多元函数极值的判定

多元函数极值的判定
多元函数极值的判定

目录

摘要 (1)

关键词 (1)

Abstract (1)

Keywords (1)

引言 (1)

1定理中用到的定义 (2)

2函数极值的判定定理.............................................................. .. (5)

3多元函数极值判定定理的应用 (7)

参考文献 (8)

多元函数极值的判定

摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值.

关键词:极值;条件极值;偏导数;判定

The judgement of the extremum of the function of many

variables

Abstract :This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the function of many variables and the conditional extremum of the function of many variables .

Keywords : extremum; conditional ;partial derivative

引言

在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二

元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去.

1 定理中用到的定义

定义 1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 内有定义.若对于任何点0(,)()P x y U P ∈,成立不等式

0()()f P f P ≤(或0()()f P f P ≥),

则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点.

定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在

0x 的某一领域内有定义,则当极限

0000000

(,)

(,)(,)

lim

x xf x y f x x y f x y x

x

→+-=

存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作

00(,)

x y f x

??.

定义1.3[]3 设n D R ?为开集,12(,,,)n P x x x D ∈ ,0000122(,,,)P x x x D ∈

:f D R

→,若在某个矩阵A ,使当0()P U P ∈时,有

000

()()()

lim

P P f P f P A P P P P →----,

则称n 元函数12(,,,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

0()f P '.

注1:01122(,,,)T n n P P x x x x x x '''-=--- 为n 维列向量.

注2

:0P P -=

注3:在导数存在的条件下,可求得:012

()(,,,)n

f

f

f f P A x x x ???'==??? ,

它是一个n 维向量函数.

定义 1.4[]3 (二阶导数)若n 元函数f 的一阶导数f '在D (或D 内某一点)上可微,则称f 在D (或D 内某一点)上二阶可微,并定义n 维向量函数()T f '的导数为f 的二阶导数,记作()f P '',并可求得

2

2

2

21

21122

2

221222

22

2

12()n n n

n

n f f f

x x x x x f f f f P x x x x x f f f x x x x x ?

???? ?

????? ? ?

???

?

''=?????

? ?

? ?

??? ???????

?

此矩阵为f 在P 点的Hesse 矩阵.在二阶混合偏导数连续的条件下,它是一个对称矩阵. n 元函数f 在点0P 的二阶Taylor 公式可简单地写成:

00000001()()()()()()()()2

T n

f P f P f P P P P P f P P P O P P '=+-+

--+-.

2 函数极值的判定定理

对于二元函数的无条件极值的判定,先给出数学分析教材中有的相应的判定定理.

定理2.1[]1 (必要条件)若函数(,)z f x y =在点00(,)x y 的某领域内偏导数存在,切点00(,)x y 是是其极值点,则

0000(,)

(,)

0f x y f x y x

y

??=

=??.

定理2.2[]1 (充分条件)设点00(,)x y 是函数(,)z f x y =的驻点,且在点

00(,)x y 的某领域内有二阶连续偏导数存在.记

2

2

2

2

0000002

2

(,)

(,)

(,)

,,,,f x y f x y f x y A B C AC B x

x y

y

???=

=

=

=-????

则1)当0< 时,点00(,)x y 不是函数的极值点;2)当0> 是,若0A >,则点

00(,)x y 是函数的极小值点,若0A <,则点00(,)x y 是函数的极大指点;3)当

0= 时,该方法不能判断其是不是极值点.

注3:对于二阶导数存在的二元函数的极值,这两个定理能解决绝大多数的我们碰到的问题(除了0= 的情形).

利用定义1.3和定义1.4,我们可以将这定理2.1和定理2.2推广到二元以上的函数中去.

定理2.3 (必要条件)设n D R ?为开集,n 元实值函数12(,,,)n y f x x x = 在点0P D ?可微,且在该点取得极值,则0()0f P '=(此0表示n 维向量

(0,0,,0) ).

证明 由费马定理知当f 在0P 点取得极值时,

012

()(

,,,

)0n

f

f

f f P x x x ???'==??? .

定理2.4(充分条件)设n D R ?为开集,n 元实函数12(,,,)n y f x x x = 在

0()U P D

?上存在二阶连续偏导数,且0()0f P '=,则当0()n f P 为正定或半正

定时,f 在0P 点取得极小值,当0()n f P 为负定或半负定时,f 在0P 点取得极大值.

证明 0P ,P 点坐标分别满足00012(,,,)n x x x 与12(,,,)n x x x ,且

0()

P U P ?,0i i i x x x =- ,当0()0f P '=

时,由Taylor 公式,有

00

000

2

120121

2

121

1()()()()()()2

1(,,,)()(,,,)(())2

(,,,)()

T

n

n

T

n

n n i i i n

n i i f f P f P P P f P P P O P P x x x f P x x x o x x g x x x o x ===-=--+-=+-=+∑∑

当0()U P 充分小时,只要0()P U P ?,则该式子的符号由12(,,,)n g x x x 确定.当0()n f P 为正定时,二次型12(,,,)0n g x x x > ,当0()n f P 为半正定时,二次型12(,,,)0n g x x x ≥ .故当0()n f P 为正定或半正定时,

(

)(

)0f f P f P =

-

≥ ,所以0()()f P f P ≥,故0P 点是f

的极小值点.同理可

证,当0()n f P 为负定或半负定时,0P 点是f 的极大值点.

定理 2.5[]1 设在条件12(,,,)0,1,2,,()k n x x x k m m n ?==< 的限制下,求函数12(,,,)n y f x x x = 的极值问题,其中f 与(1,2,,)k k m ?= 在区域D 内有连续的一阶偏导数.若D 的内点000012(,,,)n P x x x 是上述问题的极值点,且雅可比

矩阵0

1111

n

m m n P

x x x x ????????

??? ?

? ??? ? ????

?

的秩为m ,则存在m 个常数(0)(0)(0)

12,,,m λλλ ,使得0

(0)

(0)(0)

121

2

(,,,,,,,)n m

x x x λλ

λ 为拉格朗日函数

121212121

(,,,,,,)(,,,)(,,,)m

n m n k

k

n k L x x x f x x x x x x λλλλ?

==+

的稳定点,即000(0)(0)(0)

1212(,,,,,,,)n m x x x λλλ 为下述n m +个方程:

1

1111

11121200(,,,)0(,,,)0

n

m

m

x k k m

x k k n n

n m n f L x x f L x x L x x x L x x x λλ?λ?λ??==???=+=????

?????=+=????

?==?

??==?∑∑ 的解.

此定理的证明可参阅文献[1]第二十三章的定理23.19的证明. 由定理5可见条件极值的问题都可以通过拉格朗日数乘法转化为无条件极值的形式来求解,即上述判定无条件极值的定理都可以用来判定条件极值.除此之外,我们用二阶全微分的符号来判定其是极大值还是极小值.

定理 2.6[]2 设n D R ?为开集,n 元实值函数12(,,,)n y L x x x = 在

0()U P D

?存在二阶连续偏导数,且0()0L P '=,则当20()0d L P >时,

12(,,,)n y L x x x = 在0P 点取得极小值;2

0()0d L P <时,12(,,,)n y L x x x = 在0P 点

取得极大值.

证明 11

n n

L L dL dx dx x x ??=

++

?? ,

2

121

2

2

2

2

121

2121

1

()(

)n

n

n n L L L d L d dL d dx d

dx d

dx x x x L L L dx dx dx dx x

x x x x ???==+++??????=+

++

?????

2

2

2

1222122

22

22

122

212(

)(

)n n n n

n

n L L L dx dx dx dx x x x

x x L

L L dx dx dx dx x x x x x

???++

++

++????????+

++?????

2

2

2

111

122

2

1(,,)n n n

n

n L L x x x dx dx dx dx L L x x x ??

?? ?

?????

? ?

?= ? ? ??? ???

?????

?

11(,,)()n n dx dx dx f P dx ??

?''= ? ???

. 又因为0()0L P '=,固由定理4知当0()f P ''正定,即20()0d L P >时,0P 为L 的极小值点,当0()f P ''负定,即20()0d L P <时,0P 为L 的极小值点 .

3 多元函数极值判定定理的应用

由于函数的条件极值都可以通过定理5转化成无条件极值,也就是说在条件极值的判定中能充分体现无条件极值的判定.

例 3.1[]2 求三元函数(,,)22f x y z x y z =-+在受约束条件2221x y z ++=限制下的极值.

解 设222(,,,)22(1)L x y z x y z x y z λλ=-++++-,由0

L L L L x

y

z

λ

????=

=

=

=????有:当32

λ=-

时,122(,,)(,,)3

33

x y z =-,当32

λ=

时,12

2

(,,)(,,)33

3

x y z =--,现

判断是极大值还是极小值 .

方法1:对函数(,,)22f x y z x y z =-+用定理2,其中z 视为,x y 的函数,即

(,)z z x y =,它由2

2

2

1x y z ++=决定。可求得

,z x z y x

z y z

??=-

=-??,然后,可求得:2

22

2

22

2

2

3

2

3

2

2

,

2

,

2

,

f z x f z y f xy x

z

y

z

y x

z

?+?+?=-=-=????当1

22

(,,)(,,)3

33

x y z =-时,

2

2

2

2

2

1515

,6,1,6104

4

f f f A C B x

y

y x

???=

=-

=

=-=

=-=

?->???? ,故122

(,,)333-是极大

值点.

同理可知,当12

2

(,,)(,,)33

3

x y z =--时,1504

A =

>2

6,1,0

C B AC B ==-->,

其是极小植点所以:m ax 122(,,)3,3

33

f -=m in 122

(,,) 3.33

3

f --=-

注4:利用约束条件把其中的某些变量视为另一些变量的函数,对目标函数直接用极值的必要条件来判定.

方法2:用二阶微分的符号来判定,此时应视λ为常数,即把前面所求的λ的值代入,(21)(22)(22),dL x dx y dy z dz λλλ=++-++

2

2

2

2

()2()

d L d dL dx dy dz λ==++

当32

λ=-时,20d L <,该点是极大值点,m ax 1

22(,,)3,3

33f -=

当32

λ=

时,20,d L >该点是极小值点,m in 122(,,) 3.33

3

f --=-

注5:利用拉格朗日函数的二阶全微分的符号来判定(其中λ应视为常数). 方法3:利用Hesse 的正定或负定性来判定. 可求得:2xx yy zz L L L λ===,0xy yz zx L L L ===,

当32λ=-时,3

00122(,,)0

303330

3n f -??

?

-=- ? ?-??

是负定阵,是极大值点; 当32λ=时,3

00122(,,)0

303330

03n f ??

?

--= ? ??

?

是正定阵,是极小值点. 注6:利用本文所引入的多元函数的导数与二阶导数的定义,由拉格朗日函数的Hesse 阵的定性来判定(其中λ应视为常数).

例3.2 求函数23(,,)f x y z xy z =的极值,若12,(,,0)x y z x y z ++=>. 解 设23(,,,)(12)L x y z xy z x y z λλ=+++-,由

0L L L L x

y

z

λ

????====????,可求

得: 864λ=-, (,,)(2,4,6)x y z =,又由12x y z ++=,有12x y z =--,代入f 中,有2

3

3

3

2

4

(,)12f y z y z y z y z =--, 2

(4,6)2592f A y z

?=

=-??,

2

(4,6)1728f B y z

?==-??,2

2

(4,6)2304f C z

?=

=-?,2

29859840AC B -==>

所以该点是极大值点,且

m ax (2,4,6)6912

f .

注7:直接从约束条件中解出某些变量来,再代入函数中去,一般有m个约束条件,就可以解出m个变量来,这样,可是目标函数减少m个自变量,达到减员的目的.

除了这几种方法外,还可以利用极值的定义来直接判定,某些实际问题利用实际意义来判定极值.这些方法在现行的数学分析或高等数学教材中均有涉及,就不在此赘述.

参考文献:

[1]华东师.范大学数学系编数学分析(下册)[M].北京:高等教育出版社,2001

[2]裴礼闻.数学分析中的典型问题与方法[M].北京:高等教育出版社,1998

[3]复旦大学数学系主编.数学分析(下册)[M].上海科学技术出版社,1979

[4]聂铭.多元函数极值的判定[J].贵州:六盘水师范高等专科学校数学系,2008

函数极值的几种求法

函数极值的几种求法 ──针对高中生所学知识 摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。 关键词:函数;单调性;导数;图像;极值 Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school. Key words: function; monotonicity; derivative; image; extreme value “函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。就这样“函数”这词逐渐盛行。在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者善兰给出的定义是:

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

导数与函数的极值 最值问题 解析版

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步判断'()f x 在方程的根的左、右两侧值的符号; 第四步利用结论写出极值. 例1已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于() A .11或18B .11C .18D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2 ,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或? ??=-=33b a .?

当???=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.?当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 () A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f )1(2)1(2 1 31)(23-++-= 在)4,0(上无极值, 而()20,4∈,所以只有12m -=,3m =

求极值与最值的方法

求极值与最值的方法 1 引言 在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。下面我们将要介绍多种求初等函数的极值和最值的方法。 2 求函数极值的方法 极值定义:设函数()f x 在0x 的某邻域内有定义,且对此邻域内任一点 x 0()x x ≠,均有0()()f x f x <,则称0()f x 是函数错误!未找到引用源。的一个极大值;同样如果对此邻域内任一点x 0()x x ≠,均有错误!未找到引用源。,则称0()f x 是函数错误!未找到引用源。的一个极小值。函数的极大值与极小值统称为函数的极值。使函数取得极值的点0x ,称为极值点。 2.1 求导法 判别方法一: 设()f x 在点0x 连续,在点错误!未找到引用源。的某一空心邻域内可导。当 x 由小增大经过错误!未找到引用源。时,如果: (1)'()f x 由正变负,那么0x 是极大值点; (2)错误!未找到引用源。由负变正,那么0x 是极小值点; (3)错误!未找到引用源。不变号,那么0x 不是极值点。 判别方法二: 设()f x 在点0x 处具有二阶导数,且'()0f x =,''()0f x =。 (1)如果''()0f x <,则()f x 在点0x 取得极大值; (2)如果''()0f x >,则()f x 在点0x 取得极小值。

判别方法三: 设()f x 在点0x 有n 阶导数,且0)()()(0)1(00===''='-x f x f x f n 0)(0)(≠x f n ,则: (1)当为偶数时,)(x f 在0x 取极值,有0)(0)(x f n 时,)(x f 在0x 取极小值。 (2)当为奇数时,)(x f 在0x 不取极值。 求极值方法: (1)求一阶导数,找出导数值为0的点(驻点),导数值不存在的点,及端点; (2)判断上述各点是否极值点 例 1 求函数32()69f x x x x =-+的极值。 解法一 : 因为32()69f x x x x =-+的定义域为错误!未找到引用源。, 且'2()31293(1)(3)f x x x x x =-+=--, 令'()0f x =,得驻点11x =, 23x =; 在错误!未找到引用源。内,错误!未找到引用源。,在错误!未找到引用源。内,'()0f x <,(1)4f =为函数()f x 的极大值。 解法二: 因为错误!未找到引用源。的定义域为错误!未找到引用源。, 且错误!未找到引用源。,错误!未找到引用源。。 令错误!未找到引用源。,得驻点错误!未找到引用源。,错误!未找到引用源。。又因为错误!未找到引用源。,所以,错误!未找到引用源。为)(x f 极大值。 错误!未找到引用源。,所以错误!未找到引用源。为)(x f 极小值.

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

求函数极值的几种方法

求解函数极值的几种方法 1.1函数极值的定义法 说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法 定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件. 例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,22 5 x = ,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表 说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题: Min (,)z f x y = s.t (,)0x y =

如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 利用这一性质求极值的方法称为Lagrange 乘法数 例2 在曲线3 1(0)y x x = >上求与原点距离最近的点. 解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函 数2231 ()w x y y x λ=++- 然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得 43 320201x x y y x λλ?+=?? +=???=? 解得 x y ?=? ?= ?? 这是唯一可能取得最值的点 因此 x y ==为原问题的最小值点. 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题 由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0 p

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

多元函数求极值(拉格朗日乘数法)

第八节 多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法 求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从

几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2243y x z +=的顶点。 例2 函数22y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面22y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: 0),(,0),(0000==y x f y x f y x 证 不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点 ),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x

二元函数极值存在的判别方法

大庆师范学院 本科生毕业论文 二元函数极值存在的判别方法 院(系)数学科学学院 专业数学与应用数学 研究方向数学教育 学生姓名韩明 学号200801052602 指导教师姓名夏晶 指导教师职称副教授 2012年6月1日

摘要 在生活、生产、经济管理和各种资金核算中,常常要解决在一定的条件下怎么使投入最小、产量最大、效益最高等等问题.因此解决这些问题具有现实意义.这些经济和生活的问题常常都可以转化为数学中的函数问题来探讨,将问题数字化,简单、精确,进而转化为求函数中最大(小)问题,即函数的极值问题.因此,对函数极值问题的探讨具有十分重要的意义.本文主要探讨了二元函数极值存在的充分条件、必要条件的判定方法,以及如何求解,并对结果进行了简要的证明. 关键词:二元函数;极值;驻点;条件极值

Abstract In industrial and agricultural production,management of the economy and the economic accounting,we often solve the problems such as how to make input smallest,output most efficient in given conditions.In the life we often encounter how to achieve maximum profit,use the minimum materials and get maximum efficiency,to deal with the similar problems that have its realistic significance.Above problems can be transformed with function and its function of maximum and minimum value.The concept of extreme value originate from function of maximum and minimum value of mathematics,therefore approaching the extreme value have significance meanning. Keywords:function;extreme value;stagnation;conditional extremum

用导数求函数的极值..

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+= x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1() 1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处 取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2 --=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3) 2(533)5(2)5(32)(33323x x x x x x x x x f -=+-= +-= ' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

多元函数的极值及其求法

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有 极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 2 43y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2 2 43y x z +=的顶点,曲面在点 )0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x -+-=- 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

多元函数条件极值的求解方法

多元函数条件极值求解方法 摘要:本文研究的是代入法、拉格朗日乘数法、标准量代换法、不等式法等九种方法在解 多元函数条件极值问题中的运用,较为全面的总结了多元函数条件极值的求解方法,旨在 解决相应的问题时能得以借鉴,找到合适的解决方法。 关键词:多元函数;条件极值;拉格朗日乘数法;柯西不等式 Abstract: This paper studies the substitution method, the Lagrange multiplier method, standard substitution method, inequality of nine kinds of method in solving multivariate function extremum problems, the application conditions are summed up the diverse functions of conditional extreme value method, to solve the corresponding problem is able to guide, to find the right solution. Key words: multiple functions; Conditional extreme value; Lagrange multiplier method; Cauchy inequality 时比较困难,解题过程中选择一种合理的方法可以达到事半功倍的效果,大大减少解题时间,拓展解题的思路。下面针对多元函数条件极值问题总结了几种方法供大家借鉴。 1.消元法 对于约束条件较为简单的条件极值求解问题,可利用题目中的约束条件将其中一个量用其他量表示,达到消元的效果,从而将条件极值转化为无条件极值问题。 例1 求函数(,,)f x y z xyz =在条件x -y+z=2下的极值. 解: 由x -y+z=2 解得 2z x y =-+ 将上式代入函数(,,)f x y z ,得 g(x,y)=xy(2-x+y) 解方程组 2 2 '2y 20 220 x y g xy y g x xy x ?=-+=??'=+-=?? 得驻点 12 22 P P =33 (0,0),(,-) 2xx y ''=-g ,222xy g x y ''=-+,2yy g x ''= 在点1P 处,0,2,0A B C === 22=0240AC B ?-=-=-<,所以1P 不是极值点 从而函数(,,)f x y z 在相应点(0,0,2)处无极值;

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

判定一类函数极值点的简单方法

第38卷 第4期 高 师 理 科 学 刊 Vol. 38 No.4 2018年 4月 Journal of Science of Teachers′College and University Apr. 2018 文章编号:1007-9831(2018)04-0010-03 判定一类函数极值点的简单方法 黄伟 (太原城市职业技术学院 信息工程系,山西 太原 030027) 摘要:对于一阶导数可分解为()1 i i q m p i i k x a =-?类型的函数,给出了判断函数极值点的简单方法.给 出判定此类型函数极大值点和极小值点的一种简单方法,并给出相关例题加以说明. 关键词:函数;极值点;极大值点;极小值点 中图分类号:O171 文献标识码:A doi:10.3969/j.issn.1007-9831.2018.04.004 The simple method for determining the extreme point of a type of function HUANG Wei (Department of Information Technology,Taiyuan City Vocational College,Taiyuan 030027,China) Abstract:For a type of function which first derivative can be decomposed into ()1 i i q m p i i k x a =-?,asimple method of determining the extreme point of a type of function is given.A simple method to determine the relative maximum point and relative minimum point of the type of function is given,and gives some related examples to illustrate. Key words:function;extreme point;relative maximum point;relative minimum 一般地,要求函数的极值点,首先要求出函数的一阶导数,得出可能的极值点,再利用极值点的充分 条件,逐一对这些可能的极值点进行判断,当这些可能的极值点较多时,判断起来较为繁琐.此外,在判定极大值点或极小值点时,无论利用极值第一充分条件还是第二充分条件,判定起来都不够方便.本文对一阶导数可分解为()1i i q m p i i k x a =-?类型的函数的极值点判断提供了一种简单便捷的方法,同时在确定极值点 的条件下,给出了判定此类型函数极大值点和极小值点的一种简单的规律性方法,并举例加以说明. 定理1 设()f x 在其定义域D 内可导,且其导数可分解为()1 ()i i q m p i i f x k x a =¢=-?的形式,即 () () ()() 121 2 12()i m i m q q q q p p p p i m f x k x a x a x a x a ¢=----L L (1) 其中:12, , , m a a a L 为互不相等的实数;k 为常数;1 1, , m m q q p p L 均为最简分数,那么 (1)i p 为偶数时,i x a =不是()f x 的极值点; (2)i p 为奇数,i q 为偶数时,i x a =不是()f x 的极值点; (3)i p 为奇数,i q 为奇数时,i x a =一定是()f x 的极值点. 证明 不妨假设12m a a a <<

多元函数的极值及其应用

多元函数的极值及其应用 作者:程俊 指导老师:黄璇 学校:井冈山大学 专业:数学与应用数学

【摘要】 多元函数的极值是函数微分学中的重要组成部分,本文对几种特殊的多元函数进行了简单的介绍,对多元函数的极值常见的求法进行了研究,并引入其在生活中、生产中解决实际问题的广泛应用,突显这一学术课题在生活中的重大意义。如今构建经济型节约社会慢慢成为我们共同努力的方向,而最优化问题是达到这一目标的有效途径,其常常有与多元函数的极值息息相关。对函数极值的研究不仅把理论数学推上一个高度,给经济方面,生活方面带来的益处不容小觑,本人浅谈极值问题,为了抛砖引玉,希望这一课题能有更广大额发展空间 【关键词】:多元函数;极值;生活中的应用

目录 Ⅰ引言 (1) Ⅱ多元函数极值的介绍………………………………………… 2.1什么是多元函数………………………………………… 2.2函数的极值理论………………………………………… Ⅲ几种函数的极值的常见求法……………………………… 3.1高中极值求法的弊端………………………………… 3.2拉格朗日乘数法……………………………………… 3.3消元法…………………………………………………… 3.4均值不等式法…………………………………………… Ⅳ多元函数在生活中的应用……………………………………

引言 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它有助于我们提高对函数的认识。而函数的极值的作用已经蔓延到经济领域,在各种解决最优化中应用广泛,从而引发了本人对该课题的研究兴趣。 编者 2014年2月

相关文档
最新文档