凸二次规划主对偶内点法的一个扩展问题

凸二次规划主对偶内点法的一个扩展问题
凸二次规划主对偶内点法的一个扩展问题

二次规划问题

序列二次规划法 求解一般线性优化问题: 12min (x) h (x)0,i E {1,...,m }s.t.(x)0,i {1,...,m } i i f g I =∈=?? ≥∈=? (1.1) 基本思想:在每次迭代中通过求解一个二次规划子问题来确定一个下降方向,通过减少价值函数来获取当前迭代点的移动步长,重复这些步骤直到得到原问题的解。 1.1等式约束优化问题的Lagrange-Newton 法 考虑等式约束优化问题 min (x) s.t.h (x)0,E {1,...,m} j f j =∈= (1.2) 其中:,n f R R →:()n i h R R i E →∈都为二阶连续可微的实函数. 记1()((),...,())T m h x h x h x =. 则(1.3)的Lagrange 函数为: 1(,)()*()()*()m T i i i L x u f x u h x f x u h x ==-=-∑ (1.3) 其中12(,,...,)T m u u u u =为拉格朗日乘子向量。 约束函数()h x 的Jacobi 矩阵为:1()()((),...,())T T m A x h x h x h x =?=??. 对(1.3)求导数,可以得到下列方程组: (,)()A()*(,)0(,)()T x u L x u f x x u L x u L x u h x ??? ???-?===?????-???? (1.4) 现在考虑用牛顿法求解非线性方程(1.4). (,)L x u ?的Jacobi 矩阵为: (,)()(,)() 0T W x u A x N x u A x ?? -= ?-??

线性规划的对偶原理

线性规划的对偶原理 3.1 线性规划的对偶问题 一、 对偶问题的提出 换位思考 家具厂的线性规划问题,该问题站在家具厂管理者的角度追求销售收入最大 213050max x x z += ?? ? ??≥≤+≤+0 ,50212034212121x x x x x x 某企业家有一批待加工的订单,有意利用该家具厂的木工和油漆工资源来加工他的产品。他 需要与家具厂谈判付给该厂每个工时的价格。如果该企业家已对家具厂的经营情况有详细了 解,他可以构造一个数学模型来研究如何才能既让家具厂觉得有利可图,肯把资源出租给他, 又使自己付的租金最少。 目标:租金最少;1y -付给木工工时的租金;2y -付给油漆工工时的租金 2150120min y y w += 所付租金应不低于家具厂利用这些资源所能得到的利益 1)支付相当于生产一个桌子的木工、油漆工的租金应不低于生产一个桌子的收 入 502421≥+y y 2)支付相当于生产一个椅子的木工、油漆工的租金应不低于生产一个椅子的收 入 30321≥+y y 3)付给每种工时的租金应不小于零 0,021≥≥y y 二、 原问题与对偶问题的数学模型 1. 对称形式的对偶

原问题和对偶问题只含有不等式约束时,一对对偶问题的模型是对称的,称为对称形式的对偶。 原问题: ?? ? ??≥≥=0min X b AX CX z 对偶问题: ?? ? ??≥≤=0max Y C YA Yb w 2. 非对称形式的对偶 若原问题的约束条件全部是等式约束(即线性规划的标准型),即 ?? ? ??≥==0min X b AX CX z 则其对偶问题的数学模型为 ?? ? ??≤=是自由变量Y C YA Yb w max 可把原问题写成其等价的对称形式: min z =CX AX ≥b AX ≤b X ≥0 即 min z =CX ? ? ????-A A X ≥??????-b b X ≥0 设Y 1=(y 1,y 2,…,y m ), Y 2=(y m+1,y m+2,…,y 2m )。根据对称形式的对偶模型,写出上述问题的对偶问题:

二次规划问题

9.2.4 二次规划问题 9.2.4.1 基本数学原理 如果某非线性规划的目标函数为自变量的二次函数,约束条件全是线性函数,就称这种规划为二次规划。其数学模型为: 其中,H, A,和Aeq为矩阵,f, b, beq, lb, ub,和x为向量。 9.2.4.2 相关函数介绍 quadprog函数 功能:求解二次规划问题。 语法: x = quadprog(H,f,A,b) x = quadprog(H,f,A,b,Aeq,beq,lb,ub) x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval] = quadprog(...) [x,fval,exitflag] = quadprog(...) [x,fval,exitflag,output] = quadprog(...) [x,fval,exitflag,output,lambda] = quadprog(...) 描述: x = quadprog(H,f,A,b) 返回向量x,最小化函数1/2*x'*H*x + f'*x , 其约束条件为A*x <= b。 x = quadprog(H,f,A,b,Aeq,beq)仍然求解上面的问题,但添加了等式约束条件 Aeq*x = beq。 x = quadprog(H,f,A,b,lb,ub)定义设计变量的下界lb和上界ub,使得lb <= x <= ub。 x = quadprog(H,f,A,b,lb,ub,x0)同上,并设置初值x0。 x = quadprog(H,f,A,b,lb,ub,x0,options)根据options参数指定的优化参数进行最小 化。 [x,fval] = quadprog(...)返回解x处的目标函数值fval = 0.5*x'*H*x + f'*x。 [x,fval,exitflag] = quadprog(...)返回exitflag参数,描述计算的退出条件。 [x,fval,exitflag,output] = quadprog(...)返回包含优化信息的结构输出output。 [x,fval,exitflag,output,lambda] = quadprog(...)返回解x处包含拉格朗日乘子的 lambda参数。 变量: 各变量的意义同前。

求解二次规划问题的拉格朗日及有效集方法

求解二次规划问题的拉格朗日及有效集方法 ——最优化方法课程实验报告 学院:数学与统计学院 班级:硕2041班 姓名:王彭 学号:3112054028 指导教师:阮小娥 同组人:钱东东

求解二次规划问题的拉格朗日及有效集方法 求解二次规划问题的拉格朗日 及有效集方法 摘要 二次规划师非线性优化中的一种特殊情形,它的目标函数是二次实函数,约束函数都是线性函数。由于二次规划比较简单,便于求解(仅次于线性规划),并且一些非线性优化问题可以转化为求解一些列的二次规划问题,因此二次规划的求解方法较早引起人们的重视,称为求解非线性优化的一个重要途径。二次规划的算法较多,本文仅介绍求解等式约束凸二尺规划的拉格朗日方法以及求解一般约束凸二次规划的有效集方法。 关键字:二次规划,拉格朗日方法,有效集方法。 - 1 -

《最优化方法》课程实验报告 - 2 - 【目录】 摘要........................................................................................................................... - 1 -1 等式约束凸二次规划的解法............................................................................... - 3 - 1.1 问题描述.................................................................................................... - 3 - 1.2 拉格朗日方法求解等式约束二次规划问题............................................ - 3 - 1.2.1 拉格朗日方法的推导...................................................................... - 3 - 1.2.2 拉格朗日方法的应用...................................................................... - 4 - 2 一般凸二次规划问题的解法............................................................................... - 5 - 2.1 问题描述.................................................................................................... - 5 - 2.2 有效集法求解一般凸二次规划问题........................................................ - 6 - 2.2.1 有效集方法的理论推导.................................................................. - 6 - 2.2.2 有效集方法的算法步骤.................................................................. - 9 - 2.2.3 有效集方法的应用........................................................................ - 10 - 3 总结与体会......................................................................................................... - 11 - 4 附录..................................................................................................................... - 11 - 4.1 拉格朗日方法的matlab程序................................................................. - 11 - 4.2 有效集方法的Matlab程序 .................................................................... - 11 -

线性规划的对偶问题

第二章线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 (1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4 st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤5 4x1+x2+x3≤20 2x1-x2+3x3=-4 x j≥0 (j=1,2,3)x1-x3+x4≥1 x1,x3≥0,x2,x4无约束 (3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3 st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15 x2+3x3+4x4≥-5 -5x1-6x2+10x3≤20 2x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束 2.2 已知线性规划问题max z=CX,AX=b,X≥0。分别说明发生下列情况时,其对偶问题的解的变化: (1)问题的第k个约束条件乘上常数λ(λ≠0); (2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上; (3)目标函数改变为max z=λCX(λ≠0); 'x代换。 (4)模型中全部x1用3 1 2.3 已知线性规划问题min z=8x1+6x2+3x3+6x4 st. x1+2x2+x4≥3 3x1+x2+x3+x4≥6 x3 +x4=2 x1 +x3 ≥2 x j≥0(j=1,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量 st. 2x1 +x3+x4≤8 y1 2x1+2x2+x3+2x4≤12 y2 x j≥0(j=1,2,3,4) 其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题max z=2x1+4x2+3x3 st. 3x1+4 x2+2x3≤60 2x1+x2+2x3≤40 x1+3x2+2x3≤80 x j≥0 (j=1,2,3) (1)写出其对偶问题 (2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;

线性规划的对偶理论

2.1 写出线性规划问题的对偶问题,并进一步写出其对偶问题的对偶问题 (a) min z=2x1+2x2+4x3(b) max z=5x1+6x2+3x3 s.t. x1+3x2+4x3≥2 s.t. x1+2x2+2x3=5 2x1+x2+3x3≤3 -x1+5x2-3x3≥3 x1+4x2+3x3=5 4x1+7x2+3x3≤8 x1, x2≥0, x3无约束x1无约束,x2≥0, x3≤0 解:(a)对偶问题的原问题为 max w=2y1+3y2+5y3 s.t. y1+2y2+y3≤2 3y1+y2+4y3≤2 4y1+3y2+3y3=4 y1≥0, y2≤0, y3无约束 (b)原问题的对偶问题为 min w=5y1+3y2+8y3 s.t. y1-y2+4y3=5 2y1+5y2+7y3≥6 2y1-3y2+3y3≤3 y1无约束, y2≤0, y3≥0 2.3 已知线性规划问题: max z=x1+x2 s.t. -x1+ x2+ x3 ≤2 -2x1+x2- x3 ≤1 x1, x2, x3≥0 试应用对偶理论证明上述线性规划问题最优解为无界。 解:原问题的对偶问题为 min w=2y1+ y2 s.t. -y1- 2y2 ≥1 2y1+ 5y2 ≥1 y1- y2 ≥0 y1, y2≥0 由于约束条件3可得 y1-y2 ≥0 → y1≥y2 → -y1≤-y2 且y2≥0 所以 -y1-2y2 ≤-3y2≤0 (1) 由于约束条件1可得 -y1- 2y2 ≥1 (2) (1)(2)不等式组无解 所以其对偶问题无可行解,又知点X=(1,1,1)为原问题一个可行解,即原问题有可行解, 现在其对偶问题无可行解。根据对偶理论性质3原问题无界.

线性规划的对偶问题

第二章 线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 ⑴ max z = 10x i + X 2 + 2x 3 st. x i + X 2 + 2 X 3W 10 4x i + X 2 + X 3 W 20 X > 0 (j = 1,2,3) (3) min z = 3x i + 2 X 2 — 3x 3 + 4x 4 st. x i -2x 2+ 3x 3+ 4x 4W 3 X 2 + 3X 3 + 4X 4》一5 2x i — 3x 2 — 7x 3 — 4x 4= 2 = x i >0, X 4W 0, X 2,, X 3 无约束 (2) max z = 2x i + x 2+ 3x 3+ x 4 st. x i + x 2+ x 3 + x 4 W 5 2x i - x 2+ 3x 3 =- 4 X i — X 3 + X 4> i X i , X 3 > 0, X 2, X 4 无约束 (4) min z =— 5 x i — 6x 2— 7x 3 st. — X i + 5X 2— 3X 3 > i5 — 5X i — 6X 2+ i0X 3 W 20 X i — X 2 — X 3=— 5 X i W 0, X 2>0 , X 3 无约束 2.2已知线性规划问题 max z = CX , AX=b , X >0。分别说明发生下列情况时,其对偶问题的解的 变化: (1 )问题的第k 个约束条件乘上常数 入(炉0); (2) 将第k 个约束条件乘上常数 入(苗0)后加到第r 个约束条件上; (3) 目标函数改变为 max z = 2CX (入工0); 4)模型中全部 X i 用 3 X'i 代换。 2.3 已知线性规划问题 min z = 8X i + 6X 2+ 3X 3+ 6X 4 st. x i + 2X 2 + X 4》3 3x i + X 2 + X 3+ X 4 A 6 X 3 + X 4= 2 X i + X 3 A 2 X j A 0(j =i,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为 X*=(i ,i ,2,0) ,试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题 min z = 2X i + X 2+ 5X 3+ 6X 4 对偶变量 st. 2X i + X 3+ X 4W 8 y i 2X i + 2X 2+ X 3+ 2X 4W i2 y 2 X j A 0(j =i,2,3,4) 其对偶问题的最优解 y i *=4; y 2*=i ,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题 maX z = 2X i + 4X 2+ 3X 3 st. 3X i +4 X 2+ 2X 3W 60 2X i + X 2+ 2X 3W 40 X i + 3X 2+ 2X 3W 80 X j A 0 (j = i,2,3) ( i )写出其对偶问题 ( 2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解; ( 3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶 问题的解; ( 4)比较( 2)和( 3)计算结果。 2.6已知线性规划问题 max z = 10x i + 5x 2

用对偶单纯形法求解线性规划问题

用对偶单纯形法求解线性 规划问题 The final edition was revised on December 14th, 2020.

例4-7用对偶单纯形法求解线性规划问题. Min z =5x1+3x 2 .-2 x1 + 3x 2 ≥6 3 x1 - 6 x 2 ≥4 Xj≥0(j=1,2) 解:将问题转化为 Max z = -5 x1 - 3 x 2 . 2 x1 - 3x 2+ x 3 = -6 -3 x1 + 6 x 2+ x 4 ≥-4 Xj≥0(j=1,2,3,4) 其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17. 表4-17 例4-7单纯形表 在表4-17中,b=-16<0,而y≥0,故该问题无可行解. 注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.

若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法. 3.对偶问题的最优解 由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解. (1)设原问题(p)为 Min z=CX . ???≥=0X b AX 则标准型(LP)为 Max z=CX . ???≥=0X b AX 其对偶线性规划(D )为 Max z=b T Y . ???≥=0X b AX 用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0 从而,在最优单纯形表T (B )中,对于检验数,有 (σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)

改进求解凸二次规划中的Lemke算法.

改进求解凸二次规划中的Lemke 算法 张璐 辽宁工程技术大学理学院,辽宁阜新(123000 E-mail:zhanglu85517@https://www.360docs.net/doc/cf11522886.html, 摘要:通过对经典的Lemke 互补转轴算法求解凸二次规划问题的分析,找到了Lemke 算法的局限性。本文在Lemke 算法求解线性互补问题的基础上修正了经典的Lemke 算法的迭代过程,提出了一种改进的Lemke 算法,通过算例证明了算法能有效克服解的局限性,减少了凸二次规划问题的迭代过程,提高了算法的效率。 关键词:非线性规划;凸二次规划;线性互补问题;Lemke 算法 1.引言 二次规划问题是最简单而又最基本的非线性规划问题,其目标函数是二次函数,约束是线性等式或不等式。对于二次规划问题,可行域是凸集,所以当目标函数是凸函数时,任何K-T 点都是二次规划问题的极小点。研究二次规划问题的算法不仅仅是为了解决二次规划问题本身,同时也是为了更好的求解其他非线性规划问题。因为大多数最优化方法是从二次函数模型导出的,这种类型的方法在实际中常常是有效的,其主要是因为一般函数的极小点附近常可用二次函数很好地进行近似。由于二次规划是特殊的非线性规划,因此求解非线性规划问题的方法均可用于二次规划问题的求解。同时,由于二次规划本身的特殊性,对它的求解可以采用一些更有效的方法[1]。因此,不论从数学角度还是应用角度来看,二次规划问题的研究都具有重要意义。到目前为止,已经出现了很多求解二次规划问题的算法,并且现在仍有很多学者在从事这方面的研究工作。所以,需要我们对现存的有效的求解二次规划问题的算法进行改进,得到新的求解算法来克服某些算法的缺点,并且给出具体的实例显示该算法的有效性。本文主要研究凸二次规划的求解算法,以及线性互补问题的性质等相关问题。对Lemke 算法进行进一步研究,对它可能出现退化的原因和迭代过程以及局限性进一步分析。本文通过分析经典的Lemke 互补转轴算法求解含有等式

求解二次规划问题的拉格朗日及有效集方法样本

求解二次规划问题的拉格朗 日及有效集方法——最优化方法课程实验报告 学院: 数学与统计学院 班级: 硕2041班 姓名: 王彭 学号: 指导教师: 阮小娥 同组人: 钱东东

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 求解二次规划问题的拉格朗日 及有效集方法 摘要 二次规划师非线性优化中的一种特殊情形, 它的目标函数是二次实函数, 约束函数都是线性函数。由于二次规划比较简单, 便于求解( 仅次于线性规划) , 而且一些非线性优化问题能够转化为求解一些列的二次规划问题, 因此二次规划的求解方法较早引起人们的重视, 称为求解非线性优化的一个重要途径。二次规划的算法较多, 本文仅介绍求解等式约束凸二尺规划的拉格朗日方法以及求解一般约束凸二次规划的有效集方法。 关键字: 二次规划, 拉格朗日方法, 有效集方法。

【目录】 摘要................................................ 错误!未定义书签。 1 等式约束凸二次规划的解法.......................... 错误!未定义书签。 1.1 问题描述.................................... 错误!未定义书签。 1.2 拉格朗日方法求解等式约束二次规划问题........ 错误!未定义书签。 1.2.1 拉格朗日方法的推导.................... 错误!未定义书签。 1.2.2 拉格朗日方法的应用.................... 错误!未定义书签。 2 一般凸二次规划问题的解法.......................... 错误!未定义书签。 2.1 问题描述.................................... 错误!未定义书签。 2.2 有效集法求解一般凸二次规划问题.............. 错误!未定义书签。 2.2.1 有效集方法的理论推导.................. 错误!未定义书签。 2.2.2 有效集方法的算法步骤.................. 错误!未定义书签。 2.2.3 有效集方法的应用...................... 错误!未定义书签。 3 总结与体会........................................ 错误!未定义书签。 4 附录.............................................. 错误!未定义书签。 4.1 拉格朗日方法的matlab程序................... 错误!未定义书签。 4.2 有效集方法的Matlab程序..................... 错误!未定义书签。

第三章 线性规划的对偶理论(管理运筹学,李军)

3 线性规划的对偶问题 1. 试从经济角度解释对偶变量的含义。 答:假设有一企业欲将另一个企业拥有的资源收买过来,至少应付出多少代价,才能使此企业愿意放弃生产活动,出让资源。显然后者放弃自己组织生产活动的条件时,对同等数量资源出让的代价不低于该企业自己组织生产活动是的产值。 2. 判断下列说法是否正确 (1) 任何线性规划问题都存在其对偶问题 (正确) (2) 如果原问题存在可行解,则其对偶问题也一定存在可行解;(错) (3) 当原问题为无界解时,对偶问题也为无界解;(错) (4) 当对偶问题无可行解时,原问题一定具有无界解;(错) (5) 若原问题有无穷多最优解,则对偶问题也一定具有无穷多最优解 (错) 3写出下列线性规划问题的对偶问题: (1)321422min x x x w ++= 1x + 22x + 3x ≥ 2 21x + 2x +33x ≤ 6 1x +42x +63x ≤ 5 0,,321≥x x x 解: 123123123123123max 65222423640,0,0 w y y y y y y y y y y y y y y y =++++≤++≤++≤≥≥≥ (2)32132max x x x ++= 1x + 22x + 3x ≥10 31x +23x ≤15 1x +22x + 3x =12 321,0,0x x x ≤≥无约束

解: 12312313123123min 10151232 2 23210,0,w y y y y y y y y y y y y y y =++++≥+≤++=≤≥无约束 4. 用对偶单纯形法求解下述线性规划问题 (1)32118124min x x x w ++= (2)4321432min x x x x w +++= 1x +33x ≥ 3 1x +22x +23x +34x ≥30 22x +23x ≥ 5 21x +2x +33x +24x ≥20 0,,321≥x x x 0,,,4321≥x x x x (1) 转换化成标准形式: 1231342351~5min 41218332250 w x x x x x x x x x x =+++-=+-=≥ X=(0,2/3,1,0,0) (2)转化为标准形式 123412345123461~6min 2322330232200 w x x x x x x x x x x x x x x x =++++++-=+++-=≥

线性规划的对偶问题

线性规划的对偶问题文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第二章线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 (1) max z =10x1+ x2+2x3 (2) max z =2x1+ x2+3x3+ x4 st. x1+ x2+2 x3≤10 st. x1+ x2+ x3 + x4≤5 4x1+ x2+ x3≤20 2x1- x2+3x3=-4 x j≥0 (j=1,2,3) x1- x3+ x4≥1 x1,x3≥0,x2,x4无约束 (3) min z =3x1+2 x2-3x3+4x4 (4) min z =-5 x1-6x2-7x3 st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15 x2+3x3+4x4≥-5 -5x1-6x2+10x3≤20 2x1-3x2-7x3 -4x4=2= x1- x2- x3=-5 x1≥0,x4≤0,x2,,x3无约束 x1≤0, x2≥0,x3无约束 2.2 已知线性规划问题max z=CX,AX=b,X≥0。分别说明发生下列情况时,其对偶问题的解的变化: (1)问题的第k个约束条件乘上常数λ(λ≠0); (2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0); (4)模型中全部x1用3 'x代换。 1 2.3 已知线性规划问题min z=8x1+6x2+3x3+6x4 st. x1+2x2+ x4≥3 3x1+ x2+ x3+ x4≥6

x3 + x4=2 x1 + x3 ≥2 x j≥0(j=1,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量 st. 2x1 +x3+ x4≤8 y1 2x1+2x2+x3+2x4≤12 y2 x j≥0(j=1,2,3,4) 其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题max z=2x1+4x2+3x3 st. 3x1+4 x2+2x3≤60 2x1+ x2+2x3≤40 x1+3x2+2x3≤80 x j≥0 (j=1,2,3) (1)写出其对偶问题 (2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解; (3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解; (4)比较(2)和(3)计算结果。

线性规划的对偶

第四章 线性规划的对偶理论 一、填空题 1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的线性规划问题与之对应,反之亦 然。 2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。 3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。 5.若原问题可行,但目标函数无界,则对偶问题不可行。 6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。相应的目标函数值将增加3k 。 7.线性规划问题的最优基为B,基变量的目标系数为C B,则其对偶问题的最优解Y﹡= C B B-1。 8.若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX ﹡= Y﹡b。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有 CX≤Yb。 10.若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡=Y*b。 11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb YA≥c Y≥0_。 12.影子价格实际上是与原问题各约束条件相联系的对偶变量的数量表现。 13.线性规划的原问题的约束条件系数矩阵为A,则其对偶问题的约束条件系数矩阵为A T 。 14.在对偶单纯形法迭代中,若某b i<0,且所有的a ij≥0(j=1,2,…n),则原问题_无解。 二、单选题 1.线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为A形式。 A.“≥” B.“≤” C,“>” D.“=” 2.设、分别是标准形式的原问题与对偶问题的可行解,则 C 。 3.对偶单纯形法的迭代是从_ A_开始的。 A.正则解 B.最优解 C.可行解 D.基本解 4.如果z。是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优目标函数值w﹡A。

线性规划 对偶问题

任何一个求极大化的线性规划问题都有一个求极小化的线性规划问题与之对应,反之亦然,如果我们把其中一个叫原问题,则另一个就叫做它的对偶问题,并称这一对互相联系的两个问题为一对对偶问题。本章将讨论线性规划的对偶问题及灵敏度分析,从而加深对线性规划问题的理解,扩大其应用范围。 §1 对偶问题的一般概念 1.1 对偶问题的提出 在第一章中我们研究过一个生产计划问题,其数学模型为: 例1 (2.1) 现在,从另一个角度来考虑该问题,假设这家企业想将自己生产产品改为对外加工,此时,工厂决策者必须考虑怎样为这三种资源定价的问题。设分别代表转让两种资源和出租设备的价格和租金。定价的原则是:生产一个单位的甲产品需消耗9个单位的钢材、4个单位的铜材、3个单位的设备台时,获利70个单位;那么,将这些资源全部转让时所获得的利润应不少于70个单位,即 (2.2) 同样的分析,有 (2.3) 此时,企业的总获利(即对方的总付出)为 (2.4) 为使对方容易接受,该厂只能在约束条件(2.2)和(2.3)下求(2.4)式的最小值,即 (2.5) 上述两个模型(2.1)和(2.5)是对同一问题的两种不同考虑的数学描述,其间有着一定的内在联系,我们对此进行比较分析,并从中找出规律,两个模型的对应关系有: (1)两个问题的系数矩阵互为转置; (2)一个问题的变量个数等于另一个问题的约束条件个数; (3)一个问题的右端系数是另一个问题的目标函数的系数;

(4)一个问题的目标函数为极大化,约束条件为“≤”类型,另一个问题的目标函数为极小化,约束条件为“≥” 我们把这种对应关系称为对偶关系,如果把(2.1)式称为原问题,则(2.5)式称为对偶问题。 1.2 对偶问题的形式 一、对称形对偶问题 定义1设原线性规划问题为 (2.6)则称下列线性规划问题 (2.7)为其对偶问题,其中称其为对偶变量,并称(2.6)和(2.7)式为一对对称型对偶问题。 原始对偶问题(2.6)和对偶问题(2.7)之间的对应关系可以用表2-1表示。

相关文档
最新文档