电力电子装置电磁兼容研究最新进展

电力电子装置电磁兼容研究最新进展
电力电子装置电磁兼容研究最新进展

电力电子装置电磁兼容研究最新进展

发表时间:2017-11-21T18:38:15.677Z 来源:《电力设备》2017年第19期作者:朱善杰刘瑞英

[导读] 摘要:现阶段,电磁兼容得到了推广与采用,尤其在电力电子范围中得到了较多关注。

(国网临汾供电公司 041000 ;山西电力职业技术学院 030001)

摘要:现阶段,电磁兼容得到了推广与采用,尤其在电力电子范围中得到了较多关注。对此,本文通过PCB的优化与CAD技术研究,EMI滤波器的寄生效应研究、电磁计算技术等多项内容,分析电力电子装置电磁兼容研究最新进展。

关键词:电力电子装置;电磁兼容;前景研究

目前,电力电子装置的电磁兼容研究处于起步状态。其技术研究包含:功率变流器的电磁干扰建模、抑制技术、电机传动的电磁干扰建模、EMI滤波器等。但要注意,其研究结果仍然在实验室时期,有待进一步研究。电力电子装置的电磁干扰问题与今后产品的电磁兼容系统化设计具有重要影响。

一、功率变流器的电磁干扰建模和抑制技术

其电磁干扰建模主要针对传导EMI的建模,关于辐射EMI建模研究较少。电磁干研究,预测与设计的前提为EIM建模,建立科学、合理、精准的模型成为EMI性能高低的决定因素。电磁干建模通常可以划分为多个研究范围,即:辐射电磁干扰建模、传导电磁干扰建模。

(一)辐射电磁干扰

通过资料、文献查阅得出建模思路主要为开关电源的近场干扰。其思路为:首先建立开关电源传输线模型,得到干扰电压和电流。在其阶段会涉及到仿真应用程序的应用。随后,通过磁偶极子、电偶极子模仿PCB导线,进而得出电源近场干扰。在其计算时首先需要统计出电偶极子上的干扰电压。

(二)传导电磁干扰

其模型主要分为3种内容。第一,获得PCB寄生值。EMC设计的主要步骤是得到分布值,随后建立线路板的高频模型。现阶段,可以通过2种形式获得分布值,即:解析法、数值法。通过数值法得到方程Maxwell方程式得出不同状态印制导线分布数值,为得出印制导线分布数值首先需要运用解析法。

第二,开关元件模型。开关的瞬时转换对功率变流器EMI的影响是直接的。因此,确定模拟开关元件的瞬态特点成为模型构建的决定因素,半导体物理模型的建立、子电路模型建立是其重要途径。

第三,建立无源构件模型。电容器、电缆、电感器、导线等是一种常见的无源构件。电容器的高频型具有简便特点,通常应用在传导EMI研究中。精准的模型还需要通过电容器的物理组织进行分析。

(三)功率变流器的电磁干扰抑制技术

1、软电源技术

根据文献内的方法得出:软电源技术可以降低辐射与传导EMI的发射,其中多数软件开关技术经过带入辅助电路确保主电路的功率器件,进而达到软开关技术。不过,在实际检测中发现:传导EMI在低频中的软开关形式未有显著降低,只是在高频段上有一定的变化。另一方面,在软开关技术阶段带入辅助电路的谐振电流环路对EMI的电频存在附加作用。

2、低共模干扰变流器与传导干扰反相抵消技术

根据建立稳态节点共模的EMI抑制技术,其方法有效防止了Boost电路内的散热器和开关元件漏极间的寄生电容对共模的影响,其关键在于电路内的稳态节点。或是抵消Buck--Boost,Forward与Buck变流器内对共模的干扰,该方法主要是增加电容器与补偿变压器绕组。

3、调节策略方法

通过变频PFM形式能够有效降低传导EMI的发射。不过,也有另一种看法提出:通过PWM干扰抑制技术也能够降低EMI的发射。

二、电机传动器电磁干扰模型构建与抑制技术

(一)电磁干扰模型构建

电力传动器中的电磁干扰建模涉及软件仿真、测量方法。当然,也包含EMI噪声传播与EMI噪声源的模型构建。噪声传播途径也包含寄生数值和连接器、电缆、接地线等。噪声源模型建立分为时域模型建立、频域模型建立。

(二)电磁干扰抑制技术

电磁干扰的首要问题为共模影响。现阶段,针对这一问题可以通过有源滤波技术、无源滤波技术。有源滤波技术主要针对消除EMI噪声,具有体积小特点。无源滤波技术则是抑制传导EMI噪声影响。

三、EMI滤波器的寄生效应研究

(一)建立寄生效应模型

在不同文献中通过一些形式建立滤波器的元件模型,进而预测EMI滤波器的高频特点、研究寄生数值与滤波器的滤波电感。此外,也有文献通过测量共模电感,进而建立共模电感的高频模型。在实际中找出差模电感参数,共模电感参数,不同绕组的寄生电容,绕组内部匝间的寄生电容和磁芯电阻、绕组导线电阻。

(二)消除EMI滤波器寄生值

怎样降低滤波器内的电容器引线是、成为当务之急。现阶段,其有效形式分为:消除电容器的等效串联电感、电容器的磁场耦合。此外,想要消除滤波电容器引线电感效应,还可以在支路上带入负电感设计形式。

四、PCB电磁干扰优化设计CAD技术

经过计算系统导入PCB设计文件进而判断PCB的影响区域。随后,在知识库内找到有效方法。或是通过CCAD预测PCB板形成的辐射水平。有限元研究也是当下应用较多的技术,进而划分模型的离散网格。随后,得出不同网格点Maxwell方程得出结果。

结语:

现阶段,我国的一些研究技术仍然存在诸多不足,有待深入分析。不过,也有一些研究工作效果显著。世界上的EMC要求与标准越来越严格。因此,还应该做好对EMC的研究与完善。

电力系统自动化设备的电磁兼容技术 马洁

电力系统自动化设备的电磁兼容技术马洁 发表时间:2019-08-28T16:04:20.310Z 来源:《云南电业》2019年2期作者:马洁 [导读] 本文阐述了电力系统自动化设备的电磁兼容的特殊性,着重指出了在产品设计和开发过程中遇到电磁兼容问题时应对的手段,同时预测了对电力系统自动化设备的电磁兼容的最新动向。 (内蒙古包头市包头供电局固阳分局内蒙古包头市 014200) 摘要:本文阐述了电力系统自动化设备的电磁兼容的特殊性,着重指出了在产品设计和开发过程中遇到电磁兼容问题时应对的手段,同时预测了对电力系统自动化设备的电磁兼容的最新动向。 关键词:电力自动化;电磁兼容 一、电力系统自动化设备中电磁兼容技术的发展现状 1.1 电磁兼容技术对电力系统自动化设备的有利作用 电磁兼容技术是伴随着电子技术和电子设备的出现而逐渐发展起来的。凡是有电子技术的领域都会有电子干扰,凡是有电子设备的地方都存在电磁干扰现象。而电磁兼容技术的研究对象就是电磁干扰。电磁兼容技术是解决电磁干扰相关问题的一门技术,电力系统自动化设备中的电路之间的相互干扰,外界电磁干扰正是电磁兼容技术需要解决的问题。研究电磁兼容技术对于提高电力系统自动化设备水平利用效率具有重要作用。电磁兼容技术水平的提高有利于减轻电磁波对电子系统自动化设备的干扰,提高设备运行的准确度。电磁兼容技术可以有效防止电子系统自动化设备对外界干扰过度敏感这一问题。 1.2 电力系统自动化设备电磁兼容问题 电磁兼容技术是一门发展迅速的交叉科学,其理论几乎涉及到所有用电领域。在当今信息社会下,电力系统自动化设备的迅速发展对电磁兼容技术提出了更高的要求。电力系统自动化设备与电磁技术兼容,电子设备越是现代化,其造成的电磁环境就越是复杂;相对而言,复杂的电磁环境对电子系统自动化设备又提出了更高的要求。电磁兼容技术作为一种新兴学科,其领域内的理论研究,特性测量和产品开发需要投入高科技的人才和技术资金,其理论研究是一个长期过程,所以电力系统自动化设备中电磁兼容技术的理论研究成功和理论成果应用是一件耗时耗力的事。目前国内电力系统中电磁兼容技术的研究和利用正处于一种高投入,低产出的不良状态。究其原因,市场需求量少,技术更新慢。 二、电磁兼容技术的设计方法 2.1滤波 通过滤波器对电磁干扰进行抑制。滤波器的网络是由分布或集中参数的电感、电容和电阻共同组成,并能对信号的频率进行判断,提取有用信号的频率分量通过,防止干扰频率分量通过,使电磁干扰降低到能够接受的程度。防止和降低电磁干扰的主要措施是使用滤波器,滤波器也能有效减少辐射干扰如对无线电干扰进行抑制,将相应的电磁干扰滤波器安装在接受机的输入端和发射机的输出端,将干扰信号过滤以实现电磁兼容的目标。 2.2隔离 干扰电磁场也存在于干扰线路(馈线)附近,当干扰线路附近存在其他导线时出现电磁耦合产生干扰。将其它线路与干扰线路进行隔离能有效简便防止这种干扰:将馈线按照一定的距离隔离分布能够使线路之间的电磁耦合削弱或切断。以下为隔离的注意事项:不要使其他线路和干扰线路平行排列,如果遇到必须平行的情况,则导线的间距L和直径D的比值不应低于40,并尽可能增大导线间距,另外平行部分越短越好;如果一般线路与敏感线路或者信号线与电源馈线之间需要平行排列时,导线间距不应低于50 mm;对其他线路会造成最大干扰的高频导线需要屏蔽;一些脉冲功率较大的脉冲线路也会严重干扰到其他线路,可以按照干扰线路处理。根据具体情况可以将低功率、低电平的数字电路当做一般线路。 2.3接地 在系统中的一个接地面与选定点之间建立电阻小的导电通路接与地面相接,由于系统中各个电子元件处于零电位并且相互连通,就建立了一个等同于地面的参考点。就是将它的电阻和电位都看作零,并且以其来参考电路中的信号,没有电流通过就没有电压降的产生,所以通过接地设备将干扰电流导入大地,减少干扰源传播的能量。 2.4屏蔽 所谓的屏蔽,就是使用导磁或导电材料来制作壳、屏、板、盒等设备,将电磁能的范围限制在一定区域之内,用屏蔽体来减弱场的能量,最终防止电磁干扰。有三种屏蔽方法:磁屏蔽、电屏蔽以及电磁屏蔽。对不同功能、不同结构和不同安装地点的设备采取不同侧重点的电磁兼容技术措施。 三、电磁干扰对策 3.1 硬件抗干扰 在方案设计、结构设计、电路与线路板设计、电缆设计等四个方面进行相应的安排。 (一)方案设计 (1)设计接口电路,尽量使用平衡电路,必要时可以在接口电路上使用隔离变压器、光耦合器件等提高抗共模干扰的能力。(2)明确所开发的设备或系统要满足的电磁兼容标准。有时根据用户的要求或实际情况(例如,周围有高灵敏度的接受机,或产生强干扰的设备),需要提出专门的电磁兼容要求。 (3)电路中尽量避免使用高速的脉冲信号,脉冲信号的上升/ 下降沿尽量平缓,模拟电路的带宽尽量窄。 (4)根据系统工作原理和地线设计原则,画出系统地线图,不同性质的电路使用不同的地线,不同的地线用不同的符号表示。(5)确定需要采取那些干扰抑制措施,例如屏蔽、滤波等,需要屏蔽的效能和滤波性能(包括频率范围、衰减量等)。 (6)尽量使用大规模集成电路,这样可以获得很小的环路面积,提高抗扰性和减少发射。

电气类外文翻译---电力电子系统的电磁兼容问题

外文资料译文 Power Electronics Electromagnetic Compatibility The electromagnetic compatibility issues in power electronic systems are essentially the high levels of conducted electromagnetic interference (EMI) noise because of the fast switching actions of the power semiconductor devices. The advent of high-frequency, high-power switching devices resulted in the widespread application of power electronic converters for human productions and livings. The high-power rating and the high-switching frequency of the actions might result in severe conducted EMI. Particularly, with the international and national EMC regulations have become more strictly, modeling and prediction of EMI issues has been an important research topic. By evaluating different methodologies of conducted EMI modeling and prediction for power converter systems includes the following two primary limitations: 1) Due to different applications, some of the existing EMI modeling methods are only valid for specific applications, which results in inadequate generality. 2) Since most EMI studies are based on the qualitative and simplified quantitative models, modeling accuracy of both magnitude and frequency cannot meet the requirement of the full-span EMI quantification studies, which results in worse accuracy. Supported by National Natural Science Foundation of China under Grant 50421703, this dissertation aims to achieve an accurate prediction and a general methodology. Several works including the EMI mechanisms and the EMI quantification computations are developed for power electronic systems. The main contents and originalities in this research can be summarized as follows. I. Investigations on General Circuit Models and EMI Coupling Modes In order to efficiently analyze and design EMI filter, the conducted EMI noise is traditional decoupled to common-mode (CM) and differential-mode (DM) components. This decoupling is based on the assumption that EMI propagation paths have perfectly balanced and time-invariant circuit structures. In a practical case, power converters usually present inevitable unsymmetrical or time-variant characteristics due to the existence of semiconductor switches. So DM and CM components can not be totally decoupled and they can transform to each other. Therefore, the mode transformation led to another new mode of EMI: mixed-mode EMI. In order to understand fundamental mechanisms by which the mixed-mode EMI noise is excited and coupled, this dissertation proposes the general concept of lumped circuit model for representing the EMI noise mechanism for power electronic converters. The effects of unbalanced noise source impedances on EMI mode transformation are analyzed. The mode transformations between CM and DM components are modeled. The fundamental mechanism of the on-intrinsic EMI is first investigated for a switched mode power supply converter. In discontinuous conduction mode, the DM noise is highly dependent on CM noise because of the unbalanced diode-bridge conduction. It is shown that with the suitable and justified

大功率电力电子器件的新进展

大功率电力电子器件前沿技术分析 贾海叶山西吕梁供电 摘要:本文对大功率电力电子器件技术进行了简述,阐述了大功率电力电子器件发展热点,并对其前沿技术和未来的发展方向进行了分析。 关键词:大功率、电子电力器件,前沿技术 1 引言 随着半导体制造工艺的进步和对电力电子设备容量增大的需求,对电力电子器件的性能和功率要求也越来越高,由此产生了耐高压、大功率的电力电子器件。近来,伴随着器件的大功率化,新的HVIGBT(HighVoltage Insulated Gate BipolarTran-sistor Module)高压绝缘栅双极型半导体模块、HVIPM(High Voltage Intelligent Power Module)高压智能电力模块的MOS型电力电子器件的开发、GCT(Gate Commutated Turn-off Thyristor)闸门换相关断可控硅器件的开发,都有了较大的进展。以新一代器件问世为标志,必然在电力电子设备的开发方面,向着小型化、高效率化、高速控制化的目标飞跃前进。 1.1 大功率电力电子器件的分类 大功率电力电子器件主要分为:二极管、可控硅、光触发可控硅、GTO(Gate Turn-off Thyristor)闸门关断可控硅、GCT、HVIGBT及HVIPM器件。 从1960年开发初期的1英寸硅片开始至今,发展到直径为6英

寸硅片的耐高压、大功率电力电子器件系列化产品,其容量和当初相比,提高了100多倍。而且在使用上减少了串联或并联元件的数量,提高了可靠性,减小了设备的体积。 按照电力电子器件能够被控制电路信号所控制的程度分类,大功率电力电子器件分为: 1.半控型器件,例如晶闸管; 2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管); 3.不可控器件,例如电力二极管; 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类: 1.电压驱动型器件,例如IGBT、MOSFET、SITH(静电感应晶闸管); 2.电流驱动型器件,例如晶闸管、GTO、GTR; 根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类: 1.脉冲触发型,例如晶闸管、GTO; 2.电子控制型,例如GTR、MOSFET、IGBT; 按照电力电子器件内部电子和空穴两种载流子参与导电的情况分类: 1.单极型器件,例如电力二极管、晶闸管、GTO、GTR; 2.双极型器件,例如MOSFET、IGBT;

电力电子技术期末总结

#绪论: 1. 电子技术的两大分支是什么? 信息电子技术与电力电子技术 *2. 简单解释电力电子技术。 使用电力电子器件对电能进行变换和控制的技术,即应用于电力领域的电子技术。 3. 要学习的4种电力电子器件是什么? 器件:电力二极管、晶闸管、IGBT、POWER MOSFET 四种。 *4. 电力变换器有哪几种? 交流变直流、直流变交流、直流变直流、交流变交流 *5. 电力电子技术的应用? 一般工业:电化学工业;交通运输:电动汽车、航海;电力系统:柔性交流输电、谐波治理、智能电网;电子装置电源;家用电器:变频空调;其他:航天飞行器、发电装置。 #第一章: 1.*电力电子器件的分类: 半控型:晶闸管;全控型:电力MOSFET、IGBT;不可控型:电力二极管; 电流驱动型:晶闸管;电压驱动型:电力MOSFET、IGBT; 2.*应用电力电子器件的系统组成: 由控制电路和驱动电路和电力电子器件为核心的主电路组成。 3.电导控制效应: 电导控制效应使得PN结在正向电流较大时压降仍然很低,维持在1v左右,所以正向偏置的PN结表现为低阻态。 4.电力二极管的基本特征:

5. 电力二极管的主要参数:正向平均电流IF(AV)反向恢复时间trr 、浪涌电流IFSM 6. 电力二极管的类型:普通二极管、快恢复二极管、肖特基二极管 7. 晶闸管的静态特性和动态特性: A A G G K K b) c) a) A G K K G A P 1N 1 P 2N 2J 1J 2J 3 A P 1 A G K N 1P 2 P 2 N 1 N 2a) b)

u 8. 晶闸管的主要参数:电压定额、电流定额、动态参数 9.电力MOSFET 的基本特征: G D P 沟道b) a) G D N 沟道

电磁兼容基本知识术语定义

电磁兼容基本知识 一、术语定义 1. 额定电压 EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲:230V,50Hz;美国:115V, 60Hz) 2.额定电流 在额定电压和指定温度条件下(常为环境温度40℃),EMI滤波器所允许的最大连续工作电流(Imax)。在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式 得出: 3.试验电压 在EMI滤波器的指定端子之间和规定时间内施加的电压。试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。 4.泄漏电流 EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出:I LC=2×π× F×C×V 其中,F为工作频率, C为接地电容的容量, V为线-地电压 5.插入损耗 是衡量滤波器效果的指标。指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。在50Ω系统内测试时,可用下式来表示: IL=20Lg(E0/E1) 其中,IL-插入损耗(单位:dB); EO-负载直接接到信号源上的电压; E1-插入滤波器后负载上的电压 6.气候等级 指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX 前2位数字代表滤波器的最低工作温度 中间数字代表滤波器的最高工作温度 后2位数字代表质量认定时在规定稳态湿热条件下的试验天数 7. 绝缘电阻 绝缘电阻是指滤波器相线,中线对地之间的阻值。通常用专用绝缘电阻表测试。

集成电路的电磁兼容测试.pdf-2018-09-29-14-17-40-598

集成电路的电磁兼容测试 当今,集成电路的电磁兼容性越来越受到重视。电子设备和系统的生产商努力改进他们的产品以满足电磁兼容规范,降低电磁发射和增强抗干扰能力。过去,集成电路生产商关心的只是成本,应用领域和使用性能,几乎很少考虑电磁兼容的问题。即使单片集成电路通常不会产生较大的辐射,但它还是经常成为电子系统辐射发射的根源。当大量的数字信号瞬间同时切换时便会产生许多的高频分量。 尤其是近年来,集成电路的频率越来越高,集成的晶体管数目越来越多,集成电路的电源电压越来越低,加工芯片的特征尺寸进一步减小,越来越多的功能,甚至是一个完整的系统都能够被集成到单个芯片之中,这些发展都使得芯片级电磁兼容显得尤为突出。现在,集成电路生产商也要考虑自己产品电磁兼容方面的问题。 集成电路电磁兼容的标准化 由于集成电路的电磁兼容是一个相对较新的学科,尽管对于电子设备及子系统已经有了较详细的电磁兼容标准,但对于集成电路来说其测试标准却相对滞后。国际电工委员会第47A 技术分委会(IEC SC47A)早在 1990 年就开始专注于集成电路的电磁兼容标准研究。此外,北美的汽车工程协会也开始制定自己的集成电路电磁兼容测试标准 SAE J 1752,主要是发射测试的部分。1997 年,IEC SC47A 下属的第九工作组 WG9 成立,专门负责集成电路电磁兼容测试方法的研究,参考了各国的建议,至今相继出版了150kHz-1GHz的集成电路电磁发射测试标准IEC61967 和集成电路电磁抗扰度标准IEC62132 。此外,在脉冲抗扰度方面,WG9 也正在制定对应的标准 IEC62215。 目前,IEC61967 标准用于频率为 150kHz 到 1GHz 的集成电路电磁发射测试,包括以下 六个部分: 第一部分:通用条件和定义(参考 SAE J1752.1); 第二部分:辐射发射测量方法——TEM 小室法(参考 SAE J1752.3); 第三部分:辐射发射测量方法——表面扫描法(参考 SAE J1752.2); 第四部分:传导发射测量方法——1?/150?直接耦合法; 第五部分:传导发射测量方法——法拉第笼法 WFC(workbench faraday cage); 第六部分:传导发射测量方法——磁场探头法。 IEC62132 标准,用于频率为 150kHz 到 1GHz 的集成电路电磁抗扰度测试,包括以下五部分: 第一部分:通用条件和定义;

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

EMC电磁兼容概述综述

电磁兼容基础知识 引言电子电器产品的电磁兼容性能是一项非常重要的技术指标,它不仅关系到产品本身的安全性、可靠性,也关系到电磁环境的保护问题。国内外现都十分重视产品的电磁兼容质量管理。这就要求从事相关产品设计、制造和品质管理的人员均应该掌握电磁兼容的一些基本理论、标准要求和设计技术。 一、电磁兼容现象及基本理论 电磁兼容(Electromagnetic Compatibility——EMC),其定义是:设备或系统在其所处的电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。从上述定义可以看出,一台设备或一个系统的电磁兼容性都包括两个方面,一是它对同一电磁环境中其它设备的抗干扰能力或称敏感性,二是它对其它产品的电磁骚扰特性。 电磁骚扰(Electromagnetic Disturbance——EMI)定义为“任何可能引起装置、设备或系统性能降低或者对有生命或无生命物质产生损害作用的电磁现象”。电磁骚扰可能是电磁噪声、无用信号或传播媒介自身的变化。(注:一般意义上的“有用的电磁信号或电磁能量”在电磁兼容领域也有可能被认为是电磁骚扰源。) 电磁骚扰的表现形式一般有两种,一是通过导体传播骚扰电压、电流,一是通过空间传播骚扰电磁场。前者称为传导骚扰,后者称为辐射骚扰。例如,电视机的电磁骚扰主要有:对公用电网的无线电骚扰和低频骚扰(如注入谐波电流)、对公用电视天线系统的骚扰、向空间辐射的电磁场等。 抗扰度(Immunity to a Disturbance)定义为“装置、设备或系统面对电磁骚扰不降低运行性能的能力”。电磁敏感性(Electromagnetic Susceptibility——EMS)定义为“在存在电磁骚扰的情况下,装置、设备或系统不能避免性能降低的能力”。实际上,抗扰度与敏感性都反映的是对电磁骚扰的适应能力,仅仅是从不同的角度而言,敏感性高即意味着抗扰度低。对应电磁骚扰的两种表现形式,设备对电磁骚扰的抗扰性也同样分为传导抗扰性和辐射抗扰性。

电力系统中开展电磁兼容测试的必要性

文章编号:1006-7345(2000)02-0044-02 电力系统中开展电磁兼容测试的必要性 毕志周,曹 敏 (云南省电力试验研究所,云南 昆明 650051) 摘要:介绍了国外特别是欧共体国家电磁兼容测试标准的研究情况,电磁兼容的基本概念以及电力系统中供电网络的电磁现象,说明电磁兼容测试的必要性。 关键词:电磁兼容;标准;电磁骚扰 中图分类号:T M93 文献标识码:A 1 概述 近来,电磁兼容性测试标准的研究及发展很快,国际电工委员会(简称IEC)要求各成员尽可能地将其转化为各国和地区的标准。欧共体步伐最快,首先采用国际标准为欧共体标准,然后再转化为各成员国国家标准,其次欧共体率先以法规形式强制执行电磁兼容测试标准,性能合格的产品才允许有 CE标记。CE标记在欧共体市场,相当于产品 通行证。现在,欧洲的进口商和零售行业的中间商已不再购买或出售无CE标记的电子、电气产品。美国联邦通信委员会(简称FCC),已颁布了一些有关电磁兼容性(简称EM C)的法规,并进行这方面的管理。对于通信发射机、接受机、电视机、计算机、各种医疗设备等电气设备均有相应的法律要求,任何出口到美国的这类设备必须取得FCC的认可,否则就是违反美国的法律。日本!电气用品取缔法?涉及甲类和乙类两种产品,甲类产品的安全及电磁骚扰试验是强制性的,乙类是自愿的。日本的通商产业省(简称通产省)负责!电气用品取缔法?中有关事务的处理。在日本生产或销售甲类电气产品,必须向日本通产省有关官员申请注册并到指定试验机构进行试验。甲类电气产品必须符合通产省认定的EM C技术规范。!电气用品取缔法?中还规定了若干惩罚法规,对于未取得注册登记就生产甲类电气用品的,或未通过甲类电气用品型式试验并进行该类电气用品销售的,可处以3年以下徒刑和30万日元以下的罚款。以上表明,欧共体各国,乃至世界各国已从商贸的角度来对待进出口产品生产或销售的电磁兼容问题。 随着我国加入世界贸易组织(World T rade Or gnization,WT O)谈判进程步伐的加快,不远的将来,会有大量的国外电气产品涌入我国市场和我国生产的电气产品出口。在国际贸易中,为消除在非关税壁垒中,由于技术法规、标准和认证体系(合格评定程序)等技术问题而引起的贸易障碍(技术壁垒),保护我国的经济和安全利益,有利于发达国家向我国转让技术,国家质量技术监督局和各部委在近几年也相继颁布了一系列新的国家和部级技术标准,都把电气产品电磁兼容的质量控制与管理技术标准的要求作为重要内容。此外,国家技术监督局正在积极筹备电磁兼容的认证工作,以达到尽快与国际接轨的目的。国家技术监督局指出,今后要在电气产品的市场检测监督和认证两方面深入开展工作,凡不符合电磁兼容标准的产品,不得生产和流通。有关部门将对生产或销售部门进行严肃处理,要求在华外国企业依据中国有关的法律、法规和技术标准,做好电气和电子产品的电磁兼容标准化工作。完善产品质量。 2 电磁兼容的基本概念 2 1 电磁兼容(Electromagnetic Compatibility)的定义 国家标准GB/T4365-1995!电磁兼容术语?对其所下的定义为: 设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰能力,该标准等同采用IEC60050。这里有三层含义:第一,设备要在电磁环境中正常工作,设备对于电磁环境中的电磁干扰要有一定的抵御能力,而不会导致失效#包括元器件的失效或电 44 2000年第2期 云南电力技术 第28卷

电力电子器件的最新发展趋势

电力电子器件的最新发展趋势 现代的电力电子技术无论对改造传统工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)至关重要,从而已迅速发展成为一门独立学科领域。它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为本世纪乃至下世纪重要关键技术之一。近几年西方发达的国家,尽管总体经济的增长速度较慢,电力电子技术仍一直保持着每年百分之十几的高速增长。 从历史上看,每一代新型电力电子器件的出现,总是带来一场电力电子技术的革命。以功率器件为核心的现代电力电子装置,在整台装置中通常不超过总价值的20%~30%,但是,它对提高装置的各项技术指标和技术性能,却起着十分重要的作用。 众所周知,一个理想的功率器件,应当具有下列理想的静态和动态特性:在截止状态时能承受高电压;在导通状态时,具有大电流和很低的压降;在开关转换时,具有短的开、关时间,能承受高的di/dt和dv/dt,以及具有全控功能。 自从50年代,硅晶闸管问世以后,20多年来,功率半导体器件的研究工作者为达到上述理想目标做出了不懈的努力,并已取得了使世人瞩目的成就。60年代后期,可关断晶闸管GTO实现了门极可关断功能,并使斩波工作频率扩展到1kHz以上。70年代中期,高功率晶体管和功率MOSFET问世,功率器件实现了场控功能,打开了高频应用的大门。80年代,绝缘栅门控双极型晶体管(IGBT) 问世,它综合了功率MOSFET和双极型功率晶体管两者的功能。它的迅速发展,又激励了人们对综合功率MOSFET和晶闸管两者功能的新型功率器件- MOSFET门控晶闸管的研究。因此,当前功率器件研究工作的重点主要集中在研究现有功率器件的性能改进、MOS门控晶闸管以及采用新型半导体材料制造新型的功率器件等。下面就近几年来上述功率器件的最新发展加以综述。 一、功率晶闸管的最新发展 1.超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA ( 6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的“挤流效应”使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR > 3.3kV )、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功

电力电子技术总结

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以 1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对 晶闸管电路的控制方式主要是相位控制方式,简称相控方式。4、70年代后期,以门极可关断晶闸管( GTO )、电力双极型晶体管( BJT )和电力场效应晶 体管(Power-MOSFET )为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路( PIC )。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:?主要是指晶闸管(Thyristor )及其大部分派生器件。 ?器件的关断完全是由其在主电路中承受的电压和电流决定的。◆全控型器件:?目前最常用的是 IGBT 和Power MOSFET 。 通态损耗断态损耗开关损耗 开通损耗关断损耗

?通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件:?电力二极管(Power Diode)?不能用控制信号来控制其通断。(2)按照驱动信号的性质 ◆电流驱动型:?通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 ?仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控 制。 (3)按照驱动信号的波形(电力二极管除外) ◆脉冲触发型 ?通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控 制。 ◆电平控制型 ?必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件 开通并维持在导通状态或者关断并维持在阻断状态。 4、几种常用的电力二极管:普通二极管、快恢复二极管、肖特基二极管 肖特基二极管优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此, 其开关损耗和正向导通损耗都比快速二极管还要小,效率高。 弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此 多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。 5、晶闸管除门极触发外其他几种可能导通的情况 ◆阳极电压升高至相当高的数值造成雪崩效应◆阳极电压上升率du/dt过高 ◆结温较高◆光触发

电磁兼容基本知识整理

电磁兼容基础知识 1.电磁兼容性基本概念 电磁兼容性:(EMC,即Electromagnetic Compatibility,)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。EMC其实就是包含了干扰性、抗干扰性与电磁环境三部分内容。(1)EMI(电磁干扰) 即处在一定环境中的设备或系统,在正常运行时,不应产生超过相应标准所要求的电磁能量。相对应的测试项目有: ·电源线传导骚扰(CE) ·信号、控制线传导骚扰(CE) ·辐射骚扰(RE) ·谐波电流测量(Harmonic) ·电压波动和闪烁测量(Fluctuation and Flicker) (2)EMS(电磁抗扰度) 即处在一定环境中的设备或系统,在正常运行时,设备或系统能承受相应标准规范范围内的电磁能量干扰。相对应的测试项目有: ·静电放电抗扰度(ESD) ·电快速瞬变脉冲群抗扰度(EFT/B) ·浪涌(SURGE) ·辐射抗扰度(RS) ·传导抗扰度(CS) ·电压跌落与中断(DIP) (3)电磁环境 即系统或设备的工作环境。 2.传导、辐射与瞬态 (1)传导干扰 由一个设备中产生的电压/电流通过电源线、信号线传导并影响其他设备时,

这个电压/电流的变化被称为“传导干扰”。通过给发生源及被干扰设备的电源线等安装滤波器,阻止传导干扰的传输。另外,当信号线上出现噪声时,将信号线改为光纤,也可隔断传输途径。 (2)辐射干扰 通过空间传播,并对其他设备电路产生无用电压/电流,造成危害的干扰称为“辐射干扰”。辐射现象的产生必然存在着天线与源。由于传播途径是空间,因此屏蔽也是解决辐射干扰的有效方法。 注:当设备和导线的长度比波长短时,主要问题是传导干扰;当它们的尺寸比波长长时,主要问题是辐射干扰。 (3)瞬态干扰 环境中存在的一些短暂的高能脉冲干扰,这些干扰对电子设备的危害很大,一般称这种干扰为“瞬态干扰”。瞬态干扰可以通过电缆进入设备,也可以以宽带辐射干扰的形式对设备造成影响。产生瞬态干扰的原因主要有:雷电、静电放电、电力线上的负载通/断(特别是感性负载)和核电磁脉冲。可见,瞬态干扰是指时间很短,但幅度较大的电磁干扰。常见的瞬态干扰有三种:电快速脉冲(EFT)、浪涌(SURGE)和静电放电(ESD)。

电力电子装置的电磁兼容性和电磁干扰

第19卷第1期总 第 71 期1997年2月沈阳工业大学学报 Jour nal of Shenyang Polytechnic Univer sity Vol.19No.1 Sum No.71 F eb.1997 电力电子装置的电磁兼容性和电磁干扰 林成武 刘焕生 (电子工程系) 摘 要 分析了电力电子装置产生电磁干扰的原因和种类以及抗电磁干扰的基本措施,并提出了分析电磁干扰和电磁兼容性之间关系的方法. 关键词: 电力电子装置;电磁干扰;电磁兼容性;基本措施 中图法分类:TN973.3 0 引 言 近年来,电力电子技术取得了飞速发展,成为电工领域最具活力的学科之一,并越来越对国民经济产生重大影响.同时电力电子装置所产生的电磁干扰对通讯系统和电子设备的正常运行也会产生不良影响.因此迫切需要抑制电力电子装置的电磁干扰和提高抗电磁干扰能力,即使电力电子装置具有电磁兼容性,能长期稳定可靠地运行. 1 电力电子装置的电磁兼容性 电磁兼容性是在不损失有用信号所包含的信息的条件下,信息和干扰共存的能力.电力电子装置在其使用环境下,在承受来自外部的电磁干扰的同时也向电网系统和周围环境释放电磁干扰.在设计制造电力电子装置时,应考虑到电力电子装置在工作时所产生的电磁干扰不对在同一环境中工作的其它电子设备的运行产生不良影响,同时来自外部环境的电磁干扰又不会影响电力电子装置的工作.能做到这一点,就称电力电子装置具有电磁兼容性. 电磁兼容性是一个与电气利用相关的环境问题.对现代技术社会的确立及确保其安全性具有重要意义.因此在电力电子装置的设计、制造过程中应引起高度的重视,并作为一个重要的课题进行研究. 电力电子装置对电磁干扰的承受水平以及装置自身所产生的电磁干扰水平均与电磁兼容性有关系.可用图1表示产生电磁干扰的水平、装置抗干扰的水平及与电磁兼容性之间的关系. 从电力电子装置设计制造的角度来看,如果允许产生较高的电磁干扰,而抗干扰水平又较低,设计制造要容易些.可是,若允许产生较高的电磁干扰,将会影响其它电子设备的正常工作.而且来自外部的电磁干扰又会影响电力电子装置自身的工作.所以,必须在两者之间取得平衡,满足电磁兼容性的要求.在正常使用环境中,应根据国家标准设定电磁兼容性的水平.电力电子装置自身所产生的电磁干扰必须低于电磁兼容性水平,而抗电磁干扰水平必须高于电磁兼容必须性水平.电力电子装置的主电路中的电流几乎都是工作在开关状态的,其控制系统多采用微电子技 本文收到日期:1996-05-31 第一作者:男.41.硕士.讲师

相关文档
最新文档