人教A版数学高二选修2-2学案1.7定积分的简单应用

人教A版数学高二选修2-2学案1.7定积分的简单应用
人教A版数学高二选修2-2学案1.7定积分的简单应用

定积分的简单应用

预习课本P56~59,思考并完成下列问题

(1)利用定积分求平面图形的面积时,需要知道哪些条件?

(2)两条曲线相交围成的平面图形能否用定积分求其面积?

[新知初探]

1.定积分与平面图形面积的关系

(1)已知函数f (x )在[a ,b ]上是连续函数,由直线y =0,x =a ,x =b 与曲线y =f (x )围成的曲边梯形的面积为S .

f (x )的符号 平面图形的面积与定积分的关系

f (x )≥0 S =??a b

f (x )d x f (x )<0

S =-??a b f (x )d x

(2)一般地,如图,如果在公共的积分区间[a ,b ]上有f (x )>g (x ),那么直线x =a ,x =b 与曲线y =f (x ),y =g (x )围成的平面图形的面积为S =??a b

[f (x )-g (x )]d x .

[点睛] 对于不规则平面图形面积的处理原则

定积分只能用于求曲边梯形的面积,对于非规则的曲边梯形,一般要将其分割或补形为规则的曲边梯形,再利用定积分的和与差求面积.对于分割或补形中的多边形的面积,可直接利用相关面积公式求解.

2.变速直线运动的路程

做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =??a b

v (t )d t .

3.力做功

(1)恒力做功:一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s ,则力F 所做的功为W =Fs .

(2)变力做功:如果物体在变力F (x )的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b (a

F (x )d x .

[点睛] 变速直线运动物体的路程、位移与定积分的关系

如果做变速直线运动物体的速度-时间函数为v =v (t ),则物体在区间[a ,b ]上的位移为定积分??a b

v (t )d t ;物体在区间[a ,b ]上的路程为??a b

|v (t )|d t .

[小试身手]

1.判断(正确的打“√”,错误的打“×”) (1)曲线y =x 3与直线

x +y =2,y =0围成的图形面积为??01

x 3d x +??12

(2-x )d x .( ) (2)曲线

y =3-x 2与直线

y =-1围成的图形面积为??-2 2

(4-x 2)d x .( )

(3)速度是路程与时间的函数关系的导数.( ) (4)一个物体在2≤t ≤4时,运动速度为v (t )=t 2-4t ,则它在这段时间内行驶的路程为

??2

4

(t 2-4t )d t .( )

答案:(1)√ (2)√ (3)√ (4)×

2.曲线y =cos x ????0≤x ≤3π

2与坐标轴所围成的图形面积是( ) A .2 B .3 C.5

2 D .4

答案:B

3.已知做自由落体运动的物体的速度为v =gt ,则物体从t =0到t =t 0所走过的路程为( )

A.13gt 20

B. gt 20

C. 12gt 20

D.14gt 20

答案:C

4.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车从刹车到停车所前进的路程为________.

答案:405

利用定积分求平面图形的面积

[典例] 求抛物线y 2=2x 和直线y =-x +4所围成的图形的面积.

[解] 先求抛物线和直线的交点,解方程组?????

y 2=2x ,

y =-x +4,

求出交点坐标为A (2,2)和

B (8,-4).

法一:选x 为积分变量,变化区间为[0,8],将图形分割成两部分(如图),则面积为

S =S 1+S 2=2??02

2x d x +??28

()2x -x +4d x =

423x 3220+????223x 32-12x 2+4x 82

=18.

法二:

选y 作积分变量,则y 的变化区间为[-4,2],如图得所求的面积为 S =??2-4????4-y -y

2

2d y =????4y -y 22-y

3

62-4=18.

利用定积分求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形.

(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限. (3)确定被积函数及积分变量,确定时可以综合考察下列因素:

①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单. (4)写出平面图形的面积的定积分表达式.

(5)运用微积分基本定理计算定积分,求出平面图形的面积. [活学活用]

求曲线y =e x ,y =e -

x 及直线x =1所围成的图形的面积.

解: 如图,由?

????

y =e x ,y =e -x

,解得交点为(0,1),

所求面积为S =?

?0

1(e x -e -x )d x =(e x +e -

x )10=e +1e -2.

求变速直线运动的路程、位移

[典例] 有一动点P 从原点出发沿x 轴运动,在时刻为t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).求

(1)t =6时,点P 离开原点后运动的路程和点P 的位移; (2)经过时间t 后又返回原点时的t 值. [解] (1)由v (t )=8t -2t 2≥0得0≤t ≤4, 即当0≤t ≤4时,P 点沿x 轴正方向运动, 当t >4时,P 点向x 轴负方向运动. 故t =6时,点P 离开原点后运动的路程 s 1=??04(8t -2t 2)d t -??46

(8t -2t 2)d t =?

???4t 2-23t 3??? 4

0-?

???4t 2-23t 3???

6

4=128

3

. 当t =6时,点P 的位移为??06

(8t -2t 2)d t =?

???4t 2-23t 3???

6

0=0.

(2)依题意,??0t

(8t -2t 2)d t =0, 即4t 2-2

3

t 3=0,解得t =0或t =6,

因为t =0对应于点P 刚开始从原点出发的情况,所以t =6为所求,

(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.

(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.

[活学活用]

一质点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动,求点在t =4 s 时的位置及经过的路程.

解:在t =4 s 时该点的位移为

??04

(t 2-4t +3)d t =????13t 3-2t 2+3t ???

4

=4

3

(m). 即在t =4 s 时该点距出发点4

3 m.

又因为v (t )=t 2-4t +3=(t -1)(t -3), 所以在区间[0,1]及[3,4]上的v (t )≥0, 在区间[1,3]上,v (t )≤0.

所以在t =4 s 时的路程为s =??01(t 2-4t +3)d t -??13(t 2-4t +3)d t +??34

(t 2-4t +3)d t =

????t 3

3-2t 2+3t ???

1

-????t 33-2t 2+3t ???

3

1

+????t 33-2t 2+3t ??? 4

3

=4(m).

求变力做功

[典例] 一物体在变力F (x )=?

????

2x +4,0≤x ≤2,

x 2+2x ,2≤x ≤5,

(x 的单位:m ,F 的单位:N)的作用下,沿着与力F 相同的方向从x =0运动到x =5处,求变力所做的功.

[解] 变力F (x )所做的功为 W =??02

(2x +4)d x +??25

(x 2+2x )d x

=(x 2+4x ) ??

?

2

+????13x 3+x 2???

5

2

=12+60=72(J).

求变力做功的方法步骤

(1)要明确变力的函数式F (x ),确定物体在力的方向上的位移. (2)利用变力做功的公式W =??a

b F (x )d x 计算.

(3)注意必须将力与位移的单位换算为牛顿与米,功的单位才为焦耳. [活学活用]

在弹性限度内,用力把弹簧从平衡位置拉长10 cm 所用的力是200 N ,求变力F 做的功. 解:设弹簧所受到的拉力与弹簧伸长的函数关系式为F (x )=kx (k >0),当x =10 cm =0.1 m 时,F (x )=200 N ,

即0.1k =200,得k =2 000,故F (x )=2 000x , 所以力F 把弹簧从平衡位置拉长10 cm 所做的功是

W =??0 0.1

2 000x d x =1 000x 2??

?

1

=10(J).

层级一 学业水平达标

1.在下面所给图形的面积S 及相应的表达式中,正确的有( )

A .①③

B .②③

C .①④

D .③④

解析:选D ①应是S =??a b

[f (x )-g (x )]d x ,②应是S =??08

22x d x -??48

(2x -8)d x ,③和④正确.故选D.

2.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0 s 到t =3 s 时间段内的位移是( )

A .31 m

B .36 m

C .38 m

D .40 m

解析:选B S =??03

(3t 2+2t )d t =(t 3+t 2)30=33+32=36(m),故应选B.

3.如图所示,阴影部分的面积是( ) A .2 3 B .2- 3 C.323

D.353

解析:选C S =??-3 1

(3-x 2-2x )d x ,即F (x )=3x -13x 3-x 2,则F (1)=3-13-1=5

3,F (-3)=-9+9-9=-9.

∴S =F (1)-F (-3)=53+9=32

3

.故应选C.

4.由y =x 2,y =1

4x 2及x =1围成的图形的面积S =( )

A.14

B.1

2 C.13

D .1

解:选A 图形如图所示, S =??01

x 2d x -??01

1

4x 2d x

=??01

34x 2d x

=14x 310=14

. 5.曲线y =x 3-3x 和y =x 围成的图形面积为( ) A .4 B .8 C .10

D .9

解析:选B 由????? y =x 3-3x ,y =x ,解得????? x =0,y =0或????? x =2,y =2或?

????

x =-2,

y =-2.∵两函数y =x 3-3x 与y =x 均为奇函数,

∴S =2??02[x -(x 3-3x )]d x =2·??02

(4x -x 3)d x

=2?

???2x 2-14x 4???

2

0=8,故选B.

6.若某质点的初速度v (0)=1,其加速度a (t )=6t ,做直线运动,则质点在t =2 s 时的瞬时速度为________.

解析:v (2)-v (0)=??02

a (t )d t =??02

6t d t =3t 2??

?

2

=12,

所以v (2)=v (0)+3×22=1+12=13. 答案:13

7.一物体沿直线以速度v =1+t m/s 运动,该物体运动开始后10 s 内所经过的路程是______.

解析:S =??0

10

1+t d t =23(1+t )32 ???

10

=23???

?

1132-1. 答案: 23????113

2

-1 8.由y =1

x ,x =1,x =2,y =0所围成的平面图形的面积为________.

解析:画出曲线y =1

x (x >0)及直线x =1,x =2,y =0,则所求面积S 为如图所示的阴影

部分面积.

∴S =??121

x d x =ln x ??

?

2

1

=ln 2-ln 1=ln 2.

答案:ln 2

9.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.

解:由????

?

y =x +3,y =x 2-2x +3,

解得x =0及x =3.

从而所求图形的面积 S =??03

[(x +3)-(x 2-2x +3)]d x =??03

(-x 2+3x )d x =????-13

x 3+32x 2???

3

0=9

2

. 10. 设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;

(2)求y =f (x )的图象与两坐标轴所围成图形的面积. 解:(1)∵y =f (x )是二次函数且f ′(x )=2x +2, ∴设f (x )=x 2+2x +c . 又f (x )=0有两个等根,

∴4-4c =0,∴c =1,∴f (x )=x 2+2x +1.

(2)y =f (x )的图象与两坐标所围成的图形的面积S =??-10

(x 2+2x +1)d x =1

3x 3+x 2+

x ???

-1

=13

. 层级二 应试能力达标

1.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )

A .8 J

B .10 J

C .12 J

D .14 J

解析:选D 由变力做功公式有:W =??13

(4x -1)d x =(2x 2-x ) ??

?

3

1

=14(J),故应选

D.

2.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =3

6t

,那么从3小时到6小时期间内的产量为( )

A.12

B .3-

32

2 C .6+

3 2

D .6-3 2

解析:选D ??36

36t d t =6t ??

?

6

3

=6-32,故应选D.

3.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )

A.160

3 m B.803 m C.40

3

m D.203

m 解析:选A 由v =40-10t 2=0,得t 2=4,t =2. ∴h =??02

(40-10t 2)d t =?

???40t -103t 3???

2

=80-

803=160

3

(m).故选A. 4.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2

D .4

解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义

可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为??0

2(4x -x 3)d x

=????2x 2-14x 4???

2

=4.

5.椭圆x 216+y 2

9=1所围区域的面积为________.

解析:由x 216+y 29=1,得y =±3

4

16-x 2.

又由椭圆的对称性知,椭圆的面积为S =4??0

4

3

4

16-x 2d x =3??04

16-x 2d x.

由y = 16-x 2,得x 2+y 2=16(y ≥0).

由定积分的几何意义知??0

416-x 2d x 表示由直线x =0,x =4和曲线x 2+y 2=16(y ≥0)

及x 轴所围成图形的面积,

∴?

?0

416-x 2d x =1

4×π×16=4π,∴S =3×4π=12π.

答案:12π

6.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为____________.

解析:∵S 阴=2??01

(e -e x )d x =2(e x -e x ) ??

?

1

=2,

S 正方形=e 2,∴P =2

e 2.

答案:2

e

2

7.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.

解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.

求交点坐标:由?????

xy =1,

y =3,得??

???

x =1

3,y =3,

故A ????13,3;由?

????

xy =1,y =x , 得????? x =1,y =1或?????

x =-1,

y =-1(舍去), 故B(1,1);由?????

y =x ,y =3

得?

????

x =3,

y =3,故C(3,3),

8.函数f(x)=ax 3+bx 2-3x ,若f(x)为实数集R 上的单调函数,且a ≥-1,设点P 的坐标为(b ,a ),试求出点P 的轨迹所形成的图形的面积S .

解:当a =0时,由f (x )在R 上单调,知b =0.

当a ≠0时,f (x )在R 上单调?f ′(x )≥0恒成立或f ′(x )≤0恒成立.∵f ′(x )=3ax 2+2bx -3,

∴?

????

Δ=4b 2+36a ≤0,a ≥-1.∴a ≤-1

9b 2且a ≥-1.

因此满足条件的点P (b ,a )在直角坐标平面xOy 的轨迹所围成的图形是由曲线y =-1

9x 2

与直线y =-1所围成的封闭图形.

联立?????

y =-19x 2,y =-1,

解得????? x =-3,y =-1或????

?

x =3,y =-1,如图,

其面积S =?

?3-3

????1-19x 2d x =????x -x 3

27???

3

-3

=(3-1)-(-3+1)=4.

(时间: 120分钟 满分:150分)

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.若f (x )=sin α-cos x ,则f ′(x )等于( ) A .sin x B .cos x C .cos α+sin x

D .2sin α+cos x

解析:选A 函数是关于x 的函数,因此sin α是一个常数.

2.以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )

A.????0,π4∪????3π

4,π B .[0,π) C.????π4,3π4

D.????0,π4∪???

?π2,3π

4 解析:选A y ′=cos x ,∵cos x ∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是????0,π4∪???

?3π

4,π.

3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )

A .1个

B .2个

C .3个

D .4个

解析:选A 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1,x 3是极大值点,只有x 2是极小值点.

4.函数f (x )=x 2-ln x 的单调递减区间是( ) A. ???

?0, 22 B.

????22,+∞ C. ?

???-∞,-22,???

?0, 22 D.??

??-

22, 0,?

???0, 22 解析:选A ∵f ′(x )=2x -1x =2x 2-1x ,当0<x ≤22时,f ′(x )≤0,故f (x )的单调递

减区间为??

?

?0,

22. 5.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是( ) A .1 B.12 C .0

D .-1

解析:选A f ′(x )=3-12x 2,令f ′(x )=0, 则x =-12(舍去)或x =1

2,f (0)=0,f (1)=-1,

f ????12=32-1

2=1,∴f (x )在[0,1]上的最大值为1.

6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3处取得极值,则a =( ) A .2 B .3 C .4

D .5

解析:选D f ′(x )=3x 2+2ax +3,∵f ′(-3)=0. ∴3×(-3)2+2a ×(-3)+3=0,∴a =5.

7.函数f (x )=13ax 3+12

ax 2-2ax +1的图象经过四个象限,则实数a 的取值范围是( )

A.????-310,67

B.????-85,-316

C.????-83

,-116 D.????-∞,-310∪???

?6

7,+∞ 解析:选D f ′(x )=ax 2+ax -2a =a (x +2)(x -1),

要使函数f (x )的图象经过四个象限,则f (-2)f (1)<0,即????103a +1????-7

6a +1<0,解得a <-310或a >6

7

. 故选D.

8.已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )

解析:选D 由导函数图象可知,当x <0时,函数f (x )递减,排除A 、B ;当0

时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.

9.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>1

2,则满足2f (x )

的x 的集合为( )

A .{x |-1

B .{x |x <1}

C .{x |x <-1或x >1}

D .{x |x >1}

解析:选B 令g (x )=2f (x )-x -1,∵f ′(x )>1

2,

∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0,∴当x <1时, g (x )<0,即2f (x )

10.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2,生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )

A .6千台

B .7千台

C .8千台

D .9千台

解析:选A 设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3,y ′=36x -6x 2,令y ′=0得x =6或x =0(舍),f (x )在(0,6)上是增函数,在(6,+∞)上是减函数,∴x =6时y 取得最大值.

11.已知定义在R 上的函数f (x ),f (x )+x ·f ′(x )<0,若a <b ,则一定有( ) A .af (a )<bf (b ) B .af (b )<bf (a ) C .af (a )>bf (b )

D .af (b )>bf (a )

解析:选C [x ·f (x )]′=x ′f (x )+x ·f ′(x )=f (x )+x ·f ′(x )<0, ∴函数x ·f (x )是R 上的减函数, ∵a <b ,∴af (a )>bf (b ). 12.若函数f (x )=sin x x ,且0

x 2

,则a ,b 的大小关系是( )

A .a >b

B .a

C .a =b

D .a ,b 的大小不能确定

解析:选A f ′(x )=x cos x -sin x

x 2

,令g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x

-cos x =-x sin x .

∵0b ,故选A.

二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.若f (x )=1

3x 3-f ′(1)x 2+x +5,则f ′(1)=________.

解析:f ′(x )=x 2-2f ′(1)x +1,令x =1,得f ′(1)=2

3.

答案:2

3

14.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =__________.

解析:S =??0a

x d x =23x 32a 0=23a 32=a 2,∴a =4

9. 答案:49

15.已知函数f (x )满足f (x )=f (π-x ),且当x ∈????-π2,π

2时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则a ,b ,c 的大小关系是________.

解析:f (2)=f (π-2),f (3)=f (π-3), 因为f ′(x )=1+cos x ≥0, 故f (x )在????-π2,π

2上是增函数, ∵π

2

>π-2>1>π-3>0,

∴f (π-2)>f (1)>f (π-3),即c

x 2+1

在区间(m,2m +1)上单调递增,则实数m 的取值范围是__________.

解析:f ′(x )=4-4x 2

(x 2+1)2,令f ′(x )>0,得-1<x <1,

即函数f (x )的增区间为(-1,1). 又f (x )在(m,2m +1)上单调递增, 所以????

?

m ≥-1,m <2m +1,

2m +1≤1.解得-1<m ≤0.

答案:(-1,0]

三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)

17.(本小题满分12分)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点.

(1)求a 和b 的值;

(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点. 解:(1)由题设知f ′(x )=3x 2+2ax +b ,

且f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0, 解得a =0,b =-3. (2)由(1)知f (x )=x 3-3x . 因为f (x )+2=(x -1)2(x +2),

所以g ′(x )=0的根为x 1=x 2=1,x 3=-2, 于是函数g (x )的极值点只可能是1或-2. 当x <-2时,g ′(x )<0;当-2<x <1时, g ′(x )>0,故-2是g (x )的极值点. 当-2<x <1或x >1时,g ′(x )>0, 故1不是g (x )的极值点. 所以g (x )的极值点为-2.

18. (本小题满分12分)(北京高考)设函数f (x )=x e a -

x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.

(1)求a ,b 的值; (2)求f (x )的单调区间.

解:(1)因为f (x )=x e a -

x +bx , 所以f ′(x )=(1-x )e a -

x +b .

依题设有?????

f (2)=2e +2,f ′(2)=e -1,即?????

2e a -

2+2b =2e +2,

-e a -2+b =e -1.

解得?

???

?

a =2,

b =e.

(2)由(1)知f (x )=x e 2-

x +e x .

由f ′(x )=e 2-

x (1-x +e x -

1)及e 2-

x >0知, f ′(x )与1-x +e x

-1同号.

令g (x )=1-x +e x -

1,则g ′(x )=-1+e x -

1. 所以当x ∈(-∞,1)时,g ′(x )<0, g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0, g (x )在区间(1,+∞)上单调递增.

故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x )>0,x ∈(-∞,+∞), 故f (x )的单调递增区间为(-∞,+∞).

19.(本小题满分12分)某个体户计划经销A ,B 两种商品,据调查统计,当投资额为x (x ≥0)万元时,在经销A ,B 商品中所获得的收益分别为f (x )万元与g (x )万元,其中f (x )=a (x -1)+2,g (x )=6ln(x +b )(a >0,b >0).已知投资额为零时收益为零.

(1)求a ,b 的值;

(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.

解:(1)由投资额为零时收益为零, 可知f (0)=-a +2=0,g (0)=6ln b =0, 解得a =2,b =1.

(2)由(1)可得f (x )=2x ,g (x )=6ln(x +1). 设投入经销B 商品的资金为x 万元(0<x ≤5), 则投入经销A 商品的资金为(5-x )万元, 设所获得的收益为S (x )万元, 则S (x )=2(5-x )+6ln(x +1) =6ln(x +1)-2x +10(0<x ≤5).

S ′(x )=

6

x +1

-2,令S ′(x )=0,得x =2. 当0<x <2时,S ′(x )>0,函数S (x )单调递增; 当2<x ≤5时,S ′(x )<0,函数S (x )单调递减. 所以当x =2时,函数S (x )取得最大值, S (x )max =S (2)=6ln 3+6≈12.6万元.

所以,当投入经销A 商品3万元,B 商品2万元时, 他可获得最大收益,收益的最大值约为12.6万元.

20.(本小题满分12分)已知函数f (x )=ax 2+2ln(1-x )(a 为常数).

(1)若f (x )在x =-1处有极值,求a 的值并判断x =-1是极大值点还是极小值点; (2)若f (x )在[-3,-2]上是增函数,求a 的取值范围. 解:(1)f ′(x )=2ax -

2

1-x

,x ∈(-∞,1), f ′(-1)=-2a -1=0, 所以a =-1

2.

f ′(x )=-x -

21-x =(x +1)(x -2)1-x

. ∵x <1,∴1-x >0,x -2<0, 因此,当x <-1时f ′(x )>0, 当-1

(2)由题意f ′(x )≥0在x ∈[-3,-2]上恒成立, 即2ax -

2

1-x

≥0在x ∈[-3,-2]上恒成立 ∴a ≤1

-x 2+x 在x ∈[-3,-2]上恒成立,

∵-x 2+x =-????x -122+1

4 ∈[-12,-6], ∴

1

-x 2+x ∈????-16

,-112, ∴????1-x 2+ x min =-16,a ≤-1

6.

即a 的取值范围为?

???-∞,-16. 21.(本小题满分12分)已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;

(2)当m =2时,若函数k (x )=f (x )-h (x )在区间(1,3)上恰有两个不同零点,求实数a 的

取值范围.

解:(1)由f (x )≥h (x ), 得m ≤

x

ln x

在(1,+∞)上恒成立. 令g (x )=

x

ln x ,则g ′(x )=ln x -1(ln x )2

, 当x ∈(1,e)时,g ′(x )<0; 当x ∈(e ,+∞)时,g ′(x )>0,

所以g (x )在(1,e)上递减,在(e ,+∞)上递增. 故当x =e 时,g (x )的最小值为g (e)=e. 所以m ≤e.即m 的取值范围是(-∞,e]. (2)由已知可得k (x )=x -2ln x -a . 函数k (x )在(1,3)上恰有两个不同零点,

相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点. φ′(x )=1-2x =x -2

x ,

当x ∈(1,2)时,φ′(x )<0,φ(x )递减, 当x ∈(2,3)时,φ′(x )>0,φ(x )递增. 又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3, 要使直线y =a 与函数φ(x )=x -2ln x 有两个交点, 则2-2ln 2<a <3-2ln 3.

即实数a 的取值范围是(2-2ln 2,3-2ln 3).

22.(本小题满分12分)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;

(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,

所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b

2,

则f (b )>a

2(b -2)+a (b -1)2=a ????b 2-32b >0, 故f (x )存在两个零点.

③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).

若a≥-e

2,则l n(-2a)≤1,

故当x∈(1,+∞)时,

f′(x)>0,因此f(x)在(1,+∞)内单调递增.

又当x≤1时,f(x)<0,所以f(x)不存在两个零点.

若a<-e

2,则ln(-2a)>1,

故当x∈(1,ln(-2a))时,f′(x)<0;

当x∈(ln(-2a),+∞)时,f′(x)>0.

因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增.

又当x≤1时,f(x)<0,所以f(x)不存在两个零点.

综上,a的取值范围为(0,+∞).

(2)证明:不妨设x1

所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.

由于f(2-x2)=-x2e2-x2+a(x2-1)2,

而f(x2)=(x2-2)e x2+a(x2-1)2=0,

所以f(2-x2)=-x2e2-x2-(x2-2)e x2.

设g(x)=-x e2-x-(x-2)e x,

则g′(x)=(x-1)(e2-x-e x).

所以当x>1时,g′(x)<0,而g(1)=0,

故当x>1时,g(x)<0.

从而g(x2)=f(2-x2)<0,故x1+x2<2.

《定积分》教学设计与反思

《定积分》教学设计与反思 学习目标 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分. 2、通过实例体会用微积分基本定理求定积分的方法. 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 教学难点:了解微积分基本定理的含义. 一、自主学习: 1.定积分的定义:, 2.定积分记号: 思想与步骤 几何意义. 3.用微积分基本定理求定积分 二、新知探究 新知1:微积分基本定理: 背景:我们讲过用定积分定义计算定积分,但如果要计算,其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 探究问题1:变速直线运动中位置函数S(t)与速度函数v(t)之间的联系 设一物体沿直线作变速运动,在时刻t时物体所在位移为S(t),速度为v(t)(), 则物体在时间间隔内经过的位移记为,则 一方面:用速度函数v(t)在时间间隔求积分,可把位移= 另一方面:通过位移函数S(t)在的图像看这段位移还可以表示为 探究问题2: 位移函数S(t)与某一时刻速度函数v(t)之间的关系式为 上述两个方面中所得的位移可表达为 上面的过程给了我们启示 上式给我们的启示:我们找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。 定理如果函数是上的连续函数的任意一个原函数,则

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。 例1.计算下列定积分: 新知2:用定积分几何意义求下列各式定积分: 若求 新知3:用定积分求平面图形的面积 1、计算函数在区间的积分 2、计算函数在区间的积分 3、求与在区间围成的图形的面积 通过此题的计算你发现了什么? 教学反思 本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了微积分的基本定理,具体反思如下: 1、改变定理的表述形式,丰富信息的呈现方式。 根据高中学生的认知特点,我在教学过程中,出示例题、习题时,呈现形式力求多样、新颖,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中实例分析顺序,重组和创设了这样一个情境,从而引入速度关于时间的定积分背景,即切合学生的生活实际,又让学生发现了定理的实际意义,理解了定理的本质,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。 2、突出数学应用价值,培养学生的应用意识和创新能力 《数学课程标准》中指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题中涉及路程和速度,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。

高二定积分的简单应用(理科)

年 级 高二 学科 数学 内容标题 定积分的简单应用(理科) 编稿老师 胡居化 一、教学目标 1. 能用定积分知识解决在物理学中的一些简单问题及求曲边图形的面积等问题 2. 体会数与形结合的思想、等价转化的数学思想的应用. 二、知识要点分析 1. 定积分在物理学中的简单应用 (1)变速直线运动的路程:作变速直线运动的物体在时间t=a 到时间t=b (a

(2)求曲边图形面积的一般步骤: (a )画图,并将图形分割成若干个曲边梯形 (b )对每个曲边梯形确定其存在的范围,从而确定积分的上下限. (c )确定被积函数 (d )求出各曲边梯形的面积和,即各种定积分的绝对值之和. 【典型例题】 知识点一:定积分在物理学中的简单的应用 例1:一物体在力F ?? ?>+≤≤=) 2(,43) 20(,10)(x x x x (单位:N )的作用下沿力F 相同的方向, 从x=0处运动到x=4处(单位:米),这力F (x )所做的功是( ) A . 44 B . 46 C . 48 D . 50 【题意分析】本题考查物理学中的变力做功问题,物体在x=0到x=4距离内所做的功是函 数F (x )在区间[0,4]上的定积分. 【思路分析】由已知F (x )的表达式是分段函数,故物体所做的功是函数F (x )在[0,2],[2,4]上的积分之和. 【解题步骤】由定积分的物理意义知: ????++=+=42202042)43(10)()(dx x dx dx x F dx x F W =4222 0|)42 3(|10x x x ++ =46, 故选(B ) 【解题后的思考】本题考查的知识点是利用定积分求变力做功的问题,易错点是:认为F (x )在区间[0,4]内所做的功是 ? +4 )43(dx x . 例2:一物体做变速直线运动,其v -t 曲线(如图所示),求物体在s s 62 1 -内的运动路程. 【题意分析】本题考查物理学中变速直线运动路程问题,由v (t )曲线知:0)(≥t v ,故在 s s 621-间的物体运动的路程是v (t )在区间]6,2 1 [上的定积分.

浅谈定积分的应用

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definitio n of definite integral and geometric meaning, and through the example analysis of the definite integral in t he higher mathematics, physics, economics, and other fields of application condition and its applications, t hrough the analysis can be seen that the use of definite integral to solve some practical problems is very co nvenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5]。本文将举例介绍定积分在的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么

北师大版数学高二选修2试题 4.3定积分的简单应用--简单几何体的体积

4.3定积分的简单应用 定积分在物理中应用及简单几何体的体积同步练习 1.物本做变速度直线运动经过的路程s ,等于其速度函数v = v (t ) (v (t )≥0 )在时间区间 [a ,b ]上的 定积分 ,即?=b a dt t v s )(. 2.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是 ()dt t ?-5 3sin 3.(只列式子) 3.变速直线运动的物体的速度v (t ) = 5 – t 2,初始位置v (0) = 1,前2s 所走过的路程为 3 25 . 4.如果物体沿恒力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的功W = F (b —a ). 5.如果物体沿与变力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的 功W =?b a dx x F )(. 6.一物体在力F (x ) =10(02)34(2)x x x ≤≤?? +>?(单位:N )的作用下沿与力F (x )做功为( B ) A .44J B .46J C .48J D .50J 7.证明:把质量为m (单位kg )的物体从地球的表面升高h (单位:m )处所做的功W = G ·() Mmh k k h +,其中G 是地球引力常数,M 是地球的质量,k 是地球的半径. 证明:根据万有引力定律,知道对于两个距离为r ,质量分别为m 1、m 2的质点,它们之间的引力f 为f = G ·122 m m r ,其中G 为引力常数. 则当质量为m 物体距离地面高度为x (0≤x ≤h )时,地心对它有引力f (x ) = G ·2 ()Mm k x +故该物体从地面升到h 处所做的功为 0()h W f x =?d x =20() h Mm G k x ?+?·d x = GMm 201()h k x +? d (k + 1) = GMm 01()|h k x -+ =11()() Mnh GMm k G k h k k h -+=?++. 8.直线2y x =,1x =,2x =与x 轴围成的平面图形绕旋x 轴转一周得到一个圆台,

定积分教学设计

定积分的简单应用 一、教学目标 1、 知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、 过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、 情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 二、 教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题,正确计算。 三、教学过程 (一)创设问题情境: 复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 引入:.计算 dx x ? --2 2 2 4 2.计算 ?-22 sin π πdx x 思考:用定积分表示阴影部分面积 选择X 为积分变量,曲边梯形面积为 (二)研究开发新结论 1计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成图形的面积S. 2计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成的图形的面积S. 总结解题步骤:1找到图形----画图得到曲边形. 2曲边形面积解法----转化为曲边梯形,做出辅助线. dx x f dx x f s b a b a ??-=)()(21

3定积分表示曲边梯形面积----确定积分区间、被积函数. 4计算定积分. (三)巩固应用结论 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得 到。 解:2 01y x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、 (1,1),面积 S=1 20 x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象; 2.求交点; 3.用定积分表示所求的面积; 4.微积分基本定理求定积分。 巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y =x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =- 与曲线y =的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线y = 的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组4 y y x ?=?? =-?? 得直线4y x =-与曲线y =8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28 4 4 [(4)]x dx = +--? ? ? -1

N0.14《定积分的概念》导学案

N0.14《定积分的概念》导学案 目标展示: 1、掌握求曲边梯形面积的步骤。 2、了解定积分的定义和几何意义。 课程导读(阅读教材P38—P49后完成下列问题) 化很大 C .f (x )的值不变化 D .当n 很大时,f (x )的值变化很小 2.在求由x =a ,x =b (a 当n →+∞时,无限趋近于一个常数A ,则A 可用定积分表示为 ( ) A .dx x ?101 B .dx x p ?10 C .dx x p ?1 0)1( D .dx n x p ?10)( 4.当n 很大时,函数f (x )=x 2在区间????i -1n ,i n 上的值能够用下列哪个值近似代替( ). A .f ????1n B .f ????2n C .f ??? ?i n D .f (0) 5.求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间[0,t ]等分成n 个小区间,则第i -1个区间为( ) A.????i -1n ,i n B.????i n ,i +1n C.????t (i -1)n ,ti n D.????t (i -2)n ,t (i -1)n 6.由直线x =1,y =0,x =0和曲线y =x 3所围成的曲边梯形,将区间4等分,则曲边梯形 面积的近似值(取每个区间的右端点)是( ) A.119 B.111256 C.110270 D.2564 7.在等分区间的情况下,f (x )= 11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式准确的是( ) A.lim n →∞∑i =1n [1 1+????i n 2·2n ] B.lim n →∞∑i =1n [11+????2i n 2·2n ] C.lim n →∞∑i =1n ????11+i 2·1n D.lim n →∞∑i =1n [11+????i n 2·n ] 8.已知??13f (x )d x =56,则( ) A.??12f (x )d x =28 B.??2 3f (x )d x =28 C.??122f (x )d x =56 D.??12f (x )d x +??2 3f (x )d x =56 9.下列等式成立的是( ) A a b xdx b a -=? B. 5.0=?xdx b a

高中数学选修2-2优质学案:§1.5 定积分的概念

[学习目标] 1.了解定积分的概念.2.理解定积分的几何意义.3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想.4.能用定积分的定义求简单的定积分. 知识点一曲边梯形的面积和汽车行驶的路程 1.曲边梯形的面积 (1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线________所围成的图形称为曲边梯形(如图①所示). (2)求曲边梯形面积的方法 把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些________,对每个__________“以直代曲”,即用__________的面积近似代替__________的面积,得到每个小曲边梯形面积的________,对这些近似值______,就得到曲边梯形面积的________(如图②所示). (3)求曲边梯形面积的步骤:①________,②________,③________,④________. 2.求变速直线运动的(位移)路程 如果物体做变速直线运动,速度函数v=v(t),那么也可以采用________,________,________,________的方法,求出它在a≤t≤b内所作的位移s. 思考(1)如何计算下列两图形的面积?

(2)求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差? 知识点二 定积分的概念 如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

高中培优讲义定积分及其简单应用

第十三讲定积分及其简单应用 教学目标:1、了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2、了解微积分基本定理的含义. 一、知识回顾课前热身 知识点1、定积分 (1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质 ①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. (4).定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 知识点2、微积分基本定理如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)|b a,即∫b a f(x)d x=F(x)|b a=F(b)-F(a). 基础练习 1.∫421 x d x等于( ) A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 2 解析:选D ∫421 x d x=ln x |42=ln 4-ln 2=ln 2. 2.一质点运动时速度和时间的关系为V(t)=t2-t+2,质点作直线运动,则此物体在时间[1,2]内的位移

人教A版选修2-2 1.5.3 定积分的概念 学案 (1)

1.5.3 定积分的概念 预习课本P45~47,思考并完成下列问题 (1)定积分的概念是什么?几何意义又是什么? (2)定积分的计算有哪些性质? [新知初探] 1.定积分的概念与几何意义 (1)定积分的概念:一般地,设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

中的阴影部分的面积). [点睛] 利用定积分的几何意义求定积分的关注点. (1)当f (x )≥0时,??a b f (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义. (2)计算??a b f (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值: 当f (x )≥0时,??a b f (x )d x =S ;当f (x )<0时, ??a b f (x )d x =-S . 2.定积分的性质 (1)??a b kf (x )d x =k ??a b f (x )d x (k 为常数). (2)??a b [f 1(x )±f 2(x )]d x =??a b f 1(x )d x ±??a b f 2(x )d x . (3)??a b f (x )d x =??a c f (x )d x +??c b f (x )d x (其中a

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

定积分的几个简单应用

定积分的几个简单应用 一、定积分在经济生活中的应用 在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决. 例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余. 解 由p 50=,q p 15.065-=,得10000=q ,于是 dq q )5015.065(10000 0--? 10000023 ) 1.015(q q -= 50000=, 所求消费者剩余为50000元. 例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量. 解 所求的总产量为 ??+='=10 5105)1240()(dt t dt t Q Q 1052) 640(t t +=650=(件). 二、用定积分求极限 例1 求极限 ∑=∞→n k n n k 123 lim . 解 n n n n n n n n k n k 12111123 +++=∑= )21(1n n n n n +++= . 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取?? ????-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有

∑=∞→n k n n k 12 3lim ??????+++=∞→)21(1lim n n n n n n 3210==?dx x . 例2 求极限 2213lim k n n k n k n -∑ =∞→. 解 212213)(11n k n k n k n n k n k n k -?=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取?? ????-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有 2213lim k n n k n k n -∑=∞→3 1)1(311102321 02=??????--=-=?x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明. 例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证: ?? +≥b a b a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x x a x a ??+-=)(2)()(?, 显然0)(=a ?,且 )(2 )(21)()(x f x a dt t f x xf x x a ?+--='? )(2 ))((21)(2x f a a x f x f x ---=ξ [])()(2 ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ?,从而)(x ?在闭区间[]b a ,上单调增加,所以 0)()(=≥a x ??,

2017-2018学年高中数学北师大版选修2-2同步配套教学案:第四章 章末小结 知识整合与阶段检测

[对应学生用书P44] 一、定积分 1.定积分的概念: ??a b f (x )d x 叫函数f (x )在区间[a ,b ]上的定积分. 2.定积分的几何意义: 当f (x )≥0时,??a b f (x )d x 表示的是 y =f (x )与直线x =a ,x =b 和x 轴所围成的曲边梯形的面积. 3.定积分的性质: (1)∫b a 1d x =b -a . (2)??a b kf (x )d x =k ??a b f (x )d x . (3)??a b [f (x )±g (x )]d x =??a b f (x )d x ±??a b g (x )d x . (4)??a b f (x )d x =??a c f (x )d x +??c b f (x )d x . 定积分的几何意义和性质相结合求定积分是常见类型,多用于被积函数的原函数不易求,且被积函数是熟知的图形. 二、微积分基本定理 1.如果连续函数f (x )是函数F (x )的导函数,即f (x )=F ′(x ),则??a b f (x )d x =F (x )| b a =F (b )-F (a ). 2.利用微积分基本定理求定积分,其关键是找出被积函数的一个原函数.求一个函数的原函数与求一个函数的导数是互逆运算,因此,应熟练掌握一些常见函数的导数公式. 三、定积分的简单应用 定积分的应用在于求平面图形的面积及简单旋转几何体的体积,解题步骤为: ①画出图形.②确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限.③确定被积函数.④写出平面图形面积或旋转体体积的定积分表达式.⑤运用微积分基本定理计算定积分,求出平面图形的面积或旋转几何体的体积.

21-17定积分的简单应用

1.7.1定积分在几何中的应用 教材分析 这一节的教学要求是让学生在充分认识导数与积分的概念、计算、几何意义的基础上,掌握用积分解决实际问题的基本思想和方法.在学习过程中,理解导数与积分的工具性作用,从而进一步认识到数学知识的使用价值以及数学在实际应用中的强大作用.在整个高中数学体系中,这部分内容也是进一步学习高 等数学的基础.教学方法是“问题诱导一一启发讨论一一探索结果”、“直观观察一一抽象归纳一一总结规 律”的一种研究性教与学的方法,过程中注重“诱、思、探、练”的结合,从而引导学生转变学习方式采用激发兴趣、主动参与、积极体验、自主探究地学习,形成师生互动的教学氛围.探究式的学习方法能 够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神;探究过程中对学生进行数学美育的渗透,用哲学的观点指导学生自主探究. 课时分配 本课时是定积分应用部分的第一课时,主要解决的是平面图形的面积问题 教学目标 重点:应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值. 难点:如何恰当选择积分变量和确定被积函数 知识点:应用定积分解决平面图形的面积. 能力点:通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法. 教育点:在解决问题的过程中体会定积分的价值 自主探究点:探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法. 考试点:应用定积分解决平面图形的面积. 易错易混点:如何恰当选择积分变量和确定被积函数 拓展点:链接咼考. 教具准备实物投影机和粉笔. 课堂模式基于问题驱动的诱思探究. 一、创设情境 1、求曲边梯形的思想方法是什么?(以直代曲,无限逼近) 2、定积分的几何意义是什么? o - - cos 二-(-cosO) =2 , 若f(x)^O则表示面积 sin xdx = -cosx =f "sin xdx=—cosx ?=—cos2x —(—cosn) =-2,若f (x)兰0则表示面积相反数

定积分的简单应用 说课稿 教案 教学设计

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?.

4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积.

定积分的概念导学案

sx-14-(2-2)-025 1.5.3《定积分的概念》导学案 编写:刘威 审核:陈纯洪 编写时间:2014.5.13 班级_____组名_______姓名_______等级_______ 【学习目标】 1.了解定积分的概念和性质,能用定积分定义求简单的定积分; 2.理解定积分的几何意义. 【学习重难点】 重点:定积分的概念、用定义求简单的定积分. 难点:定积分的概念、定积分的几何意义. 【知识链接】: 1. 回忆求曲边梯形面积、变速运动的路程的 “四步曲”为: 2. 求曲边梯形面积的公式 求变速直线运动路程的公式 【学习过程】:知识点一:定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(x ?=_________),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式: 11()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的_________。记为:S = ____________ ,其中()f x 称为_________,x 叫作_________,[,]a b 为积分区间,b 叫作_________,a 叫作积分下限。

说明:(1)定积分()b a f x dx ?是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1()t t S v t dt =?;变力做功 ()b a W F r dr =? 考考你:(1)() b a f x dx ? ()b a f t dt ?(大于,小于,等于),这说明定积分与积分变量的记法 (有关,无关) (2)特例:()a a f x dx ?= 知识点二:定积分的几何意义 问题1:你能说出定积分的几何意义吗? 问题2:根据定积分的几何意义,你能用定积分表示右图中阴影部分的面积S 吗? 问题3:定积分的性质: (1) ()b a kf x dx =? (k 为常

相关文档
最新文档