中考数学压轴题之旋转(中考题型整理,突破提升)及答案

中考数学压轴题之旋转(中考题型整理,突破提升)及答案
中考数学压轴题之旋转(中考题型整理,突破提升)及答案

一、旋转真题与模拟题分类汇编(难题易错题)

1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.

(1)请问EG与CG存在怎样的数量关系,并证明你的结论;

(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)

【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立

【解析】

【分析】

(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.

(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明

△AMG≌△ENG,得出AG=EG;最后证出CG=EG.

(3)结论依然成立.

【详解】

(1)CG=EG.理由如下:

∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=1

2

FD,

同理.在Rt△DEF中,EG=1

2

FD,∴CG=EG.

(2)(1)中结论仍然成立,即EG=CG.

证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;

在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.

∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.

证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,

∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,

∴MF∥CD∥AB,∴EF⊥MF.

在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE

∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.

∵MG=CG,∴EG=1

MC,∴EG=CG.

2

(3)(1)中的结论仍然成立.理由如下:

过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.

由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证

∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC

∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG

【点睛】

本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.

2.在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.

(1)如图①,若旋转角为60°时,求BB′的长;

(2)如图②,若AB′∥x轴,求点O′的坐标;

(3)如图③,若旋转角为240°时,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)

【答案】(1)252)点O′8545

);(3)点P′的坐标为(﹣835

,36

5. 【解析】

分析:(1)由点A 、B 的坐标可得出AB 的长度,连接BB ′,由旋转可知:AB =AB ′,∠BAB ′=60°,进而可得出△ABB ′为等边三角形,根据等边三角形的性质可求出BB ′的长; (2)过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E ,则△AO ′E ∽△ABO ,根据旋转的性质结合相似三角形的性质可求出AE 、O ′E 的长,进而可得出点O ′的坐标;

(3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,根据旋转的性质结合解直角三角形可求出点O ′的坐标,由A 、A ′关于x 轴对称可得出点A ′的坐标,利用待定系数法即可求出直线A ′O ′的解析式,由一次函数图象上点的坐标特征可得出点P 的坐标,进而可得出OP 的长度,再在Rt △O ′P ′M 中,通过解直角三角形可求出O ′M 、P ′M 的长,进而可得出此时点P ′的坐标.

详解:(1)∵点A (0,4),点B (﹣2,0),∴OA =4,OB =2,∴AB 22OA OB 5. 在图①中,连接BB ′.

由旋转可知:AB =AB ′,∠BAB ′=60°,∴△ABB ′为等边三角形,∴BB ′=AB 5 (2)在图②中,过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E . ∵AB ′∥x 轴,O ′E ⊥x 轴,∴∠O ′EA =90°=∠AOB .

由旋转可知:∠B ′AO ′=∠BAO ,AO ′=AO =4,∴△AO ′E ∽△ABO ,

AE AO ='O E BO ='

AO AB

,即4AE ='2O E 25∴AE 85,O ′E 45∴O ′D 45

+4,∴点O ′的坐标为(

855

55

+4). (3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,如图3所示.

由旋转可知:AO′=AO=4,∠O′AF=240°﹣180°=60°,∴AF=1

2

AO′=2,O′F=

3

2

AO

′=23,∴点O′(﹣23,6).

∵点A(0,4),∴点A′(0,﹣4).

设直线A′O′的解析式为y=kx+b,将A′(0,﹣4)、O′(﹣23,6)代入y=kx+b,得:4

236

b

k b

=-

??

?

-+=

??

,解得:

53

4

k

b

?

=-

?

?

?=-

?

,∴直线A′O′的解析式为y=﹣

53

x﹣4.

当y=0时,有﹣

53

x﹣4=0,解得:x=﹣

43

,∴点P(﹣

43

,0),

∴OP=O′P′=43.

在Rt△O′P′M中,∠MO′P′=60°,∠O′MP′=90°,∴O′M=

1

2

O′P′=

23

P′M=

3

2

O′P′=

6

5

,∴点P′的坐标为(﹣23+

23

5

,6+

6

5

),即(﹣

8336

55

,).

点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB′的长;(2)通过解直角三角形求出AE、O′E的长;(3)利用两点之间线段最短找出当O′P+AP′取得最小值时点P的位置.

3.如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.

(1)①依题意补全图形;

②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.

(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.

(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP

的距离.

【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;

(3).

【解析】

试题分析:(1)①作CE⊥CD,并且线段CE是将线段CD绕点C逆时针旋转90°得到的,再连接DE即可;②根据∠ADC和∠CDE是邻补角,所以∠ADC+∠CDE=180°.

(2)由(1)的条件可得A、D、E三点在同一条直线上,再通过证明△ACD≌△BCE,易得AE=BE+2CM.

(3)运用勾股定理,可得出点A到BP的距离.

试题解析:解:(1)①依题意补全图形(如图);

②∠ADC+∠CDE=180°.

(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:

∵线段CD绕点C逆时针旋转90°得到线段CE,

∴CD=CE,∠DCE=90°.

∴∠CDE=∠CED=45°.

又∵∠ADC=135°,

∴∠ADC+∠CDE=180°,

∴A、D、E三点在同一条直线上.

∴AE=AD+DE.

又∵∠ACB=90°,

∴∠ACB-∠DCB=∠DCE-∠DCB,

即∠ACD=∠BCE.

又∵AC=BC,CD=CE,

∴△ACD≌△BCE.

∴AD=BE.

∵CD=CE,∠DCE=90°,CM⊥DE.

∴DE=2CM.

∴AE=BE+2CM.

(3)点A到BP的距离为.

考点:作图—旋转变换.

4.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.

(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;

(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.

【答案】(1)1

3

;(2)不公平.

【解析】

试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.

(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.

试题解析:(1)共有12种等可能的结果,小于10的情况有4种,

所以指针所指区域内的数字和小于10的概率为1

3

(2)不公平,因为小颖获胜的概率为;

小亮获胜的概率为

5

12

.小亮获胜的可能性大,所以不公平.

可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.

考点:1.游戏公平性;2.列表法与树状图法.

5.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.

(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;

(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;

(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.

【答案】(1)证明见解析;(2)45°或135°;(3).

【解析】

试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出

∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.

(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.

(3)根据和求解即可.

试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.

∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.

∴∠BAE=∠DAG..

∴△ABE≌△ADG(SAS).

∴BE=DG..

(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.

(3)如图3,连接GB、GE.

由已知α=45°,可知∠BAE=45°.

又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.

∵,∴GE =8.

∴.

过点B作BH⊥AE于点H.

∵AB=2,∴. ∴..

设点G到BE的距离为h.

∴.

∴.

∴点G到BE的距离为.

考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.

6.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB 交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.

思维探索:(2)在△ABC 和△ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将△ADE 绕点A 顺时针方向旋转,把点E 在AC 边上时△ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .

①如图2,当△ADE 在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ; ②如图3,当α=90°时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论;

③当α=150°时,若BC =3,DE =l ,请直接写出PC 2的值.

【答案】(1)200;(2)①PC =PE ,PC ⊥PE ;②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE ,见解析;③PC 21033

+. 【解析】 【分析】

(1)由CD ∥AB ,可得∠C =∠B ,根据∠APB =∠DPC 即可证明△ABP ≌△DCP ,即可得AB =CD ,即可解题.

(2)①延长EP 交BC 于F ,易证△FBP ≌△EDP (SAS )可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .

②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .

③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=1033+求出2211033

2PC EC +==

【详解】

(1)解:∵CD ∥AB ,∴∠C =∠B , 在△ABP 和△DCP 中,

BP CP APB DPC B C =??

∠=∠??∠=∠?

, ∴△ABP ≌△DCP (SAS ), ∴DC =AB . ∵AB =200米. ∴CD =200米, 故答案为:200.

(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图1,延长EP 交BC 于F , 同(1)理,可知∴△FBP ≌△EDP (SAS ), ∴PF =PE ,BF =DE , 又∵AC =BC ,AE =DE , ∴FC =EC , 又∵∠ACB =90°,

∴△EFC 是等腰直角三角形, ∵EP =FP , ∴PC =PE ,PC ⊥PE .

②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF , 同①理,可知△FBP ≌△EDP (SAS ), ∴BF =DE ,PE =PF =1

2

EF , ∵DE =AE , ∴BF =AE ,

∵当α=90°时,∠EAC =90°, ∴ED ∥AC ,EA ∥BC ∵FB ∥AC ,∠FBC =90, ∴∠CBF =∠CAE , 在△FBC 和△EAC 中,

BF AE CBE CAE BC AC =??

∠=∠??=?

, ∴△FBC ≌△EAC (SAS ), ∴CF =CE ,∠FCB =∠ECA , ∵∠ACB =90°, ∴∠FCE =90°,

∴△FCE 是等腰直角三角形,

∵EP =FP , ∴CP ⊥EP ,CP =EP =

1

2

EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,

当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150° 同②可得△FBP ≌△EDP (SAS ),

同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =2

2

CE , 在Rt △AHE 中,∠EAH =30°,AE =DE =1, ∴HE =

12,AH =3, 又∵AC =AB =3, ∴CH =3+

3

2

, ∴EC 2=CH 2+HE 2=1033+ ∴PC 2=

211033

22

EC +=

【点睛】

本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.

7.(1)问题发现

如图1,△ACB 和△DCE 均为等腰直角三角形,∠ACB=90°,B,C,D 在一条直线上. 填空:线段AD,BE 之间的关系为 . (2)拓展探究

如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE 的关系,并说明理由. (3)解决问题

如图3,线段PA=3,点B 是线段PA 外一点,PB=5,连接AB,将AB 绕点A 逆时针旋转90°得到线段AC,随着点B 的位置的变化,直接写出PC 的范围.

【答案】(1) AD=BE ,AD ⊥BE .(2) AD=BE ,AD ⊥BE .(3) 5-32

≤PC≤5+32. 【解析】 【分析】

(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .

(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;

(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32. 【详解】

(1)结论:AD=BE ,AD ⊥BE . 理由:如图1中,

∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD , ∠ACB=∠ACD=90°, 在Rt △ACD 和Rt △BCE 中

AC BC ACD BCE CD CE ??

∠∠???

=== ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠EBC=∠CAD 延长BE 交AD 于点F , ∵BC ⊥AD , ∴∠EBC+∠CEB=90°,

∵∠CEB=AEF , ∴∠EAD+∠AEF=90°, ∴∠AFE=90°,即AD ⊥BE . ∴AD=BE ,AD ⊥BE . 故答案为AD=BE ,AD ⊥BE . (2)结论:AD=BE ,AD ⊥BE .

理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .

∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°, ∴ACD=∠BCE , 在Rt △ACD 和Rt △BCE 中

AC BC ACD BCE CD CE ??

∠∠???

===, ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠CAD=∠CBE ,

∵∠CAO+∠AOC=90°,∠AOC=∠BOH , ∴∠BOH+∠OBH=90°, ∴∠OHB=90°, ∴AD ⊥BE , ∴AD=BE ,AD ⊥BE .

(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,

∴PC=BE,

图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,

即5-32≤PC≤5+32.

【点睛】

本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.

8.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将

绕点逆时针方向旋转得到,连接.

(1)求证:是等边三角形;

(2)当时,的周长是否存在最小值?若存在,求出的最小周长;

若不存在,请说明理由.

(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.

【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.

【解析】

试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.

试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,

∴∠DCE=60°,DC=EC,

∴△CDE是等边三角形;

(2)存在,当6<t<10时,

由旋转的性质得,BE=AD,

∴C△DBE=BE+DB+DE=AB+DE=4+DE,

由(1)知,△CDE是等边三角形,

∴DE=CD,

∴C△DBE=CD+4,

由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,

此时,CD=2cm,

∴△BDE的最小周长=CD+4=2+4;

(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,

∴当点D与点B重合时,不符合题意,

②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,

∴∠BED=90°,

由(1)可知,△CDE是等边三角形,

∴∠DEB=60°,

∴∠CEB=30°,

∵∠CEB=∠CDA,

∴∠CDA=30°,

∵∠CAB=60°,

∴∠ACD=∠ADC=30°,

∴DA=CA=4,

∴OD=OA﹣DA=6﹣4=2,

∴t=2÷1=2s;

③当6<t<10s时,由∠DBE=120°>90°,

∴此时不存在;

④当t>10s时,由旋转的性质可知,∠DBE=60°,

又由(1)知∠CDE=60°,

∴∠BDE=∠CDE+∠BDC=60°+∠BDC,

而∠BDC>0°,

∴∠BDE>60°,

∴只能∠BDE=90°,

从而∠BCD=30°,

∴BD=BC=4,

∴OD=14cm,

∴t=14÷1=14s,

综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.

中考数学压轴题题型解题思路技巧

中考数学压轴题题型解题思路技巧 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题: 是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题: 是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。 解中考压轴题思路:

中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。 二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。 解中考压轴题技巧: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。 二是解数学压轴题做一问是一问。第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

中考数学压轴题专题复习——旋转的综合含详细答案

一、旋转真题与模拟题分类汇编(难题易错题) 1.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF. (1)求证:四边形ABEF是菱形; (2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示). 【答案】(1)详见解析;(2)FE·sin(-90°) 【解析】 【分析】 (1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得 ∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论; (2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可. 【详解】 (1)∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠FAE=∠BEA, 由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF, ∴∠BAE=∠FEA, ∴AB∥FE, ∴四边形ABEF是平行四边形, 又BE=EF, ∴四边形ABEF是菱形; (2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.

∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B ∴∠1=∠2 又AM=NM,AB=MG ∴△ABM≌△MGN ∴∠B=∠3,NG=BM ∵MG=AB=BE ∴EG=AB=NG ∴∠4=∠ENG= (180°-)=90°- 又在菱形ABEF中,AB∥EF ∴∠FEC=∠B= ∴∠FEN=∠FEC-∠4=- (90°-)=-90° ②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN. 同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90° 综上所述,∠FEN=-90° ∴当点M在BC上运动时,点N在射线EH上运动(如图3) 当FN⊥EH时,FN最小,其最小值为FE·sin(-90°) 【点睛】 本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值. 2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<

中考数学压轴题解题技巧之欧阳数创编

中考数学压轴题解题技巧 时间:2021.03.02 创作:欧阳数 数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。综合近年来各地中考的实际情况,压轴题多以数学综合题的形式出现,常见题型有两类:函数型压轴题和几何形压轴题。压轴题考查知识点多,条件也相当隐晦,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。 下面从知识角度和技术角度谈谈中考数学压轴题的解题技巧。 先以2009年河南中考数学压轴题为例: 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线

的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E. ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值. 这是一道函数型压轴题。函数型压轴题主要有:几何与函数相结合型、坐标与几何、方程与函数相结合型。这些压轴题主要以函数为主线,涉及函数的图象、方程、点的坐标及线段长度、图形面积等问题。 先从知识角度来分析: (1)通过观察图象可以发现,直线AD和轴平行,直线AB和轴平行,因此,A点与D点的纵坐标相同,A点与B的横坐标相同,因此A的坐标为

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

旋转相似经典例题知识讲解

旋转与全等、相似中的线段数量关系 基本例题:1、如图,△ABC中,∠C=90°.(1)将△ABC绕点B逆时针旋转90,画出旋转后的三角形;(2)若BC=3,AC=4,点A旋转后的对应点为A′,求A′A的长 变式1,如图Rt△AB'C'是由Rt△ABC,绕点A顺时针旋转得到的,连接C C'交AB于E, (1)证明:△CA C'∽△BA B' (2)延长C C'交B B'于F,证明:△CA E∽△FBE 变式2,△ABC绕点B逆时针旋转90°得到△DBE,若恰好得到C、E、D三点共线,则AC、BC、CD的数量关系是 变式3,△ABC绕点B逆时针旋转a°得到△DBE,若恰好得到C、E、D三点共线,则AC、

BC、CD的数量关系是 变式4、Rt△ABC中,AC=BC,∠ACB=∠ADB=90°,连接CD,求:AD、CD、BD的数量关系 变式5、Rt△ABC中,AC=kBC,∠ACB=∠ADB=90°,连接CD,探究:AD、CD、BD的数量关系 变式6、如图,在△OAB和△OCD中,∠A<90°,OB=KOD(K>1),∠AOB=∠COD,∠OAB与∠OCD互补,试探索线段AB与CD的数量关系,并证明你的结论。 变式7.如图AB∥CD,BC∥ED, ∠BCD+∠ACE=180°。 (1)当BC=CD 且∠ACE=90°时如图3探究线段AC和CE之间的数量关系 (2)当BC=CD 时如图2探究线段AC和CE之间的数量关系 (3)当BC=kCD时如图1探究线段AC和CE之间的数量关系(用含k的式子表示) E B C A D C A D B

80中田凌志老师提供 1如图R t △ABC ,∠ACB=90°,AC=3,BC=4,过点B 作直线MN ∥AC,点P 在直线BC 上,∠EPF=∠CAB ,且两边分别交直线AB 于E ,交直线MN 于F 。如图(1)(2)(3)探究PE 与PF 之间的数量关系,并证明 P N M F E C B A _ P _ N _ M _F _E _ C _ B _ A 图1 图2

中考数学压轴题专题旋转的经典综合题含详细答案

一、旋转 真题与模拟题分类汇编(难题易错题) 1.在△ABC 中,AB=AC ,∠BAC=α(?<

(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=?-?=?。 又∵∠DEC=45°,∴△DCE 为等腰直角三角形。 ∴DC=CE=BC 。 ∵∠BCE=150°,∴(180150) EBC 152 ?-?∠= =?。 而1 EBC 30152 α∠=?-=?。∴30α=?。 (1)∵AB=AC ,∠BAC=α,∴180ABC 2 α ?-∠= 。 ∵将线段BC 绕点B 逆时针旋转60°得到线段BD ,∴DBC 60∠=?。 ∴180ABD ABC DBC 603022 αα ?-∠=∠-∠= -?=?-。 (2)由SSS 证明△ABD ≌△ACD ,由AAS 证明△ABD ≌△EBC ,即可根据有一个角等于60?的等腰三角 形是等边三角形的判定得出结论。 (3)通过证明△DCE 为等腰直角三角形得出(180150) EBC 152 ?-?∠==?,由(1) 1 EBC 302α∠=?-,从 而1 30152 α?-=?,解之即可。 2.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)请问EG 与CG 存在怎样的数量关系,并证明你的结论; (2)将图①中△BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由) 【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG =EG . (2)结论仍然成立,连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点;再证

(完整版)2017中考数学压轴题解题技巧

中考数学压轴题解题技巧 解中考数学压轴题秘诀(一) 数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第22题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y =f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第23题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想: 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2、以直线或抛物线知识为载体,运用函数与方程思想: 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。 3、利用条件或结论的多变性,运用分类讨论的思想: 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。 4、综合多个知识点,运用等价转换思想: 任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几

中考数学压轴题解析二十

中考数学压轴题解析二十 103.(2017黑龙江省龙东地区,第25题,8分)在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示. (1)甲、乙两地相距千米. (2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式. (3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等? 【答案】(1)480;(2)y2=40x﹣120;(3)1.2或4.8或7.5小时. 【分析】(1)根据图1,根据客车、货车离服务区的初始距离可得甲乙两地距离; (2)根据图象中的数据可以求得3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式; (3)分三种情况讨论,当邮政车去甲地的途中会有某个时间邮政车与客车和货车的距离相等;当邮政车从甲地返回乙地时,货车与客车相遇时,邮政车与客车和货车的距离相等;货车与客车相遇后,邮政车与客车和货车的距离相等. . 106.(2017山东省莱芜市,第22题,10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元? (2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲 种口罩的数量大于乙种口罩的4 5,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的 进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元? 【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可; (2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大

旋转经典题型

01 分点突破 知识点1中心对称与中心对称图形 1. 图形的是 C 1) 2.(齐齐哈尔屮考)下列汉字或字母既是屮 心对称图形又是轴对称图形的是 知识点2平面直角坐标系与旋转 (阜新屮考)ri 章末复习 旋转 A. Bl cH D Z (济宁中考)下列图形是中心对称 如图,正方形OABC 在平面直角坐标系屮,点 A 的坐标为 (2, 0),将正方形OABC 绕点0顺时针旋转45 0得到正方形 标为( ) OA B' C 则点C'的坐 A. ( .2, .2) C. ( . 2, — . 2) B. (— 2, . 2) D. (2 .2, 2 .2) 3. 4. (宁夏中考)如图,在平面直角坐标系xOy

中,△ A'B'由込ABC绕点P旋转得到,则点P的坐标为 . 5. __________________________ (北京中考)如图,在平面直角坐标系xOy中, 4AOB可以看作是AOCD经过若干次图形的变化(平移、轴对称、旋转)得到的, 写出一种由△ OCD得到△ AOB的过程:

知识点 3 6.(天津 屮考)如图, 将厶 ABC 绕 点B 顺时针 旋转60 ° E 恰好落在AB 的延长线上,连 接AD.下列结论一定正确的是() AC = 5 cm, BC = 12 cm. 将厶ABC 绕点B 顺时针旋转60°得到△ BDE ,连接DC 交AB 于点F,则厶ACF 和厶BDF 的周长之和为 cm. 8?(徐州中考)如图,已知AC 丄BC,垂足为C, AC 二4, BC 二3. 3,将线 段AC 绕 点A 按逆时针方向旋转60°得到线段AD,连接DC, DB. (1)线段 DC 二 4; (2)求线段DB 的长度. 02 中考题型演练 9. (聊城中考)如图,将AABC 绕点C 顺时针旋转,使点B 落在AB 边上点 B'处,此时,点A 的对应点A'恰好落在BC 的延长线上,下列结论错误的是() 得"DBE,点 C 的对应点 旋转屮的让算问题 4 A. Z ABD 二Z E B. Z CBE 二Z C C. AD II BC D. AD =BC E B

2018中考数学压轴题常考的9种题型

2018中考数学压轴题常考的9种题型 中考数学压轴题常考的9种出题形式 1、线段、角的计算与证明问题 中考的解答题一般是分两到三部分的。 第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。 2、图形位置关系 中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。 在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。 3、动态几何 从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。 动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。 另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。 4、一元二次方程与二次函数 在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。 中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合 5、多种函数交叉综合问题 初中数学所涉及的函数就一次函数,反比例函数以及二次函数。 这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。 6、列方程(组)解应用题 在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。 实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。 7、动态几何与函数问题 整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。

中考数学压轴题典型题型解析

中考数学压轴题精选精析 37.(09年黑龙江牡丹江)28.(本小题满分8分) 如图, 在平面直角坐标系中,若、的长是关于的一元二 次方程的两个根,且 (1)求的值. (2)若为轴上的点,且求经过、两点的直线的解析式,并判断与是否相似? (3)若点在平面直角坐标系内,则在直线上是否存在点使以、、、为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理 由. (09年黑龙江牡丹江28题解析)解:(1)解得 ·············································································· 1分 在中,由勾股定理有 ········································································ 1分 (2)∵点在轴上, ········································································ 1分 ABCD 6AD =,OA OB x 2 7120x x -+=OA OB >.sin ABC ∠E x 16 3 AOE S = △,D E AOE △DAO △M AB F ,A C F M F 2 7120x x -+=1243x x ==,OA OB >43OA OB ∴==,Rt AOB △225AB OA OB =+=4 sin 5 OA ABC AB ∴∠= =E x 163 AOE S = △11623AO OE ∴?=8 3 OE ∴= 880033E E ????∴- ? ????? ,或,x y A D B O C 28题图

旋转 典型例题(精品解析)

典型例题一 例 如图,以点O 为旋转中心,将ABC ?顺时针旋转45°,画出图形. 分析 当旋转中心O 在图形之外时,O 是一个孤立的点,没有从O 出发的线段或射线作参照,就无法确定旋转的角度,因此,首先还须将O 与图形上的某点(或某些点)连结起来. 解 如图,连结OA 、OB 、OC .将这三条线段绕O 点分别顺时针旋转45°,得C O B O A O '''、、,则C B A '''?就是按题目要求得到的旋转后的图形. 说明: 图形旋转后的效果有时不像平移那样直观,画图出现错误时可能不易发现,因此画图时要特别细心. 典型例题二 例 如图,正方形ABCD 中,E 是正方形内的一点,把AED ?绕着点A 按逆时针旋转90°,画出旋转后的三角形,并回答: (1)图中有哪些等线段和等角? (2)哪两个三角形形状、大小都一样? 分析 一个图形绕它的对称中心旋转一个角度后,图形中的每一点都绕旋转中心旋转了同样大小的角度.本例中可以发现AD 旋转90°后,刚好与AB 重合,于是将AE 旋转90°到E A '的位置,使?='∠90E EA ,确定点E ',连E B ',则E AB '?就是ADE ?按要求旋转的三角形.(1)(2)中,根据图形旋转的特征,图形从一个位置旋转到另一个位置,形状和大小都没有改变,可确定相等的线段、相等的角以及形状相同的三角形. 答案 (1)相等的线段有:E B DE E A AE CD BC AB AD '='====,,.相等的角有:E E E AB ADE E BA DAE '∠=∠'∠=∠'∠=∠,,.

(2)ADE ?与E AB '?的形状和大小都一样. 典型例题三 例 如图,把一块砖ABCD 直立于地面上,然后将其轻轻推倒.在这个过程中,A 点保持不动,四边形ABCD 旋转到B C D A '''位置. (1)指出在这个过程中的旋转中心,并说出旋转的角度是多大? (2)指出图中的对应线段. 分析(1)由于四边形B C D A '''是由四边形ADCB 旋转得到的,A 点保持不动,所以A 是旋转中心.又由于D A B ',,三点在一条直线上,且AB AD ⊥,所以旋转的角度是90°.(2)由于D C B A ,,,的对应点分别是D C B A ''',,,,所以不难找出图中的对应线段. 答案 (1)A 是旋转中心,旋转的角度是90°. (2)CD BC AD AB ,,,的对应线段分别是D C C B D A B A '''''',,,. 典型例题四 例 (1)把长方形ABCD 绕着顶点A 逆时针旋转60°.如图. (2)把长方形ABCD 绕着长方形内一点P 逆时针旋转60°. 解 (1)①AB 绕A 点逆时针旋转60°到B A '位置,.,60AB B A AB B ='?='∠ ②连结AC ,作.,60AC C A AC C ='?='∠ ③作.,60AD D A AD D ='?='∠ 连结B C C D '''',,则四边形D C B A '''是四边形ABCD 逆时针旋转60°得到的图形. (2)①连结AP ,作?='∠60PA A ,使.AP P A =' ②用同样的方法作出D C B '''、、,连结A D D C C B B A ''''''''、、、.

中考数学压轴题常考的9种题型

1. 几类图形之间的位置关系 初中数学中,图形之间的位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几 类图形之间的关系。那么,在历年压轴题中,会包含函数,坐标系以及几何问题,但主要还 是通过圆与其他图形的关系来考察,所以,压轴题如果考察到这个题型,最重要的就应该是 圆与三角形的各种问题,考生备考时可多注意这个部分。 2. 线段、角的计算与证明问题 数学题一般分为两到三部分。第一部分基本上是简单题或者中档题,目的在于考察考生 的数学基础知识,所以第一部分的考题打好基础基本没问题。第二部分往往就是开始拉分的 中难题了。第二部分的题目如果能掌握,不仅仅分数拿到手,更重要的是对于整个做题过程 中心态的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后 面的路子自己就“通”了。 3. 动态几何 从历年来看,动态问题经常作为压轴题目出现,这类型题目得分率也是最低的。动态问 题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交 叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,此类型题目非常考察考生的综合分析能力。动态问题是数学的重中之重,只有完全掌握,并 且灵活运用,才有机会拼高分。 4. 一元二次方程与二次函数 前面提到动态几何是难度较大的压轴题系列,那么涉及到动态几何问题的方程与函数也 相对有些难度。但相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,只是对考生 的计算能力以及代数功底有了比较高的要求。数学当中,代数问题往往是以一元二次方程与 二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中, 第一部分通常会用简单的解答题形式考察一元二次方程解法。后面的中难档大题中,通常会 和根的判别式,整数根和抛物线等知识点结合。 5. 多种函数交叉综合问题 这类题目相比前两类要简单一些,初中数学所涉及的函数主要是一次函数,反比例函数 以及二次函数。很少作为压轴题出现,一般都是作为一道较为基础的题目来考察考生。所以,备考时这类函数的基础需要扎实,尽量做到避免失分。 6. 列方程(组)解应用题 方程组的题目浮动较大,有的时候思考一会儿就有了思路,有的时候苦思冥想很久也没 有想法。方程可以说是初中数学当中最重要的部分,也是中必考内容。从近年来的来看,结 合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么

中考数学数学中考数学压轴题试题附解析(1)

一、中考数学压轴题 1.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC (1)直接写出四边形ABCD 的形状:______; (2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F . ①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明); ②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由; (3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____. 2.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题. (1)(课本习题)如图①,△ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE=CD . 求证:DB=DE (2)(尝试变式)如图②,△ABC 是等边三角形,D 是AC 边上任意一点,延长BC 至E ,使CE=AD . 求证:DB=DE . (3)(拓展延伸)如图③,△ABC 是等边三角形,D 是AC 延长线上任意一点,延长BC 至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论. 3.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1 y (米/分钟)与时间x (分钟)前2分钟满足二次函数2 1y ax ,后3分钟满足反比例函数 关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟. (1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;

图形旋转练习题(经典题)

图形旋转练习题 1. 如图1,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10,求∠APB 的度数。 2. 如图P 是正方形ABCD 内一点,点P 到正方形的三个顶点A 、B 、C 的距离分别为PA=1,PB=2,PC=3。求此正方形ABCD 面积。 A B C D P 3.设点E 、F 分别在正方形ABCD 的边BC 、CD 上滑动且保持∠EAF=450, A P ⊥EF 于点P (1) 求证:AP=AB ,(2)若AB=5,求ΔECF 的周长。 4.如图17,正方形ABCD ,E 、F 分别为BC 、CD 边上一点. (1)若∠EAF=45o.求证:EF=BE+DF . (2)若⊿AEF 绕A 点旋转,保持∠EAF=45o,问⊿CEF 的周长是否随⊿AEF 位置的变化而变化? (3)已知正方形ABCD 的边长为1,如果⊿CEF 的周长为2.求∠EAF 的度数. 5ABC 中,∠ABC=90°,点D 在AC 上,将△ABD 绕顶点B 沿顺时针方向旋转90°后得到△CBE. ⑴求∠DCE 的度数; ⑵当AB=4,AD ∶DC=1∶3时,求DE 的长. F E D C B A A A F P P B B C C

6.如图所示,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,使AB 落到AC 上,则P 落到点P '处。如果AP=1,则PP '=___________. 7.如图,四边形ABCD 中,∠BAD=∠C=90o,AB=AD ,AE ⊥BC 于E ,若线段AE=5,则S 四边形ABCD = 。 8.如图所示,已知P 是正方形ABCD 内一点,以B 为 旋转中心,把△PBC 沿逆时针方向旋转90°得到△P BA ',连接PP ', 则∠P PB '的度数是______。 9、如图,将△ABC 绕点A 旋转一定角度后能与△ADE 重合,如果△ABC 的面积是 12cm 2 ,那么△ADE 的面积是 。 10、如图,△ABC 是等边三角形,D 为BC 边上的点,∠BAD =15°, △ABD 经旋转后到达△ACE 的位置,那么旋转角的度数是 . 11、如图,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。 E D C B A 11

2020年中考数学压轴题:9种题型+5种策略

2020年中考数学压轴题:9种题型+5种策略目前,初三学生正在紧张备考,对于数学这一科来说,最难的就是压轴题,想要在压轴题上拿高分,就要下功夫了。下面给大家带来中考数学压轴题:9种题型+5种策略,希望对大家有所帮助。 中考数学压轴题:9种题型+5种策略 九种题型 1.线段、角的计算与证明问题 中考的解答题一般是分两到三部分的。 第一部分基本上都是一些简单题或者中档题,目的在于考察基础。 第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。 线段与角的计算和证明,一般来说难度不会很大,只要找到关键题眼,后面的路子自己就通了。 2.图形位置关系 中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。 在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。 3.动态几何

从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。 动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。 另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。 所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。 4.一元二次方程与二次函数 在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。 相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。 中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。 但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。 5.多种函数交叉综合问题 初中数学所涉及的函数就一次函数,反比例函数以及二次函

相关文档
最新文档