耐腐蚀混凝土抗硫酸盐腐蚀性能试验方法

耐腐蚀混凝土抗硫酸盐腐蚀性能试验方法
耐腐蚀混凝土抗硫酸盐腐蚀性能试验方法

附录 B

(规范性附录)

耐腐蚀混凝土抗硫酸盐腐蚀性能试验方法

B.1 试件制作应符合下列规定:

1)应采用尺寸为100mm×100mm×100mm的立方体试件,每组应为3块;

2)混凝土的取样、试件的制作和养护应符合GB/T 50082的有关规定;

3)除制作抗硫酸盐腐蚀试验用试件外,尚应按照同样方法,同时制作抗压强度对比用试件。试件组数应符合表B.1的规定。

表B.1 抗硫酸盐侵蚀试验所需的试件组数

B.2 试验设备和试剂的性能应符合下列规定:

1)干湿循环试验装置宜采用能使试件静止不动,浸泡、烘干及冷却等过程应能自动进行的装置。设备应具有数据实时显示、断电记忆及试验数据自动存储的功能。

2)干湿循环试验设备的温度调控范围和容量应符合下列规定。

a)烘箱的温度可在50oC~90oC调控。

b)容器应至少能够装27L溶液,并应带盖,且应由耐盐腐蚀材料制成。

3)试剂应采用化学纯无水硫酸钠。

B.3 干湿循环试验应按下列步骤进行:

1)试件应在养护至26d时,将试件从标准养护室取出。试件表面水分擦干,应将试件放入烘箱中,并应把温度调至(80±5)℃烘干48h。烘干结束后应将试件在干燥环境中冷却至室温。对于大掺量矿物掺合料混凝土,也可采用56d龄期或者设计规定的龄期进行试验,并应在试验报告中说明。

2)试件烘干并冷却后,应将试件放入试件盒(架)中,相邻试件之间的距离不应小于20mm,试件与试件盒侧壁的间距不应小于20mm。

3)试件放入试件盒以后,应将配制好的10% Na2SO4溶液放入试件盒,溶液应至少超过最上层试件表面的20mm,并浸泡(11±0.5)h。注入溶液的时间不应超过30min。试验过程中可每隔20个循环测试一次溶液pH值,溶液的pH值应保持为6~8。溶液的温度应为20℃~25℃。

4)浸泡过程结束后,应在30min内将溶液排空。溶液排空后应将试件风干30min,从溶液开始排出到试件风干的时间应为1h。

5)风干过程结束后应立即升温,应将试件盒内的温度调至60℃,开始烘干。升温过程应在30min

内完成。温度升到60℃后,温度应维持在(60±5)℃。从升温开始到开始冷却的时间应为10h 。

6) 烘干结束后,应对试件进行冷却,从开始冷却到将试件盒内的试件表面温度冷却到20℃~25℃的时间应为2h 。

7) 每个干湿循环的总时间应为(24±2)h 。然后应再次放入溶液,按照本条第3~6款的步骤进行下一个干湿循环。

8) 在达到本规程表B.1规定的干湿循环次数后,应进行抗压强度试验。同时应观察经过干湿循环后混凝土表面的破损情况并应进行外观描述。当试件有严重剥落、掉角等缺陷,应先用高强石膏补平后再进行抗压强度试验。对经受干湿循环的试件进行抗压强度试验时,应同时取一组标准养护的对比试件进行抗压强度试验。

9) 当干湿循环试验出现下列三种情况之一时,可停止试验。

a )抗压强度耐蚀系数低于75%;

b )干湿循环次数达到280次;

c )达到设计耐腐蚀等级相应的干湿循环次数。 B.4 试验结果计算及处理应按符合下列规定:

1) 混凝土抗压强度耐蚀系数应按下式进行计算:

1000

?=

c cn

f f f K ………………………………………(B.1) 式中:

K f — 压强度耐蚀系数,单位为百分比(%);

f cn — N 次干湿循环后受硫酸盐腐蚀的一组混凝土试件的抗压强度测定值,单位为兆帕(MPa ),精确至0.1MPa ;

f c0 — 与受硫酸盐腐蚀试件同龄期的标准养护的一组对比混凝土试件的抗压强度测定值,单位为兆帕(MPa ),精确至0.1MPa 。

2) 0c f 和cn f 应以三个试件抗压强度试验结果的算术平均值作为测定值。当最大值或最小值,与中间值之差超过中间值的15%时,应剔除此值,并应取其余两值的算术平均值作为测定值;当最大值和最小值,均超过中间值的15%时,应取中间值作为测定值。

3) 混凝土耐腐蚀等级应以混凝土抗压强度耐蚀系数下降到75%时的最大干湿循环次数来确定,并应以符号NS 表示。

混凝土的耐久性

一、混凝土的耐久性 混凝土的耐久性-指混凝土抵抗物理和化学侵蚀(如冻融、高温、碳化、硫酸盐侵蚀等)的作用并长期保持其良好的使用性能和外观完整性,从而未维持混凝土结构的安全、正常使用的能力。 主要取决于:混凝土抵抗腐蚀性介质侵入的能力; 硬化后体积稳定性好,无裂缝发生,抵抗腐蚀性介质侵入的性能好; 硬化水泥浆中毛细管孔隙率,以及引入空气量。 简单的说混凝土材料的耐久性指标一般包括: 1 混凝土的碳化 2 混凝土中钢筋的锈蚀 3 碱-骨料反应 4 混凝土冻融破坏 5 氯离子侵蚀 二、提高混凝土耐久性的措施 原材料的选择 1. 水泥水泥类材料的强度和工程性能,是通过水泥砂浆的凝结,硬化形成的,水泥石一旦受损,混凝土的耐久性就被破坏,因此水泥的选择需注意水泥品种的具体性能,选择碱含量小,水化热低,干缩性小,耐热性,抗水性,抗腐蚀性,抗冻性能好的水泥,并结合具体情况进行选择。水泥强度并非是决定混凝土强度和性能的唯一标准,如用较低标号水泥同样可以配制高标号混凝土。因此,工程中选择水泥强度的同时,需考虑其工程性能,有时,其工程性能比强度更重要。 2.集料与掺合料集料的选择应考虑其碱活性,防止碱集料反应造成的危害,集料的耐蚀性和吸水性,同时选择合理的级配,改善混凝土拌合物的和易性,提高混凝土密实度;大量研究表明了掺粉煤灰,矿渣,硅粉等混合材能有效改善混凝土的性能,改善混凝土内孔结构,填充内部空隙,提高密实度,高掺量混凝土还能抑制碱集料反应,因而掺混合材混凝土,是提高混凝土耐久性的有效措施。即近年来发展的高性能混凝土。 3. 混凝土的设计应考虑耐久的要求混凝土配比的设计配合比设计在满足混凝土强度,工作性的同时应考虑尽量减少水泥用量和用水量,降低水化热,减少收缩裂缝,提高密实度,采用合理的减水剂和引气剂,改善混凝土内部结构,掺入足量的混合料,提高混凝土耐久性能。结构构件应按其使用环境设计相应的混凝土保护层厚度,预防外界介质渗入内部腐蚀钢筋。结构的节点构造设计也应考虑构件受局部损坏后的整体 耐久能力。结构设计尚应控制混凝土的裂缝的开裂宽度。 4. 混凝土工程施工应考虑结构耐久性混凝土的拌制尽量采用二次搅拌法,裹砂法,裹砂石法等工艺,提高混凝土拌合料的和易性,保水性,提高混凝土强度,减少用水量;大体

_各种不锈钢的耐腐蚀性能复习过程

_各种不锈钢的耐腐蚀 性能

各种不锈钢的耐腐蚀性能 304是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308不锈钢用于制作焊条。

309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢的腐蚀与耐腐蚀的基本原理 金属受环境介质的化学及电化学作用而被破坏的现象即腐蚀。化学腐蚀的环境介质是非电解质(汽油、苯、润滑油等),电化学腐蚀的环境介质是电解质(各种水溶液)。电化学腐蚀是涉及电子转移的化学过程,该过程能否进行取决于金属能否离子化,而离子化的趋势可用金属的标准电极电位(ε0)来表示。 由于碳化物、夹杂物,以及组织、化学成分和内部应力的不均匀等的作用,将促使各部分在电解液中产生相互间的电极电位差。电极电位差愈大,微阳极和微阴极间的电流强度愈大,钢的腐蚀速度也愈大,微阳极部分产生严重的腐蚀。在电化学腐蚀中能够控制腐蚀反应速度的现象称为极化,极化可使阳极与阴极参与反应的速度得到减弱和减缓。电解液中离子的缓慢移动、原子缓慢结合成气体分子或电解液中离子的缓慢溶解,都可能是极化的表现形式。反应面积、搅拌或电解液流动、氧气、温度等因素,都将影响极化的速度。用极化技术与临界电位可衡量金属与合金在氯化物溶液中点腐蚀与缝隙腐蚀的敏感性。当不锈钢与异种金属接触时,需考虑电化学腐蚀。但若不锈钢是正极,则不会产生电流腐蚀。

如何提高混凝土耐久性

如何提高混凝土耐久性 1、抗磨损 一般而言,混凝土的抗压强度愈高,抗磨性能愈好。低水灰比的高强混凝土是提高密实的耐磨混凝土,表面混凝土致密是提高耐磨性的必要条件,施工时,应该多次压抹搓平混凝土表面。在有泌水的情况下,必须推持表面修整的时间,让水分充分蒸发,并在混凝土终凝前充分压抹搓平混凝土表面。此外,还可以通过在表面掺加高硬度集料增强耐磨性。 2、抗硫酸盐腐蚀 当混凝土结构处在有侵入介质作用的环境时,会引起水泥石发生一系列化学、物理及物化变化,而逐步受到侵蚀,防止硫酸盐腐蚀的最基本作法是控制水灰比,并适当增加水泥用量,因为水灰比是决定混凝土渗透性的重要因素,如果硫酸盐腐蚀非常严重,降低水灰比采用V型水泥也不能起良好的保护作用,可采用掺混合料的水泥。如掺入含有活性硅较多的 天然火山灰的水泥;掺入粉煤灰的水泥;掺入高炉不淬矿渣的水泥以及掺入硅粉的水泥。如果有现成的石膏矿渣水泥,也可以考虑作为代用品。 如果混凝土是预制品,提高该制品抗硫酸盐的另一途径是采用高压蒸汽养护,在高压蒸汽养护条件下,尤其是掺有磨细二氧化硅的混凝土,可消除水化浆体中的氢氧化硅,并且使高硫型和硫型水化硫酸盐几乎不再存在,其中的氧化结合C-S-H变成耐腐蚀性良好的硅酸盐(水石硫石)或单独形成稳定的C3AH6,从而能更好的抵抗硫酸盐腐蚀。 3、抗碳化 一般的说,采用早强硅酸盐水泥时,碳化最慢,硅酸盐水泥稍快;而采用混合水泥时,由于Ca(OH)2的量相对较少,因此,碳化速度最快,碳化速度与混凝土强度密切相关,如果混凝土的抗压强度大于62.5N/m㎡时,可不考虑混凝土的碳化。高性能混凝土的强度等级为C50级以上,其极限抗压强度大于62.5N/m㎡,股采用高性能混凝土是提高碳化 性能的有效途径之一。 高压蒸汽养护的混凝土碳化作用非常小,这是因为混凝土中的砂子在高温条件下被活化,与混凝土发生化学反应,形成了强度大、结晶高、抗碳化性能好的水化硅酸钙。 4、抗碱-集料反应 发生混凝土碱-集料反应的条件有三个: (1)水泥中的碱含量超过水泥总量的0.6%;(2)集料中活性集料含量超过1%;(3)混凝土处于潮湿环境。 上述三个条件全部满足时,才会发生碱-集料反应。所以,对这种反应,可以针对性地加以控制。 4.1控制集料中的活性二氧化硅含量 将活性二氧化硅颗料存在的地方设想为一个局部膨胀中心,用以描述碱-集料反应,如

常用合金纯属的耐腐蚀性能

常用合金纯金属的耐腐蚀性能 注:为了改善纯金属的机械性能,在冶炼过程中,根据需要加入微量的其它金属。

接触介质部分材质的耐腐蚀性能参考 分类介质名 称 浓度 (%) 温 度 碳 钢 316 钢 哈 氏 C 蒙 耐 尔 钽镍钛 分 类 介质名称 浓度 (%) 温 度 碳 钢 316 钢 哈 氏 C 蒙 耐 尔 钽镍钛 无机盐盐酸 5 RT BP ○ ○○ ○ ○ ● ●○○ 有 机 盐 氢氟酸 5 48 RT RT ○ ○ ○ ○ ○ ○ ●○ ○10 RT BP ○ ○○ ○ ○ ● ●○○ 醋酸100 RT BP ○ ○ ● ● ● ● ● ● ● ● ● ●20 RT BP ○ ○○ ○ ○ ● ● ○ ○○ 甲酸50 RT BP ○ ○ ○ ○ ● ● ● ●35 RT BP ○ ○○ ○ ○ ● ● ○ ○ ○ ○ 草酸10 RT BP ○ ○○ ●●○ ○ ○ ○硫酸 5 RT BP ● ○ ●●● ● ○ ○ ○ ○ 柠檬酸50 RT BP ○ ○ ● ● ● ● ● ● ●10 RT BP ○ ○ ● ○ ●● ● ○ ○ ○ ○ 碱 苛性钠 20 RT BP ●● ● ●●● ● ●60 RT BP ○○● ○ ●● ● ○ ○ ○ ○ 40 RT BP ●● ● ●○ ○ ● ●80 RT BP○ ○ ○ ● ○ ○●○ ○ ○ ○ 苛性钾50BP●●●●○95 RT BP○ ● ○ ● ○ ○● ○ ○ ○ ○ ○ 盐 氯化铁30 RT BP ○○ ○○ ○ ○ ● ● ○● ●硝酸 10 RT BP ○● ● ○ ○ ● ● ○ ○ ● ● 氯化钠 20° 饱和 RT BP ● ○ ●● ● ● ● ● ●30 RT BP ○● ●○ ○ ○ ● ● ○ ○ ● ○ 氯化铵25 RT BP ○● ● ●● ●68 RT BP ○●● ○ ● ● ○ ○ ● ● 氯化钙25 RT BP● ● ● ● ● ●● ●发烟RT●○○氯化镁42 RT BP ● ● ● ● ● ● ● ●磷酸 30 RT BP ○ ○ ●● ● ○ ○ ● ● ○ ○硫 化 物 硫酸铵 20° 饱和 RT BP ●●●● ● ●●50 RT BP ○ ○ ●● ● ○ ○ ● ● ○ ○ 硫化钠10 RT BP ● ● ● ● ● ● ● ●70RT ○●●○●○硫酸钠50RT ●●

混凝土防腐剂

简述:盐渍土的主要特征是土中含有盐,尤其是易溶盐,它对公路桥涵及构造物具有明显的腐蚀性,并对结构物基础和地下设施构成一种较严酷的腐蚀环境,影响其耐久性和安全性。因此,盐渍土地区水泥混凝土的耐久性问题成为了该地区影响公路桥涵及构造物正常运营的关键问题。在我国西部地区,因混凝土被腐蚀而导致的构筑物损坏现象很常见。一方面,西部经济大开发带来交通量的迅速增大,道路运输尤为不畅,需要修筑大量公路;另一方面有关部门每年耗费大量的人力、物力进行治理,但效果不理想,造成巨大经济损失,使得盐渍土地的公路服务能力严重滞后于非盐渍土地区。 盐渍土、地下水、海水、腐烂的有机物以及工业废水中含有大量的硫酸盐,硫酸根离子渗入混凝土中和水泥的水化产物发生反应,生成具有膨胀性的腐蚀产物,在混凝土内部产生内应力,当其内应力超过混凝土的抗拉强度时,就使混凝土产生开裂、剥落等现象,从而使混凝土因强度和粘接性能的丧失而发生破坏,并导致混凝土结构耐久寿命降低,因此在一些地区,抗硫酸盐防腐剂必不可少。 其工作原理:不是通过单纯在普通硅酸盐水泥中加入减水剂或矿物质掺和料提高混凝土的密实性,而是降低可侵入混凝土中硫酸根离子浓度并细化毛细孔的孔径,抑制氢氧化钙从水泥石中析出的速度。达到延缓石膏和钙矾石晶体的生成,起到抑制其膨胀破坏的作用,进而起到延缓混凝土硫酸盐侵蚀破坏的见速度,该产品能够有效阻止钙矾石结晶膨胀破坏、石膏结晶膨胀破坏、镁盐结晶破坏、碳硫硅钙石结晶破坏,从而提高混凝土结构耐久性。?应用范围 本产品可以广泛适用于含有硫酸盐和镁的煤系地层、硫化矿地层、石膏地层、淤泥碳层、盐渍土地地区、盐湖、滨海盐田、沿海港口、海水渗入区等不良地质区域和海洋水域的钢筋混凝土结构。? 复合型混凝土阻锈防腐剂 简述:沿海港口、盐田以及盐渍土地区,通常含有大量硫酸盐及氯盐,对混凝土及钢筋具有严重侵蚀作用,使该地区的钢筋混凝土结构物遭到严重破坏,而达不到结构预期的寿命。因此上述侵蚀地区,钢筋混凝土结构耐久性已成为世界性所关注的问题。现有传统方法采用抗硫酸盐水泥,或在混凝土中掺入一定量的矿物质掺合料。然而抗硫酸盐水泥供应有限,且价格昂贵。更为重要的是抗硫酸盐水泥对于防止氯盐引起钢筋锈蚀能力差,从而严重影响侵蚀地区钢筋混凝土结构耐久性。而掺入矿物质掺合料的方法,可以改善水泥水化密实性能,减少盐类腐蚀应力,但当腐蚀环境为中等腐蚀或强腐蚀时,仅靠此种方法并不能取得很好的防腐蚀效果,就必须再加入针对盐类腐蚀的防腐蚀剂,不仅是通过提高混凝土密实性来抵抗盐类腐蚀,而是从根本的反应机理上起到阻止或延缓硫酸盐和氯盐腐蚀的作用,从而提高混凝土耐久性。 作用机理 其工作原理为通过添加防水剂和减水剂增加混凝土的密实性,提高混凝土抵抗不良水质的侵入。通过添加高性能引气剂提高混凝土的抗冻融性和耐久性;通过复合阻锈防腐蚀剂获得不良水质侵入后的正面对钢筋及混凝土防护。该防腐剂能够有效提高混凝土抗硫酸盐侵蚀的性能,其作用机理,不是通过单纯在普通硅酸盐水泥中加入矿物质掺和料,而是可降

各种不锈钢的耐腐蚀性能1

各种不锈钢的耐腐蚀性能? 答:304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。

309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S 乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N 以及合硫量较高的易切削不锈钢316F。 是分别以钛,铌加钽、铌稳定化的不锈348 及347、321.钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 不锈钢与不锈铁的区别 不锈钢一般是不锈钢和耐酸钢的总称。不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢自本世纪初问世,到现在已有90多年的历史。不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈

普通混凝土与抗渗混凝土的区别.jsp

一、抗渗混凝土 抗渗混凝土系指抗渗等级不低于P6级的混凝土。即它能抵抗0.6MPa静水压力作用而不发生透水现象。为了提高混凝土的抗渗性,通常采用合理选择原材料、提高混凝土的密实程度以及改善混凝土内部孔隙结构等方法来实现。目前,常用的防水混凝土的配制方法有以下几种。 (一)富水泥浆法 这种方法是依靠采用较小的水灰比,较高的水泥用量和砂率,提高水泥浆的质量和数量,使混凝土更密实。 防水混凝土所用原材料应符合下列要求: (1)水泥强度等级不宜低于32.5,其品种应按设计要求选用,当有抗冻要求时,应优先选用硅酸盐水泥; (2)粗骨料的最大粒径不宜大于40mm,其含泥量不得大于1%,泥块含量不得超过0.5%; (3)细骨料的含泥量不得大于3%,泥块含量不得大于1%; (4)外加剂宜采用防水剂、膨胀剂、引气剂或减水剂。 防水混凝土配合比计算应遵守以下几项规定: (1)每立方米混凝土中的水泥用量(含掺合料)不宜少于320kg; (2)砂率宜为35%~40%;灰砂比宜为1:2~2.5; (3)防水混凝土的最大水灰比应符合表4-29规定。 表4-29 防水混凝土的最大水灰比限值:抗渗等级P6 P8~P12 P12以上;C20~C30 0.60 0.55 0.50 C30以上0.55 0.50 0.45 (二)骨料级配法:骨料级配法是通过改善骨料级配,使骨料本身达到最大密实程度的堆积状态。为了降低空隙率,还应加入约占骨料量5%~8%的粒径小于0.16mm的细粉料。同时严格控制水灰比、用水量及拌合物的和易性,使混凝土结构致密,提高抗渗性。 (三)外加剂法 这种方法与前面两种方法比较,施工简单,造价低廉,质量可靠,被广泛采用。它是在混凝土中掺入适当品种的外加剂,改善混凝土内孔结构,隔断或堵塞混凝土中各种孔隙、裂缝、渗水通道等,以达到改善混凝土抗渗的目的。常采用引气剂(如松香热聚物)、密实剂(如采用FeCl3防水剂)、高效减水剂(降低水灰比)、膨胀剂(防止混凝土收缩开裂)等。 (四)采用特种水泥:采用无收缩不透水水泥、膨胀水泥等来拌制混凝土,能够改善混凝土内的孔结构,有效提高混凝土的致密度和抗渗能力。 二、普通混凝土 普通混凝土是指以水泥为胶凝材料,砂子和石子为骨料,经加水搅拌、浇筑成型、凝结固化成具有一定强度的“人工石材”,即水泥混凝土,是目前工程上最大量使用的混凝土品种。“混凝土”一词通常可简作“砼”。 (一)普通混凝土的主要优点 1. 原材料来源丰富。混凝土中约70%以上的材料是砂石料,属地方性材料,可就地取材,避免远距离运输,因而价格低廉。 2. 施工方便。混凝土拌合物具有良好的流动性和可塑性,可根据工程需要浇筑成各种形状尺寸的构件及构筑物。既可现场浇筑成型,也可预制。 3. 性能可根据需要设计调整。通过调整各组成材料的品种和数量,特别是掺入不同外加剂和掺合料,可获得不同施工和易性、强度、耐久性或具有特殊性能的混凝土,满足工程上的不同要求。 4. 抗压强度高。混凝土的抗压强度一般在7.5~60MPa之间。当掺入高效减水剂和掺合料时,强度可达100MPa以上。而且,混凝土与钢筋具有良好的匹配性,浇筑成钢筋混凝土后,可以有效地改善抗拉强度低的缺陷,使混凝土能够应用于各种结构部位。 5. 耐久性好。原材料选择正确、配比合理、施工养护良好的混凝土具有优异的抗渗性、抗冻性和耐腐蚀性能,且对钢筋有保护作用,可保持混凝土结构长期使用性能稳定。 (二)普通混凝土存在的主要缺点 1. 自重大。1m3混凝土重约2400kg,故结构物自重较大,导致地基处理费用增加。 2. 抗拉强度低,抗裂性差。混凝土的抗拉强度一般只有抗压强度的1/10~1/20,易开裂。 3. 收缩变形大。水泥水化凝结硬化引起的自身收缩和干燥收缩达500×10-6m/m以上,易产生混凝土收缩裂缝。 (三)普通混凝土的基本要求 1. 满足便于搅拌、运输和浇捣密实的施工和易性。

高耐久性混凝土技术

高耐久性混凝土技术 2.1.1 技术内容 高耐久性混凝土是通过对原材料的质量控制、优选及施工工艺的优化控制,合理掺加优质矿物掺合料或复合掺合料,采用高效(高性能)减水剂制成的具有良好工作性、满足结构所要求的各项力学性能、且耐久性优异的混凝土。 (1)原材料和配合比的要求 1)水胶比(W/B)≤0.38。 2)水泥必须采用符合现行国家标准规定的水泥,如硅酸盐 水泥或普通硅酸盐水泥等,不得选用立窑水泥;水泥比22/kg。,不应大于380m表面积宜小于350m /kg3)粗骨料的压碎值≤10%,宜采用分级供料的连续级配,吸水率<1.0%,且无潜在碱骨料反应危害。 4)采用优质矿物掺合料或复合掺合料及高效(高性能)减 水剂是配制高耐久性混凝土的特点之一。优质矿物掺合料主要包括硅灰、粉煤灰、磨细矿渣粉及天然沸石粉等,所用的矿物掺合料应符合国家现行有关标准,且宜达到优品级,对于沿海港口、滨海盐田、盐渍土地区,可添加防腐阻锈剂、防腐流变剂等。矿物掺合料等量取代水泥的最大量宜为:硅粉≤10%,粉煤灰≤30%,矿渣粉≤50%,天然沸石粉≤10%,复合掺合料≤50%。

)混凝土配制强度可按以下公式计算:5. ≥f+1.645σf cu,kcu,0——混凝土配制强度(MPa);f式中 cu,0;——混凝土立方体抗压强度标准值(MPa)f k,cuσ——强度标准差,无统计数据时,预拌混凝土可按《普通混凝土配合比设计规程》JGJ 55的规定取值。 (2)耐久性设计要求 对处于严酷环境的混凝土结构的耐久性,应根据工程所处环 境条件,按《混凝土结构耐久性设计规范》GB/T 50467进行 耐久性设计,考虑的环境劣化因素及采取措施有: 1)抗冻害耐久性要求:a)根据不同冻害地区确定最大水胶 比;b)不同冻害地区的抗冻耐久性指数DF或抗冻等级;c) 受除冰盐冻融循环作用时,应满足单位面积剥蚀量的要求; d)处于有冻害环境的,应掺入引气剂,引气量应达到3%~5%。 2)抗盐害耐久性要求:a)根据不同盐害环境确定最大水胶 比;b)抗氯离子的渗透性、扩散性,宜以56d龄期电通量 或84d氯离子迁移系数来确定。一般情况下,56d电通量宜 ≤800C,84d氯离子迁移系数宜≤;c)混凝2?12s.25?10/m土表面 裂缝宽度符合规范要求。 3)抗硫酸盐腐蚀耐久性要求:a)用于硫酸盐侵蚀较为严重 的环境,水泥熟料中的CA不宜超过5%,宜掺加优质3)根 据不同硫酸盐腐蚀环境,b的掺合料并降低单位用水量;

各种不锈钢的耐腐蚀性能

各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。 308 不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 镍与不锈钢基础知识—镍在不锈钢中的作用 镍在不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。然而,镍并不是唯一具有此种性质的元素。常见的奥氏体形成元素有:镍、碳、氮、锰、铜。这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。目前,人们已经研究出很多公式来表述奥氏体形成元素的相对重要性,最著名的是下面的公式: 奥氏体形成能力=Ni%+30C%+30N%+0.5Mn%+0.25Cu% 从这个等式可以看出:碳是一种较强的奥氏体形成元素,其形成奥氏体的能力是镍的30倍,但是它不能被添加到耐腐蚀的不锈钢中,因为在焊接后它会造成敏化腐蚀和随后的晶间腐蚀问题。氮元素形成奥氏体的能力也是镍的30倍,但是它是气体,想要不造成多孔性的问题,只能在不锈钢中添加数量有限的氮。添加锰和铜会造成炼钢过程中耐火生命减少和焊接的问题。 从镍等式中可以看出,添加锰对于形成奥氏体并不非常有效,但是添加锰可以使更多的氮溶解到不锈钢中,而氮正是一种非常强的奥氏体形成元素。在200系列的不锈钢中,正是用足够的锰和氮来代替镍形成100%的奥氏体结构,镍的含量越低,所需要加入的锰和氮数量就越高。例如在201型不锈钢中,只含有4.5%的镍,同时含有0.25%的氮。由镍等式可知这些氮在形成奥氏体的能力上相当于7.5%的镍,所以同样可以形成100%奥氏体结构。这也是200系列不锈钢的形成原理。在有些不符合标准的200系列不锈钢中,由于不能加入足够数量的锰和氮,为了形成100%的奥氏体结构,人为的减少了铬的加入量,这必然导致了不锈钢抗腐蚀能力的下降。 在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。最终的晶体结构取决于两类添加元素的相对数量。铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。 400系列不锈钢是一种铁、碳合铬的合金。这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。大多数400系列不锈钢都可以进行热处理。

304,316不锈钢耐腐蚀性

不锈钢的耐腐蚀性能一般随铬含量的增加而提高,其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的致密的氧化膜,它可以防止进一步的氧化或腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 1、在各种环境中的耐腐蚀性能 ①大气腐蚀 不锈钢耐大气腐蚀基本上是随着大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境1Cr13、1 Cr 17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。 工业环境在没有氯化物污染的工业环境中,1Cr17和奥氏体型不锈钢能长期工作,基本上保持无锈蚀,可能在表面形成污膜,但当将污膜清除后,还保持着原有的光亮外观。在有氯化物的工业环境中,将造成不锈钢锈蚀。 海洋环境1Cr13和1 Cr 17不锈钢在短时期就会形成薄的锈膜,但不会造成明显的尺寸上的改变。奥氏体型不锈钢如1 Cr 17Ni7、1 Cr 18Ni9和0 Cr 18Ni9,当暴露于海洋环境时,可能出现一些锈蚀。锈蚀通常是浅薄的,可以很容易地清除。0 Cr 17 Ni 12M 02含钼不锈钢在海洋环境中基本上是耐腐蚀的。 除了大气条件外,还有另外两个影响不锈钢耐大气腐蚀性能的因素,即表面状态和制作工艺。 精加工级别影响不锈钢在有氯化物的环境中的耐腐蚀性能。无光表面(毛面)对腐蚀非常敏感,即正常的工业精加工表面对锈蚀的敏感性较小。表面精加工级别还影响污物和锈蚀的清除。从高精加工的表面上清除污物和锈蚀物很容易,但从无光的表面上清除则很困难。对于无光表面,如果要保持原有的表面状态则需要更经常的清理。

混凝土耐久性检测

混凝土耐久性能检测作业指导书包括:混凝土抗渗试验等项目。 1应用范围 适用于工业与民用建筑和一般构筑物中普通混凝土,测定硬化后混凝土的抗渗标号。 2编制依据和采用标准 GB/T50082-2009《普通混凝土长期性能和耐久性能试验方法》 3检测人员 主检人:周密 4 设备仪器 (1)混凝土抗渗仪 型号:H S/40 量程:4M Pa/c m2 5 抗渗性能检测方法 5.1试样 抗渗试样以6个为1组,规格为顶面直径175m m,底面直径185 m m,高度150 m m的圆台体,一般养护到28天龄期进行试验。 5.2具体的步骤和方法 5.2.1试件养护至试验前1d取出,将表面晾干,然后在其侧面涂一层熔化的密封材料,随即在螺旋或其它加压装置上,将试件压入经烘箱预热过的试件套中,稍冷却后,即可解除压力、连同试件套装在抗渗仪上进行试验。 5.2.2试验从水压为0.1M P a开始。以后每隔8h增加水压0.1M Pa,并且要随时注意观察试件端面的渗水情况。 5.2.3当六个试件中有三个试件端面呈有渗水现象时,即可停止试验,记下当时的水压。 5.2.4在试验过程中,如发现水从试件周边渗出,则应停止试验,重新密封。 5.3 混凝土的抗渗标号以每组6个试件中4个试件未出现渗水时的最大水压计算: S=10H-1 式中:H—3个试件渗水时的水压力。 6检测过程中发生意外事故时的处理办法

6.1检测过程中,若发生停电,应在设备使用记录中及时记录,对正在检测的试样妥善保管,供电正常后,及时检测。 6.2检测过程中,若发生设备故障,应在设备使用记录中及时记录,通知仪器设备检修人员进行检修,设备修复后,及时检测。 7检测报告的主要内容报告 7.1样品品种、编号、工程名称、工程部位、设计等级、成型日期、破型日期。 7.2授权试验、审核、批准签字人签名。 7.3若为有见证抽样、监督抽样,应加盖相应的印章。 7.4试验结果。

ZY-yd材料耐腐蚀性能的评价方法.doc

1.1材料耐腐蚀性能的评价方法 工程材料在使用时,一定要考虑材料在相应工况环境下的耐蚀能力。也就是说,材料在此环境下是否会发生严重的腐蚀,从而导致工程结构的失效。因此,如何评价在工况环境下,材料表面腐蚀的形态、腐蚀的速度就显得非常具有现实的工程意义。 概括起来,工程材料的耐腐蚀性能的评价方法可以分为三大类:重量法、表面观察法和电化学测试法。 1.1.1重量法 重量法是材料耐蚀能力的研究中最为基本,同时也是最为有效可信的定量评价方法。尽管重量法具有无法研究材料腐蚀机理的缺点,但是通过测量材料在腐蚀前后重量的变化,可以较为准确、可信的表征材料的耐蚀性能。也正因为如此,它一直在腐蚀研究中广泛使用,是许多电化学的、物理的、化学的现代分析评价方法鉴定比较的基础。 重量法分为增重法和失重法两种,他们都是以试样腐蚀前后的重量差来表征腐蚀速度的。前者是在腐蚀试验后连同全部腐蚀产物一起称重试样,后者则是清除全部腐蚀产物后称重试样。当采用重量法评价工程材料的耐蚀能力时,应当考虑腐蚀产物在腐蚀过程中是否容易脱落、腐蚀产物的厚度及致密性等因素后,在决定选取哪种方法对材料的耐蚀性能进行表征。对于材料的腐蚀产物疏松、容易脱落且易于清除的情况,通常可以考虑采用失重法。例如,通过盐雾试验评价不同镁合金的耐蚀性能时,就通常采用失重法, 图1。

而对于材料的腐蚀产物致密、附着力好且难于清除的情况,例如材料的高温腐蚀,通常可以考虑采用增重法图2。 为了使各次不同实验及不同种类材料的数据能够互相比较,必须采用电位面积上的重量变化为表示单位,及平均腐蚀速度,如g.m -2h -1。根据金属材料的密度又可以把它换算成单位时间内的平均腐蚀深度,如m/a 。这两类的速度之间的 图1 失重法测试镁合金腐蚀速度 Ni –30Cr –8Al –0.5Y 铸态合金、溅射涂层、渗铝涂层在(a )1000℃高温氧化增重动力学曲线 (b) Na 2SO 4+25%wtNaCl 热腐蚀增重动力学曲线

混凝土的强度及耐久性

混凝土强度与耐久性 ?强度的定义 ?普通混凝土的强度等级 ?其它类型的强度棱柱体抗拉劈裂抗弯?强度影响因素 ?提高强度的方法途径 ?混凝土耐久性 ?抗渗性 ?抗冻性 ?提高耐久性的措施

1.砼的f C 及等级 砼的抗压强度是指在外力作用下,混凝土抵抗 破坏的能力。 我国采用立方体抗压强度(cube )和棱柱体抗 压强度两种。有的国家(美国、日本)则采用圆柱体抗压强度。 (the strength of concrete ) 砼的强度包括抗压、抗拉、抗弯、抗剪、握裹、疲劳强度等,其中以抗压强度最大,抗拉强度最小。在砼结构中,大都采用砼的抗压强度作为设计依据,在施工控制中也都采用f 压评定砼质量,下面主要讨论f C 简要说明f t (一)砼的f C 与f t 砼的强度 Back 图4.1

规定:以边长为150mm 的立方体试件,在温度为20±2℃,相对湿度为95% 以上的潮湿环境或水中的标准条件下,经28天养护,采用标准试验方法测得的极限抗压强度(maximum compressive strength —标准强度the standard compressive strength )来确定砼的等级(大体积混凝 (1)立方体(cube) compressive strength 砼的立方体f C 是划分抗压等级的主要依据。 [note] 立方体f C 是在标准情况下测定的,是砼质量具有对比性。 立方体f C

普通混凝土强度等级Grades C60 C7.5 C10C55C50C35C15C20C25C30 C45C40C25concrete f cu,k 根据混凝土立方体抗压强度标准值f cu ,k (P%≥95%)砼可划分为下列十二个常用等级(MPa ): C7.5、C10、C15、C20、C25、C30、 C35、C40、C45、C50、C55、C60. Back

防腐蚀耐久性混凝土

给旭阳化工的建议 防腐蚀混凝土是一种特殊的耐久性混凝土。《工业建筑防腐蚀设计规范》GB 50046-2008标准4.8.6规定“采用掺入抗硫酸盐的外加剂…,其性能满足防腐蚀要求时,可用于…基础…,并可不做表面防护”;针对工程腐蚀介质浓度,如强腐蚀介质,前提是“满足防腐蚀要求”,所以,不是所有的‘抗硫酸盐的外加剂’都能满足这一強腐蚀条件下防腐蚀要求的。所以: 1、CM型混凝土抗硫酸盐类侵蚀防腐剂(CM型抗硫酸盐类侵蚀防腐剂)在强或超腐蚀等级条件下,有近二十年的试验和工程使用成果; 2、有《工业建筑防腐蚀设计规范》GB 50046-2008国家标准主编专家的肯定:“掺入CM型抗硫酸盐类侵蚀防腐剂时,其表面可不再涂刷涂层防护”; 3、设计采用了CM型抗硫酸盐类侵蚀防腐剂,并要求了掺量的防腐措施。 CM型抗硫酸盐类侵蚀防腐剂(CM型混凝土防腐剂)适应新拌混凝土与腐蚀性水土接触的混凝土结构抵抗硫酸盐、氯盐等强或超强腐蚀的工程,提高防腐蚀混凝土耐久性质量。对于与水土接触的基础部位,CM型混凝土防腐剂的掺量按水泥质量分数计(替代水泥、密实剂、防水剂、膨胀剂)为10~12%(强腐蚀等级,约为胶凝材料的6.5%)。 对于超长结构的补尝收缩混凝土,与水土接触部位(标高地面以下部位),不太长结构CM型混凝土防腐剂的掺量为水泥质量的10~12%;超长结构混凝土后浇带或加强带CM型混凝土防腐剂掺量为水泥质量的14%。 超长结构,标高地面以上部位可采用膨胀剂或抗裂剂;若出现地面上下交界部位,在采用10~12%CM型混凝土防腐剂时,同时还可采用膨胀剂或抗裂剂,其掺量应不超过3%(混凝土后浇带或加强带);因膨胀剂或抗裂剂的物质不利于抗硫酸盐等腐蚀,所以不应在强腐蚀等级条件下的基础混凝土中使用。 《混凝土抗硫酸盐类侵蚀防腐剂》JC/T 1011-2006、《抗硫酸盐硅酸盐水泥》GB 748-2005国家标准第一起草人:岳云德教授级高工 2013年4月20日

不锈钢的耐腐蚀性能

所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀。 不锈钢的耐腐蚀性取决于铬,但是因为铬是钢的组成部分之一,所以保护方法不尽相同。 在铬的添加量达到10.5%时,钢的耐大气腐蚀性能显著增加,但铬含量更高时,尽管仍可提高耐腐蚀性,但不明显。原因是用铬对钢进行合金化处理时,把表面氧化物的类型改变成了类似于纯铬金属上形成的表面氧化物。这种紧密粘附的富铬氧化物保护表面,防止进一步地氧化。这种氧化层极薄,透过它可以看到钢表面的自然光泽,使不锈钢具有独特的表面。而且,如果损坏了表层,所暴露出的钢表面会和大气反应进行自我修理,重新形成这种氧化物"钝化膜",继续起保护作用。 因此,所有的不锈钢元素都具有一种共同的特性,即铬含量均在10.5%以上。 普通碳钢与大气中氧,在金属表面形成过氧化膜,然后继续进行氧化,使锈蚀不断扩大,形成“千层糕”式的腐蚀物,直至烂穿。不锈钢的不锈性与钢中铬含量有光。钢中铬含量达到12%时,与大气接触,在不锈钢表面产生一层钝化膜(Cr2O3),它是致密的富铬氧化物,有效

地保护着不锈钢表面,特别是能防止进一步再氧化。这种氧化膜极薄(只有几个微米),头各国它可以看到钢表面的自然光泽,使不惜刚既有独特的表面。若表面钝化膜一旦被破坏,钢中的铬与大气中的氧心生成钝化膜,继续起保护作用。 不锈钢遇到特殊环境,也会出现某些局部腐蚀,如孔蚀、晶间腐蚀、应力腐蚀、电偶腐蚀等。为了克服这些腐蚀,在钢中分别加入了钼、氮、钛或铌等元素,并研制出了低碳、超低碳、双相不锈钢等新品种,提高不锈钢的耐腐性。 不锈钢的耐腐蚀性能一般随铬含量的增加而提高。其基本原理是,当钢中有足够的铬时,在钢的表面形成非常薄的至密的氧化膜,它可以防止进一步的氧化或义腐蚀。氧化性的环境可以强化这种膜,而还原性环境则必然破坏这种膜,造成钢的腐蚀。 (一)在各种环境中的耐腐蚀性能 1.大气腐蚀 不锈钢耐大气腐蚀基本上是随大气中的氯化物的含量而变化的。因此,靠近海洋或其他氯化物污染源对不锈钢的腐蚀是极为重要的。一定量的雨水,只有对钢表面的氯化物浓度起作用时才是重要的。 农村环境 1Cr13、1Cr17和奥氏体型不锈钢可以适应各种用途,其外观上不会有显著的改变。因此,在农村暴露使用的不锈钢可以根据价格,市场供应情况,力学性能、制作加工性能和外观来选择。

浅谈混凝土腐蚀及其预防措施

浅谈砼腐蚀以及防腐措施 赵党锋刘华武石磊 (天津工业大学纺织学院天津300160) 摘要:本文介绍了混凝土腐蚀的主要因素,包括碳化、氯化物的侵蚀、冻融等因素。并在分析原因的基础上论述了基本的防腐措施,主要有添加矿物质粉末、改善施工工艺、纤维混凝土结构等方法。通过防腐措施可以有效改善混凝土使用的耐久性和安全性。 关键词:混凝土;腐蚀;防腐措施;耐久性; The discussion of concrete corrosion and anticorrosion methods Zhao Dangfeng,Liu Hua wu ,Shi Lei (Shool of Textiles, Tianjin Polytechnic University, Tianjin 300160, China) Abstract: This paper introduces the main factors of concrete corrosion, including carbonation, chloride corrosion, freeze-thaw and other factors. It also discusses the basic anticorrosion methods based on the analysis of the main factors of concrete corrosion. The main methods include adding mineral powder, improving the construction technology, structures of fiber reinforced concrete etc. the durability and safety of concrete can be effectively improved through the using of these methods. Keywords: concrete; corrosion; anti-corrosion measures; durability; 前言 混凝土即“砼”,混凝土是主要的建筑材料, 随着我国经济的高速发展,土木工程建设所用的主要建筑材料混凝土用量稳居世界前列[1]。通常用的混凝土是由胶凝材料(水泥)、水和粗、细骨料按适当比例配合,拌制成拌合物,经一定时间硬化而成的人造石材。当在混凝土中配以适量的钢筋,则为钢筋混凝土。混凝土的腐蚀直接影响着混凝土使用的耐久性和安全性。本文将混凝土的腐蚀以及防腐措施给予论述,希望给予大家参考。 1.混凝土腐蚀的原因分析 1.1 混凝土碳化的影响 CO2是全球变暖的温室气体主要组分,近年来人们为获得能源而向大自然索取的煤、石油、天然气的量在迅速增加,燃烧产生的CO2也在与日俱增,且由于全球人口猛增,森林草原迅速减少,碳源增加,碳源减少,综合结果使全球大气中CO2含量急剧增加[1]。由于空气中含有大量的CO2 ,当CO2进入混凝土中的孔隙并溶解在孔隙水中形成一种酸性溶液,它与混凝土中的碱性物质发生中和反应,即 CO2+NaOH→Na2CO3+H2O CO2 + 2Ca (OH)2→2CaCO3 + H2O Na2CO3溶于水后呈碱性,但碱性较弱。而CaCO3是不溶于水的, 所以反应后会使孔隙水中的CO2含量减少,同时混凝土的pH 值将降低,而空气中的CO2会继续溶入孔隙水中,使反应继续进行,结果是降低了混凝土的高碱性,这样碳化就开始转向深一层的混凝土。当碳化的深度到达钢筋时,钢筋的钝化保护就会失稳、消失,这时就会引起钢筋的腐蚀[2][4]。混凝土碳化的速度除与空气中CO2浓度和混凝土中碱性物质浓度有关外,主要取决于CO2与混凝土中碱性物质的化学反应速度、CO2向混凝土的扩散速度以及氢氧化钙的扩散速度。

如何提高混凝土的抗腐蚀性

万方数据

如何提高混凝土的抗腐蚀性 作者:白义东, 高景峰 作者单位:白义东(黑龙江省建一公司,黑龙江,哈尔滨,150000), 高景峰(黑龙江省国律招标有限责任公司,黑龙江,哈尔滨,150000) 刊名: 黑龙江科技信息 英文刊名:HEILONGJIANG SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期):2009(23) 本文读者也读过(10条) 1.刘浪.LIU Lang水泥品种结合外掺氯离子性能的探讨[期刊论文]-山西建筑2006,32(8) 2.蒋杉平.刘来宝.陈德玉熟料煅烧对水泥与外加剂相容性的影响[期刊论文]-水泥2008(2) 3.芦令超.张伟.唐晓娟.李洪民.程新.LU Ling-chao.ZHANG Wei.TANG Xiao-juan.LI Hong-min.CHENG Xin阿利特-硫铝酸钡钙水泥组成与性能的研究[期刊论文]-建筑材料学报2007,10(1) 4.张永娟.施惠生石灰石替代石膏的可行性研究[期刊论文]-水泥2001(1) 5.张永娟.张雄石灰石微粉矿物外加剂性能研究[期刊论文]-房材与应用2001,29(4) 6.赵凤英.刘文生调整熟料中的C3A含量, 以增加水泥对外加剂的适应性[会议论文]- 7.王常军.朱学军采用低品位石灰石生产低C3A熟料[期刊论文]-水泥技术2008(6) 8.尤启俊.王立新抑制掺外加剂混凝土坍落度损失的研究[期刊论文]-工业建筑1998,28(3) 9.张永娟石灰石与石膏在水泥中的作用比较[期刊论文]-四川水泥2000(6) 10.刘建.郭小阳.李早元.郑友志氯离子对G级水泥水化影响的化学机理研究[期刊论文]-钻井液与完井液 2009,26(6) 本文链接:https://www.360docs.net/doc/e2339491.html,/Periodical_hljkjxx200923273.aspx

相关文档
最新文档