有极少数简单情况可以求得解析解,而大多情况都必需借助于有效的数值方法来求解。有限元法是目前工程中应用最广泛的数值方法,已有很多通用程序和专用程序在各个工程领域投人了实际应用。然而,有限元法本身还存在一些缺点。例如,在应力分析中对于应力集中区域必须划分很多的单元,从而增加了求解方程的阶数,计算费用也就随之增加;用位移型有限元法求解出的应力的精度低于位移的精度,对于一个比较复杂的问题必须划分很多单元,相应的数据输人量就很大,同时,在输出的大量信息中,又有许多并不是人们所需要的。 边界积分方程—边界元法在有限元法之后发展起来成为工程中广泛应用的一种有效的数值分析方法。它的最大特点就是降低了问题的维数,只以边界未知量作为基本未知量,域内未知量可以只在需要时根据边界未知量求出。在弹性问题中,由于边界元法的解精确满足域内的偏微分方程,因此它相对有限元法的解具有较高的精度。同时在一些领域里,例如线弹性体的应力集中问题,应力有奇异性的弹性裂纹问题,考虑脆性材料中裂纹扩展的结构软化分析,局部进人塑性的弹塑性局部应力问题以及弹性接触问题…等,边界元法已被公认为比有限元法更为有效。正是因为这些特点,使边界元法受到了力学界、应用数学界及许多工程领域的研究人员的广泛重视。 边界元与有限元相比有很多优点:首先,它能使问题的维数降低一维,如原为三维空间的可降为二维空间,原为二维空间的问题可降为一维。其次,它只需将边界离散而不象有限元需将区域离散化,所划分的单元数目远小于有限元,这样它减少了方程组的方程个数和求解问题所需的数据,不但减少了准备工作,而且节约了计算时间。第三,由于它是直接建立在问题控制微分方程和边界条件上的,不需要事先寻找任何泛函,不像以变分问题为基础的有限元法,如果泛函不存在就难于使用。所以边界元法可以求解经典区域法无法求解的无限域类问题。最后,由于边界元法引入基本解,具有解析与离散相结合的特点,因而具有较高的精度。

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定

边界元法和ANSYS简介

浅谈边界元法及ANSYS简介 摘要本文先从边界元法的起源和发展及数学分析的角度对其作了简要的介绍,然后又结合国际上目前比较先进的边界元快速算法指明边界元的特点,并且列举了常见的几类边界元法;讨论了铸件锻造模拟技术与方法,举例说明数值模拟在大锻件中的最优解问题;最后又介绍了ANSYS软件的特点和使用方法,并列举了其在材料力学教学和研究中的一些应用。 关键词边界元法数值模拟 ANSYS Abstract This paper begins with the perspective of the origin and development and mathematical analysis of the boundary element method for its brief introduction, and then combined with the current advanced international fast algorithm about boundary element ,and cited the common types of boundary element method; discussed forging simulation techniques and methods of casting, numerical simulations illustrate the optimal solution of the problem in large forgings; finally describing the characteristics and use of ANSYS software, and cited its teaching and research in mechanics of materials in some applications. Key words boundary element method numerical simulations ANSYS

《边界元法》

《边界元法》课程教学大纲 课程名称:边界元法 英文名称:boundary element method 课程编码:51416018 学时/学分:36/2 课程性质:必修 适用专业:工程力学 先修课程:高等数学、偏微分方程、数值分析和有限元法等 一、课程的目的与任务 本课程是工程力学专业的必修课程,是学习相关后续课程的基础,一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点。但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。 二、教学内容及基本要求 第一章引言 教学目的和要求:掌握边界元的基本概念;了解边界元法的分类和学习边界元法 的基础条件。 教学重点和难点:重点掌握边界元法的基本解题思路。难点怎么利用积分法解微 分方程的基本解。 教学方法与手段:采用多媒体教学,边界元法的研究方法和学习方法与有限元法 相比,具有自己的特点,即力学中的微分方程的定解问题化为 边界积分方程的定解问题,再通过边界的离散化与待定函数的 分片插值求解的数值方法。 课时安排:1学时 教学内容:

第一节边界元法的数学基础 第二节边界元法的发展历史 第三节我国边界元法研究概况 第四节边界元法研究的最新进展 第五节边界元法的应用举例 第六节边界元法的优缺点 第七节本书的内容安排 复习与作业要求:全面复习全章内容,作业要求独立、按时完成,平均每学时布置作业1~2题。 考核知识点:边界元法的基础条件、微分方程的定解问题、插值求解的数值方法。 第二章位势问题的边界积分方程与边界元法 教学目的和要求:掌握位势问题中的拉普拉斯(Laplace)方程的解法,位势问题中 的边界条件,了解珀松方程的基本概念。要求学生能够利用微 积分知识推导拉普拉斯方程的基本解,并将它应用于格林 (Green)定理,得到拉普拉斯方程问题的积分方程和边界积分方 程。能够熟练的采用最简单的常用单元说明边界积分方程的离 散化方法。能够熟练的简述珀松(Poisson)方程和多连域问题的 边界元法。 教学重点和难点:重点讲解求解多连域珀松方程问题的计算程序和数值计算,以 及数值积分所使用的一维、二维高斯方程积分公式。难点求解 方程的方法和计算程序的确定。 教学方法与手段:采用多媒体教学,结合实例。 课时安排:4学时 教学内容: 第一节调和方程的基本定解问题 第二节Green等式、基本解及解的积分表达式 第三节边界积分方程的建立 第四节对于一般问题的推广 第五节位势问题的边界元法简介 复习与作业要求:全面复习全章内容,作业要求独立、按时完成,平均每学时布

51416018-《边界元法》_New

51416018-《边界元法》_New

51416018-《边界元法》

《边界元法》课程教学大纲 课程名称:边界元法 英文名称:boundary element method 课程编码:51416018 学时/学分:36/2 课程性质:必修 适用专业:工程力学 先修课程:高等数学、偏微分方程、数值分析和有限元法等 一、课程的目的与任务 本课程是工程力学专业的必修课程,是学习相关后续课程的基础,一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点。但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。 二、教学内容及基本要求 第一章引言 教学目的和要求:掌握边界元的基本概念;了解边界元法的分类和学习边界 元法的基础条件。 教学重点和难点:重点掌握边界元法的基本解题思路。难点怎么利用积分法 解微分方程的基本解。 教学方法与手段:采用多媒体教学,边界元法的研究方法和学习方法与有限 元法相比,具有自己的特点,即力学中的微分方程的定解 问题化为边界积分方程的定解问题,再通过边界的离散化 与待定函数的分片插值求解的数值方法。 课时安排:1学时 教学内容:

第一节边界元法的数学基础 第二节边界元法的发展历史 第三节我国边界元法研究概况 第四节边界元法研究的最新进展 第五节边界元法的应用举例 第六节边界元法的优缺点 第七节本书的内容安排 复习与作业要求:全面复习全章内容,作业要求独立、按时完成,平均每学时布置作业1~2题。 考核知识点:边界元法的基础条件、微分方程的定解问题、插值求解的数值方法。 第二章位势问题的边界积分方程与边界元法 教学目的和要求:掌握位势问题中的拉普拉斯(Laplace)方程的解法,位势问 题中的边界条件,了解珀松方程的基本概念。要求学生能 够利用微积分知识推导拉普拉斯方程的基本解,并将它应 用于格林(Green)定理,得到拉普拉斯方程问题的积分方程 和边界积分方程。能够熟练的采用最简单的常用单元说明 边界积分方程的离散化方法。能够熟练的简述珀松(Poisson) 方程和多连域问题的边界元法。 教学重点和难点:重点讲解求解多连域珀松方程问题的计算程序和数值计算, 以及数值积分所使用的一维、二维高斯方程积分公式。难 点求解方程的方法和计算程序的确定。 教学方法与手段:采用多媒体教学,结合实例。 课时安排:4学时 教学内容: 第一节调和方程的基本定解问题 第二节Green等式、基本解及解的积分表达式 第三节边界积分方程的建立 第四节对于一般问题的推广 第五节位势问题的边界元法简介 复习与作业要求:全面复习全章内容,作业要求独立、按时完成,平均每学时布

有限元法与边界元法ppt

有限元法与边界元法
武汉大学水利水电学院 赵 昕
1
5.1 加权余量法
设有微分方程
L(u) = f (在区域Ω中)
解u也应该满足积分方程 ∫ [L(u) ? f ]δudΩ = 0 Ω
——加权余量法的出发点
δu类似于虚位移,是一个满足一定边界条件的任意的变分函数。 在给定u值的边界Γ1上,δu的边界条件取为0。
3
∫ ∑ ∑ Ω
? ? ??
L????
n
α
j =1
jφ j
????
?
f
???? ???
n i =1
βiWi
??dΩ ?
=
0
δu是满足 得
δu Γ1
=0
的任意函数,不妨取某个βi =1,其余的β为0
∫ ∑ Ω
? ? ??
L????
n
α jφj
j =1
???? ?
f
? ?Wi dΩ ??
=
0
(i = 1,……,n)
——加权余量法的基本关系式(一个求解系数αj的代数方程组)
n
∑ 线性微分方程→ 线性代数方程组: aij α j = bi (i = 1,……,n) j =1
∫ ( ) aij = Wi L φ j dΩ Ω 5
∫ bi = Wi f dΩ Ω
有限元法
有限单元法(Finite Element Method),简称有限元法(FEM):将流 动区域分为许多三角形、矩形或曲边形等各种形状的单元。
优点:适应边界形状不规则的区域,便于处理自然边界条件,比较适合 求解椭圆型方程和扩散方程的数值解。
计算程序虽然比较复杂,但比较标准规范,便于使用。
有限元方法的理论基础:变分原理或加权余量法——将微分方程的求 解变成求积分方程的近似解的问题,避开微分方程求解的困难,对近 似解的可微性要求也可以降低。所以下面介绍加权余量法。
2
假设一个满足第一类边界条件的近似解
∑ u~ = n α j φ j j =1
其中φ
j
(j
=1,…,n)为一组事先选取的线性无关的基函数,
αj为相应的待定系数。
不满足原微分方程,形成的误差称为余量 ε = L(u~) ? f
欲使加权后的ε在区域Ω中在平均意义下为零
∫ εδudΩ = ∫[L(u~) ? f ]δudΩ = 0
Ω
Ω
n
∑ 可取权因子 δu = βiWi i =1
Wi(i =1,…,n)是一组线性无关的基函数(权函数)。
4
选择权函数Wi : (1)`取Wi ≡ 1,→有限体积法。
(2)最小二乘法。取
∫ ∫ ∫ ? < ε, ε >= ? ε2dΩ = ?ε2 dΩ =2 ε ?ε dΩ =0
?α i
?α i Ω
Ω ?αi
Ω ?αi
相当于
Wi
=
?ε ?α i
= L(φi )
(3)伽辽金法,取 Wi=φi 则
∫ ∑ ? n
?
?L( α j φ j ) ? f ?φi dΩ = 0

j =1
?
( ) n
∑ α j ∫ φi L φ j dΩ = ∫ φi f dΩ
j =1 Ω
Ω
6

有限元分析的基本原理

有限元分析的基本原理 有限元原理和基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。 有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh-Ritz法+分片函数”,即有限元法是Rayleigh-Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh-Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:第一步:问题及求解域定义 根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化 将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的

有限元法的基础理论

一、里兹法与迦辽金法(摘自电磁场有限元方法 金建铭) 1. 里兹法 里兹法是一种变分方法,其中边值问题用变分表达式(也称泛函)表示,泛函的极小值对应于给定边界条件下的控制微分方程。通过求泛函相对于其变量的极小值可得到近似解。 2. 伽辽金法 伽辽金法属于残数加权方法类型,它通过对微分方程的残数求加权的方法得到方程的解。 若u 是方程的近似解,将u 代入方程可得到非零的残数: r Lu f =- u 的最佳近似应能使残数r 在Ω内所有点上有最小值。残数加权方法要求: 0i i R rd ωΩ =Ω=? 这里i R 表示残数的加权积分,i ω是所选的加权函数。 在伽辽金法中,加权函数与近似解展开中所用的函数相同。通常,这样可得到最精确的 解。 二、有限元方法 里兹法和伽辽金法中,在整个解域内找出能表示或至少近似表示问题真实解的试探函数是非常重要的。然而对于许多问题,这个步骤是十分困难的,对二维和三维问题尤其如此。为此,我们可将整个区域划分成小子域,并应用定义在每个子域上的试探函数。因为子域是小区域,因而在每一子域内函数的变化不大,所以定义在子域上的试探函数通常比较简单。这正是有限元法的基本思想。应用里兹法的过程通常称为里兹有限元法或变分有限元法,而应用伽辽金方法的过程通常称为伽辽金有限元方法。 有限元法与经典里兹法和伽辽金法的不同之处是在试探函数的公式上。在经典里兹法和伽辽金法中,试探函数由定义在全域上的一组基函数组成。这种组合必须能够(至少近似)表示真实解,也必须满足适当的边界条件。在有限元法中,试探函数是由定义在组成全域的子域上的一组基函数构成。因为子域很小,所以定义在子域上的基函数能够十分简单。 三、关于形函数(摘自有限元法在电磁计算中的应用 张榴晨) 对于一个待求的微分方程,用一组线性独立的尝试函数i ψ和待定系数i C 来表示方程的近似解,并用加权余数法(迦辽金法)来求解这些待定系数。求解待定系数的代数方程组为: 1 []1,2,,n i j i j i d C q d j n ψψψΩ Ω =??Ω=Ω =∑? ? 这里j ψ为所选择的加权函数,应用迦辽金法时,所选取的加权函数即为尝试函数。 有限元中应用的尝试函数代表了单元上近似解的一种插值关系,它决定了近似解在单元上的形状。因此尝试函数在有限元法中又称为形函数。对于一维有限元来说,形函数为一个直线段;对一维高阶有限元来说,形函数为一个曲线段;对二维一阶有限元来说,形函数为一个平面;对二维高阶有限元来说,形函数为一个曲面;三维有限元来说,形函数为多维平面或曲面。选择形函数时可以使一个任意元上的函数只与该元所对应的节点势函数值有关,而与其它各点的值无关。 1. 一维有限元

相关文档
最新文档