淀粉糖的种类.

淀粉糖的种类.
淀粉糖的种类.

淀粉糖的种类、特性和制造工艺

淀粉糖是以淀粉为原料,通过酸或酶的催化水解反应生产的糖品的总称,是淀粉深加工的主要产品。在美国,淀粉糖年产量已达1 000万t,占玉米深加工总量的60%,从20世纪80年代中期开始,美国国内淀粉糖消费量已超过蔗糖。我国淀粉糖工业目前仍处于发展的起步阶段,从20世纪90年代以来,由于现代生物工程技术的应用,生产淀粉糖所用酶制剂品种的增加及质量的提高,使淀粉糖行业得到快速发展,产量以年均10%的速度增长,而且品种也日益增加,形成了各种不同甜度及功能的麦芽糊精、葡萄糖、麦芽糖、功能性糖及糖醇等几大系列的淀粉糖产品。

淀粉糖的原料是淀粉,任何含淀粉的农作物,如玉米、大米、木薯等均可用来生产淀粉糖,生产不受地区和季节的限制。淀粉糖在口感、功能性上比蔗糖更能适应不同消费者的需要,并可改善食品的品质和加工性能,如低聚异麦芽糖可以增殖双歧杆菌、防龋齿;麦芽糖浆、淀粉糖浆在糖果、蜜饯制造中代替部分蔗糖可防止“返砂”、“发烊”等,这些都是蔗糖无可比拟的。因此,淀粉糖具有很好的发展前景。

第一节淀粉糖的种类及特性

一、淀粉糖的种类

淀粉糖种类按成分组成来分大致可分为液体葡萄糖、结晶葡萄糖(全糖)、麦芽糖浆(饴糖、高麦芽糖浆、麦芽糖)、麦芽糊精、麦芽低聚糖、果葡糖浆等。

1 液体葡萄糖:是控制淀粉适度水解得到的以葡萄糖、麦芽糖以及麦芽低聚糖组成的混合糖浆,葡萄糖和麦芽糖均属于还原性较强的糖,淀粉水解程度越大,葡萄糖等含量越高,还原性越强。淀粉糖工业上常用葡萄糖值(dextrose equivalent)简称DE值(糖化液中还原性糖全部当做葡萄糖计算,占干物质的百分

率称葡萄糖值)来表示淀粉水解的程度。液体葡萄糖按转化程度可分为高、中、低3大类。工业上产量最大、应用最广的中等转化糖浆,其DE,值为30%~50%,其中DE值为42%左右的又称为标准葡萄糖浆。高转化糖浆DE!值在50%~70%,低转化糖浆DE值30%以下。不同DE值的液体葡萄糖在性能方面有一定差异,因此不同用途可选择不同水解程度的淀粉糖。

2 葡萄糖:是淀粉经酸或酶完全水解的产物,由于生产工艺的不同,所得葡萄糖产品的纯度也不同,一般可分为结晶葡萄糖和全糖两类,其中葡萄糖占干物质的95%~97%,其余为少量因水解不完全而剩下的低聚糖,将所得的糖化液用活性炭脱色,再流经离子交换树脂柱,除去无机物等杂质,便得到了无色、纯度高的精制糖化液。将此精制糖化液浓缩,在结晶罐冷却结晶,得含水α一葡萄糖结晶产品;在真空罐中于较高温度下结晶,得到无水β一葡萄糖结晶产品;在真空罐中结晶,得无水α一葡萄糖结晶产品。

3 果葡糖浆:如果把精制的葡萄糖液流经固定化葡萄糖异构酶柱,使其中葡萄糖一部分发生异构化反应,转变成其异构体果糖,得到糖分组成主要为果糖和葡萄糖的糖浆,再经活性炭和离子交换树脂精制,浓缩得到无色透明的果葡糖浆产品。这种产品的质量分数为71%,糖分组成为果糖42%(干基计),葡萄糖

53 %,低聚糖5%,这是国际上在20世纪60年代末开始大量生产的果葡糖浆产品,甜度等于蔗糖,但风味更好,被称为第一代果葡糖浆产品。20世纪70年代末期世界上研究成功用无机分子筛分离果糖和葡萄糖技术,将第一代产品用分子筛模拟移动床分离,得果糖含量达94%的糖液,再与适量的第一代产品混合,得果糖含量分别为55%和90 %两种产品。甜度高过蔗糖分别为蔗糖甜度的1.1倍和1.4倍,也被称为第二、第三代产品。第二代产品的质量分数为77%,果糖55%(干基计),葡萄糖40%,低聚糖5%。第三代产品的质量分数为80%,果糖90%(干基计),葡萄糖7%,低聚糖3%。

4 麦芽糖浆:是以淀粉为原料,经酶或酸结合法水解制成的一种淀粉糖浆,和液体葡萄糖相比,麦芽糖浆中葡萄糖含量较低(一般在10%以下),而麦芽糖含量较高(一般在40%~90%),按制法和麦芽糖含量不同可分别称为饴糖、高麦芽糖浆、超高麦芽糖浆等,其糖分组成主要是麦芽糖、糊精和低聚糖。

二、淀粉糖的性质

不同淀粉糖产品在许多性质方面存在差别,如甜度、黏度、胶黏性、增稠性、吸潮性和保潮性,渗透压力和食品保藏性、颜色稳定性、焦化性、发酵性、还原性、防止蔗糖结晶性、泡沫稳定性等等。这些性质与淀粉糖的应用密切相关,不同的用途,需要选择不同种类的淀粉糖品。下面简单的叙述淀粉糖的有关特性。

1 甜度

甜度是糖类的重要性质,但影响甜度的因素很多,特别是浓度。浓度增加,甜度增高,但增高程度不同糖类之间存在差别,葡萄糖溶液甜度随浓度增高的程度大于蔗糖,在较低的浓度,葡萄糖的甜度低于蔗糖,但随浓度的增高差别减小,当含量达到40%以上两者的甜度相等(表6—1)。淀粉糖浆的甜度随转化程度的增高而增高,此外,不同糖品混合使用有相互提高的效果。下面是几种糖类的甜度。

表6-1 几种糖类的相对甜度

2 溶解度

各种糖的溶解度不相同,果糖最高,其次是蔗糖、葡萄糖。葡萄糖的溶解度较低,在室温下浓度约为50%,过高的浓度则葡萄糖结晶析出。为防止有结晶析出,工业上储存葡萄糖溶液需要控制葡萄糖含量42%(干物质)以下,高转化糖浆的

糖分组成保持葡萄糖35%~40%,麦芽糖35%~40%,果葡糖浆(转化率42%)的质量分数一般为71%。

3 结晶性质

蔗糖易于结晶,晶体能生长很大。葡萄糖也容易结晶,但晶体细小。果糖难结晶。淀粉糖浆是葡萄糖、低聚糖和糊精的混合物,不能结晶,并能防止蔗糖结晶。糖的这种结晶性质与其应用有关。例如,硬糖果制造中,单独使用蔗糖,熬煮到水分1.5%以下,冷却后,蔗糖结晶,破裂,不能得到坚韧、透明的产品。若添加部分淀粉糖浆可防止蔗糖结晶,防止产品储存过程中返砂,淀粉糖浆中的糊精,还能增加糖果的韧性、强度和黏性,使糖果不易破碎,此外,淀粉糖浆的甜度较低,有冲淡蔗糖甜度的效果,使产品甜味温和。

4 吸湿性和保湿性

不同种类食品对于糖吸湿性和保湿性的要求不同。例如,硬糖果需要吸湿性低,避免遇潮湿天气吸收水分导致溶化,所以宜选用蔗糖、低转化或中转化糖浆为好。转化糖和果葡糖浆含有吸湿性强的果糖,不宜使用。但软糖果则需要保持一定的水分,面包、糕点类食品也需要保持松软,应使用高转化糖浆和果葡糖浆为宜。果糖的吸湿性是各种糖中最高的。

5 渗透压力

较高浓度的糖液能抑制许多微生物的生长,这是由于糖液的渗透压力使微生物菌体内的水分被吸走,生长受到抑制。不同糖类的渗透压力不同,单糖的渗透压力约为二糖的两倍,葡萄糖和果糖都是单糖,具有较高的渗透压力和食品保藏效果,果葡糖浆的糖分组成为葡萄糖和果糖,渗透压力也较高,淀粉糖浆是多种糖的混合物,渗透压力随转化程度的增加而升高。此外,糖液的渗透压力还与浓度有关,随浓度的增高而增加。

6 黏度

葡萄糖和果糖的黏度较蔗糖低,淀粉糖浆的黏度较高,但随转化度的增高而降低。利用淀粉糖浆的高黏度,可应用于多种食品中,提高产品的稠度和可口性。

7 化学稳定性

葡萄糖、果糖和淀粉糖浆都具有还原性,在中性和碱性条件下化学稳定性低,受热易分解生成有色物质,也容易与蛋白质类含氮物质起羰氨反应生成有色物质。蔗糖不具有还原性,在中性和弱碱性条件下化学稳定性高,但在pH值9以上受热易分解产生有色物质。食品一般是偏酸性的,淀粉糖在酸性条件下稳定。

8 发酵性

酵母能发酵葡萄糖、果糖、麦芽糖和蔗糖等,但不能发酵较高的低聚糖和糊精。有的食品需要发酵,如面包、糕点等;有的食品不需要发酵,如蜜饯、果酱等。淀粉糖浆的发酵糖分为葡萄糖和麦芽糖,且随转化程度而增高。生产面包类发酵食品应用发酵糖分高的高转化糖浆和葡萄糖为好。

第二节淀粉糖的酸糖化工艺

淀粉在酸或淀粉酶的催化作用下发生水解反应,其水解最终产物随所用的催化剂种类而异。在酸作用下,淀粉水解的最终产物是葡萄糖,在淀粉酶作用下,随酶的种类不同而产物各异。

一、酸糖化机理

淀粉乳加入稀酸后加热,经糊化、溶解,进而葡萄糖苷链裂解,形成各种聚合度的糖类混合溶液。在稀溶液的情况下,最终将全部变成葡萄糖。在此,酸仅起催化作用。淀粉的酸水解反应可由化学式简示于下:

(C6H10O5)n + nH2O nC6H12O6

在淀粉的水解过程中,颗粒结晶结构被破坏。α一1,4糖甙键和α一1,6糖甙键被水解生成葡萄糖,而α一1,4糖甙键的水解速度大于α一1,6糖甙键。

淀粉水解生成的葡萄糖受酸和热的催化作用,又发生复合反应和分解反应。复合反应是葡萄糖分子通过α一1,6键结合生成异麦芽糖、龙胆二糖、潘糖和其他具有α-1,6键的低聚糖类。复合糖可再次经水解转变成葡萄糖,此反应是可逆的。分解反应是葡萄糖分解成5L羟甲基糠醛、有机酸和有色物质等。葡萄糖的复合反应和分解反应简示于下如图6—1所示:

淀粉——葡萄糖龙胆二糖和其他低聚糖

5-羟甲基糠醛——有色聚合物

甲酸和其他有机酸

图6—1 葡萄糖的复合反应和分解反应

在糖化过程中,水解、复合和分解3种化学反应同时发生,而水解反应是主要的。复合与分解反应是次要的,且对糖浆生产是不利的,降低了产品的收得率,增加了糖液精制的困难,所以要尽可能降低这两种反应。

二、影响酸糖化的因素

1 酸的种类和浓度

由于各种酸的电离常数不同,虽摩尔数相同,但H+浓度不同,因而水解能力不同。若以盐酸的水解力为100,则硫酸为50.35,草酸为20.42,亚硫酸为4.82,醋酸为6.8。

因此淀粉糖工业常用盐酸来水解淀粉。盐酸水解,用碳酸钠中和,生成的氯化钠存在于糖液中,若生成大量的氯化钠,就会增加灰分和咸味,且盐酸对设备的腐蚀性很大,对葡萄糖的复合反应催化作用也强。

硫酸催化效率仅次于盐酸,用硫酸水解后,经石灰中和,生成的硫酸钙沉淀在过滤时大部分可除去,但它仍具有一定的溶解度,会有少量溶于糖液中,在糖液蒸发时,形成结垢,影响蒸发效率,且糖浆在储存中,硫酸钙会慢慢析出而变混浊,因此,工业上很少使用硫酸。

草酸虽然催化效率不高,但生成的草酸钙不溶于水,过滤时可全部除去,而且可减少葡萄糖的复合分解反应,糖液的色泽较浅,不过草酸价格贵,因此,工业上也较少采用。

酸水解时,生产上常控制糖化液pH值为1.5~2.5。同一种酸,浓度增大,能增进水解作用,但两者之间并不表现为等比例关系,因此,酸的浓度就不宜过大,否则会引起不良后果。

2 淀粉乳浓度

酸催化淀粉水解生成的葡萄糖,在酸和热的作用下,会发生复合和分解反应,影响葡萄糖的产率和增加糖化液精制的困难。所以生产上要尽可能降低这两种副反应,有效的方法是通过调节淀粉乳的浓度来控制,生产淀粉糖浆一般淀粉乳浓度控制在22~24波美度,结晶葡萄糖则为12~14波美度。淀粉乳浓度越高,水解糖液中葡萄糖浓度越大,葡萄糖的复合分解反应就强烈,生成龙胆二糖(苦味)和其他低聚糖也多,影响制品品质,降低葡萄糖产率;但淀粉乳浓度太低,水解糖液中葡萄糖浓度也过低,设备利用率降低,蒸发浓缩耗能大。

3 温度、压力、时间

温度、压力、时间的增加均能增进水解作用,但过高温度、压力或过长时间,也会引起不良后果。生产上对淀粉糖浆一般控制在283~303 kPa,温度142~145℃,时间8~9 min;结晶葡萄糖则采用252~353 kPa,温度138~147lC,时间16~35 min。

三、酸糖化工艺

1 间断糖化法

这种糖化方法是在一密闭的糖化罐内进行的,糖化进料前,首先开启糖化罐进汽阀门,排除罐内冷空气。在罐压保持0.03~O.05 MPa的情况下,连续进料,为了使糖化均匀,尽量缩短进料时间。进料完毕,迅速升压至规定压力,并立即快速放料,避免过度糖化。由于间断糖化在放料过程中仍可继续进行糖化反应,为了避免过度糖化,其中间品的DE值要比成品的DE值标准略低。

2 连续糖化

由于间断糖化操作麻烦,糖化不均匀,葡萄糖的复合、分解反应和糖液的转化程度控制困难,又难以实现生产过程的自动化,许多国家采用连续糖化技术。连续糖化分为直接加热式和间接加热式两种。

1 )直接加热式

直接加热式的工艺过程是淀粉与水在一个贮槽内调配好,酸液在另一个槽内储存,然后在淀粉乳调配罐内混合,调整浓度和酸度。利用定量泵输送淀粉乳,通过蒸汽喷射加热器升温,并送至维持罐,流入蛇管反应器进行糖化反应,控制一定的温度、压力和流速,以完成糖化过程。而后糖化液进入分离器闪急冷却。二次蒸汽急速排出,糖化液迅速至常压,冷却到100℃以下,再进入贮槽进行中和。

2 )间接加热式

间接加热式的工艺过程为:淀粉浆在配料罐内连续自动调节pH值,并用高压泵打人3套管式的管束糖化反应器内,被内外间接加热。反应一定时间后,经闪急冷却后中和。物料在流动中可产生搅动效果,各部分受热均匀,糖化完全,糖化液颜色浅,有利于精制,热能利用效率高。蒸汽耗量和脱色用活性炭比间断糖化法节约

第三节淀粉的酶液化和酶糖化工艺

一、淀粉酶

淀粉的酶水解法是用专一性很强的淀粉酶将淀粉水解成相应的糖。在葡萄糖及淀粉糖浆生产时应用α一淀粉酶与糖化酶(葡萄糖苷酶)的协同作用,前者将高分子的淀粉割断为短链糊精,后者便迅速地把短链糊精水解成葡萄糖。同理,生产饴糖时,则用α一淀粉酶与β一淀粉酶配合,α一淀粉酶转变的短链糊精被β一淀粉酶水解成麦芽糖。

1 α-淀粉酶

1)作用点:α一淀粉酶属内切型淀粉酶,它作用于淀粉时从淀粉分子内部以随机的方式切断α一1,4糖苷键,但水解位于分子中间的α一1,4键的概率高于位于分子末端的α一1,4键,a一淀粉酶不能水解支链淀粉中的α一1,6键,也不能水解相邻分支点的α一1,4键;不能水解麦芽糖,但可水解麦芽三糖及以上的含α一1,4键的麦芽低聚糖。由于在其水解产物中,还原性末端葡萄糖分子中C,的构型为α一型,故称为α一淀粉酶。

α一淀粉酶作用于直链淀粉时,可分为两个阶段,第一个阶段速度较快,能将直链淀粉全部水解为麦芽糖、麦芽三糖及直链麦芽低聚糖;第二阶段速度很慢,如酶量充分,最终将麦芽三糖和麦芽低聚糖水解为麦芽糖和葡萄糖。α一淀粉酶水解支链淀粉时,可任意水解α一1,4键,不能水解α一1,6键及相邻的α

一1,4键,但可越过分支点继续水解α一1,4键,最终水解产物中除葡萄糖、麦芽糖外还有一系列带有α一1,6键的极限糊精,不同来源的α一淀粉酶生成的极限糊精结构和大小不尽相同。

2)酶源来源于芽孢杆菌的α一淀粉酶水解淀粉分子中的α一1,4键时,最初速度很快,淀粉分子急速减小,淀粉浆黏度迅速下降,工业上称之为“液化”。随后,水解速度变慢,分子继续断裂、变小,产物的还原性也逐渐增高,用碘液检验时,淀粉遇碘变蓝色,糊精随分子由大至小,分别呈紫、红和棕色,到糊精分子小到一定程度(聚合度小于6个葡萄糖单位时)就不起碘色反应,因此实际生产中,可用碘液来检验α一淀粉酶对淀粉的水解程度。

3)酶的性质α一淀粉酶较耐热,但不同来源的α一淀粉酶具有不同的热稳定性和最适反应温度。目前市售酶制剂中,以地衣芽孢杆菌所产α一淀粉酶耐热性最高,其最适反应温度达95℃左右,瞬间可达105~110℃,因此该酶又称耐高温淀粉酶。由枯草杆菌所产生的α一淀粉酶,最适反应温度为70℃,称为中温淀粉酶。来源于真菌的α一淀粉酶,最适反应温度仅为55℃左右,为非耐热性α一淀粉酶,一般作为糖化酶使用。

一般而言,工业生产用α一淀粉酶均不耐酸,当pH值低于4.5时,活力基本消失。在pH值为5.O~8.0之间较稳定,最适pH值为5.5~6.5。不同来源的α一淀粉酶在此范围内略有差异。

不同来源的α一淀粉酶均含有钙离子,钙与酶分子结合紧密,钙能保持酶分子最适空间构象,使酶具有最高活力和最大稳定性。钙盐对细菌α一淀粉酶的热稳定性有很大的提高,液化操作时,可在淀粉乳中加少量Ca2+,对α一淀粉酶有保护作用,可增强其耐热力至90~C以上,因此最适液化温度为85~90℃.

2 β-淀粉酶

1)作用点:B-淀粉酶是一种外切型淀粉酶,它作用于淀粉时从非还原性末端依次切开相隔的β一1,4键,顺次将它分解为两个葡萄糖基,同时发生尔登转化作用,最终产物全是B一麦芽糖。所以也称麦芽糖酶。β-淀粉酶能将直链淀粉全部分解,如淀粉分子由偶数个葡萄糖单位组成,最终水解产物全部为麦芽糖;如淀粉分子由奇数个葡萄糖单位组成,则最终α水解产物除麦芽糖外,还有少量葡萄糖。但β一淀粉酶不能水解支链淀粉的α一1,6键,也不能跨过分支点继续水解,故水解支链淀粉是不完全的,残留下β一极限糊精。β一淀粉酶水解淀粉时,由于从分子末端开始,总有大分子存在,因此黏度下降慢,不能作为糖化酶使用;而β一淀粉酶水解淀粉水解产物如麦芽糖、麦芽低聚糖时,水解速度很快,可作为糖化酶使用。

β淀粉酶活性中心含有巯基(一SH),因此,一些氧化剂、重金属离子以及巯基试剂均可使其失活,而还原性的谷胱甘肽、半胱氨酸对其有保护作用。

2)酶源:β一淀粉酶以大麦芽及麸皮中含量最丰富。

3)性质:最适PH 5.0-5.4 最适温度60℃

3 糖化酶(葡萄糖淀粉酶)

1)作用点:糖化酶(葡萄糖淀粉酶)对淀粉的水解作用是从淀粉的非还原性末端开始,依次水解α一1,4葡萄糖苷键,顺次切下每个葡萄糖单位,生成葡萄糖。

葡萄糖淀粉酶专一性差,除水解α一1,4葡萄糖苷键外,还能水解。α一1,6键和α一1,3键,但后两种键的水解速度较慢,由于该酶作用于淀粉糊时,糖液黏度下降较慢,还原能力上升很快,所以又称糖化酶,不同微生物来源的糖化酶对淀粉的水解能力也有较大区别。

2)酶原和性质:不同来源的葡萄糖淀粉酶在糖化的最适温度和pH值上存在一定的差异。其中,黑曲霉为55~60℃,pH值3.5~5.O;根霉50~55℃,

pH值4.5~5.5;拟内孢霉为50℃,pH值4·8~5·0。糖化时间根据相应淀粉糖质量指标中DE值的要求而定,一般为12~48 h;糖化温度一般采用55℃以上可避免长时间保温过程中细菌的生长;糖化pH值一般为弱酸性,不易生成有色物质,有利于提高糖化液的质量。

4 脱支酶

脱支酶是水解支链淀粉、糖原等大分子化合物中α一1,6糖苷键的酶,脱支酶可分为直接脱支酶和间接脱支酶两大类,前者可水解未经改性的支链淀粉或糖原中的α一1,6糖苷键,后者仅可作用于经酶改性的支链淀粉或糖原,这里仅讨论直接脱支酶。

根据水解底物专一性的不同,直接脱支酶可分为异淀粉酶和普鲁蓝酶两种。异淀粉酶只能水解支链结构中的α一1,6糖苷键,不能水解直链结构中的α—l,6糖苷键;普鲁蓝酶不仅能水解支链结构中的a一1,6糖苷键,也能水解直链结构中的α-1,6糖苷键,因此它能水解含α一1,6糖苷键的葡萄糖聚合物。

脱支酶在淀粉制糖工业上的主要应用是和β一淀粉酶或葡萄糖淀粉酶协同糖化,提高淀粉转化率,提高麦芽糖或葡萄糖得率。

二、液化

液化是使糊化后的淀粉发生部分水解,暴露出更多可被糖化酶作用的非还原性末端。它是利用液化酶使糊化淀粉水解到糊精和低聚糖程度,使黏度大为降低,流动性增高,所以工业上称为液化。酶液化和酶糖化的工艺称为双酶法或全酶法。液化也可用酸,酸液化和酶糖化的工艺称为酸酶法。

由于淀粉颗粒的结晶性结构,淀粉糖化酶无法直接作用于生淀粉,必需加热生淀粉乳,使淀粉颗粒吸水膨胀,并糊化,破坏其结晶结构,但糊化的淀粉乳黏

度很大,流动性差,搅拌困难,难以获得均匀的糊化结果,特别是在较高浓度和大量物料的情况下操作有困难。而α一淀粉酶对于糊化的淀粉具有很强的催化水解作用,能很快水解到糊精和低聚糖范围大小的分子,黏度急速降低,流动性增高。此外,液化还可为下一步的糖化创造有利条件,糖化使用的葡萄糖淀粉酶属于外酶,水解作用从底物分子的非还原尾端进行。在液化过程中,分子被水解到糊精和低聚糖范围的大小程度,底物分子数量增多,糖化酶作用的机会增多,有利于糖化反应。

1 液化机理

液化使用α一淀粉酶,它能水解淀粉和其水解产物分子中的α一1,4糖苷键,使分子断裂,黏度降低。α一淀粉酶属于内酶,水解从分子内部进行,不能水解支链淀粉的α一1,6葡萄糖苷键,当α一淀粉酶水解淀粉切断α一1,4键时,淀粉分子支叉地位的α一1,6键仍然留在水解产物中,得到异麦芽糖和含有α一1,6键、聚合度为3~4的低聚糖和糊精。但α一淀粉酶能越过α一1,6键继续水解α一1,4键,不过α一1,6键的存在,对于水解速度有降低的影响,所以α一淀粉酶水解支链淀粉的速度较直链淀粉慢。

国内常用的α一淀粉酶有由芽孢杆菌BF一7658产的液化型淀粉酶和由枯草杆菌产生的细菌糖化型α一淀粉酶以及由霉菌产生的α一淀粉酶。因其来源不同,各种酶的性能和对淀粉的水解效能亦各有差异。

2 液化程度

在液化过程中,淀粉糊化、水解成较小的分子,应当达到何种程度合适?葡萄糖淀粉酶属于外酶,水解只能由底物分子的非还原尾端开始,底物分子越多,水解生成葡萄糖的机会越多。但是,葡萄糖淀粉酶是先与底物分子生成络合结构,而后发生水解催化作用,这需要底物分子的大小具有一定的范围,有利于生成这种络合结构,过大或过小都不适宜。根据生产实践,淀粉在酶液化工序中水解到葡萄糖值15~20范围合适。水解超过此程度,不利于糖化酶生成络合结构,影响催化效率,糖化液的最终葡萄糖值较低。

利用酸液化,情况与酶液化相似,在液化工序中需要控制水解程度在葡萄糖值15~20之间为宜,水解程度高,则影响糖化液的葡萄糖值降低;若液化到葡萄糖值15以下,液化淀粉的凝沉性强,易于重新结合,对于过滤性质有不利的影响。

3 液化方法

液化方法有3种:升温液化法、高温液化法和喷射液化法。

1 )升温液化法

这是一种最简单的液化方法。30%~40%的淀粉乳调节pH值为6.0~6.5,加入CaCl2调节钙离子浓度到O.01 mol/L,加入需要量的液化酶,在保持剧烈搅拌的情况下,喷入蒸汽加热到85~90℃,在此温度保持30~60 min达到需要的液化程度,加热至100℃以终止酶反应,冷却至糖化温度。此法需要的设备和操作都简单,但因在升温糊化过程中,黏度增加使搅拌不均匀,料液受热不均匀,致使液化不完全,液化效果差,并形成难于受酶作用的不溶性淀粉粒,引起糖化后糖化液的过滤困难,过滤性质差。为改进这种缺点,液化完后加热煮沸10 min,谷类淀粉(如玉米)液化较困难,应加热到140℃,保持几分钟。虽然如此加热处理能改进过滤性质,但仍不及其他方法好。

2 )高温液化法

将淀粉乳调节好pH值和钙离子浓度,加入需要量的液化酶,用泵打经喷淋头引入液化桶中约90℃的热水中,淀粉受热糊化、液化,由桶的底部流出,进入保温桶中,于90℃保温约40 min或更长的时间达到所需的液化程度。此法的设备和操作都比较简单,效果也不差。缺点是淀粉不是同时受热,液化欠均匀,酶的利用也不完全,后加入的部分作用时间较短。对于液化较困难的谷类淀粉(如玉米),液化后需要加热处理以凝结蛋白质类物质,改进过滤性质。在130℃加热液化5~10 min或在150℃加热1~1.5 min。

3 )喷射液化法

先通蒸气人喷射器预热到80~90℃,用位移泵将淀粉乳打入,蒸气喷入淀粉乳的薄层,引起糊化、液化。蒸气喷射产生的湍流使淀粉受热快而均匀,黏度降低也快。液化的淀粉乳由喷射器下方卸出,引入保温桶中在85~90℃保温约40 min,达到需要的液化程度。此法的优点是液化效果好,蛋白质类杂质的凝结好,糖化液的过滤性质好,设备少,也适于连续操作。马铃薯淀粉液化容易,可用40%浓度;玉米淀粉液化较困难,以27%~33%浓度为宜,若浓度在33 %以上,则需要提高用酶量两倍。

酸液化法的过滤性质好,但最终糖化程度低于酶液化法。酶液化法的糖化程度较高,但过滤性质较差。为了利用酸和酶液化法的优点,有酸酶合并液化法,先用酸液化到葡萄糖值约4,再用酶液化到需要程度,经用酶糖化,糖化程度能达到葡萄糖值约97,稍低于酶液化法,但过滤性质好,与酸液化法相似。此法只能用管道设备连续进行,因为调节pH值、降温和加液化酶的时间快,也避免回流。若不用管道设备,则由于低葡萄糖值淀粉液的黏度大,凝沉性也强,过滤性质差。

三、糖化

在液化工序中,淀粉经α一淀粉酶水解成糊精和低聚糖范围的较小分子产物,糖化是利用葡萄糖淀粉酶进一步将这些产物水解成葡萄糖。纯淀粉通过完全水解,会增重,每100份淀粉完全水解能生成lll份葡萄糖,但现在工业生产技术还没有达到这种水平。双酶法工艺的现在水平,每100份纯淀粉只能生成105~108份葡萄糖,这是因为有水解不完全的剩余物和复合产物如低聚糖和糊精等存在。如果在糖化时采取多酶协同作用的方法,例如除葡萄糖淀粉酶以外,再加上异淀粉酶或普鲁蓝酶并用,能使淀粉水解率提高,且所得糖化液中葡萄糖的百分率可达99%以上。

双酶法生产葡萄糖工艺的现在水平,糖化2 d葡萄糖值达到95~98。在糖化的初阶段,速度快,第一天葡萄糖达到90以上,以后的糖化速度变慢。葡萄糖淀粉酶对于α一1,6糖苷键的水解速度慢。提高用酶量能加快糖化速度,但考虑到生产成本和复合反应,不能增加过多。降低浓度能提高糖化程度,但考虑到蒸发费用,浓度也不能降低过多,一般采用浓度约30%。

1 糖化机理

糖化是利用葡萄糖淀粉酶从淀粉的非还原性尾端开始水解α一1,4葡萄糖苷键,使葡萄糖单位逐个分离出来,从而产生葡萄糖。它也能将淀粉的水解初产物如糊精、麦芽糖和低聚糖等水解产生B一葡萄糖。它作用于淀粉糊时,反应液的碘色反应消失很慢,糊化液的黏度也下降较慢,但因酶解产物葡萄糖不断积累,淀粉糊的还原能力却上升很快,最后反应几乎将淀粉100%水解为葡萄糖。

葡萄糖淀粉酶不仅由于酶源不同造成对淀粉分解率有差异,即使是同一菌株产生的酶中也会出现不同类型的糖化淀粉酶。如将黑曲菌产生的粗淀粉酶用酸处理,使其中的α一淀粉酶破坏,然后用玉米淀粉吸附分级,获得易吸附于玉米淀粉的糖化型淀粉酶I及不吸附于玉米淀粉的糖化型淀粉酶Ⅱ2个分级,其中I能100%地分解糊化过的糯米淀粉和较多的a一1,6键的糖原及B一界限糊精,而酶Ⅱ仅能分解60%~70%的糯米淀粉,对于糖原及B一界限糊精则难以分解。除了淀粉的分解率因酶源不同而有差异外,耐热性、耐酸性等性质也会因酶源不同而有差异。

不同来源的葡萄糖淀粉酶在糖化的适宜温度和pH值也存在差别。例如曲霉糖化酶为55~60℃,pH值3.5~5.0;根霉的糖化酶为50~55℃,pH值4.5~5.5;拟内孢酶为50℃,pH值4.8~5.O。

2 糖化操作

糖化操作比较简单,将淀粉液化液引入糖化桶中,调节到适当的温度和pH值,混入需要量的糖化酶制剂,保持2~3 d达到最高的葡萄糖值,即得糖化液。糖

化桶具有夹层,用来通冷水或热水调节和保持温度,并具有搅拌器,保持适当的搅拌,避免发生局部温度不均匀现象。

糖化的温度和pH值决定于所用糖化酶制剂的性质。曲霉一般用60℃,pH值4.O~4.5,根霉用55℃,pH值5.O。根据酶的性质选用较高的温度,可使糖化速度较快,感染杂菌的危险较小。选用较低的pH值,可使糖化液的色泽浅,易于脱色。加入糖化酶之前要注意先将温度和pH值调节好,避免酶与不适当的温度和pH值接触,活力受影响。在糖化反应过程中,pH值稍有降低,可以调节pH值,也可将开始的pH值稍高一些。

达到最高的葡萄糖值以后,应当停止反应,否则,葡萄糖值趋向降低,这是因为葡萄糖发生复合反应,一部分葡萄糖又重新结合生成异麦芽糖等复合糖类。这种反应在较高的酶浓度和底物浓度的情况下更为显著。葡萄糖淀粉酶对于葡萄糖的复合反应具有催化作用。

糖化液在80℃,受热20 min,酶活力全部消失。实际上不必单独加热,脱色过

程中即达到这种目的。活性炭脱色一般是在80℃保持30 min,酶活力同时消失。

提高用酶量,糖化速度快,最终葡萄糖值也增高,能缩短糖化时问。但提高有一定的限度,过多反而引起复合反应严重,导致葡萄糖值降低。

第四节精制和浓缩

淀粉糖化液的糖分组成因糖化程度而不同,如葡萄糖、低聚糖和糊精等,另外还有糖的复合和分解反应产物、原存在于原料淀粉中的各种杂质、水带来的杂质以及作为催化剂的酸或酶等,成分是很复杂的。这些杂质对于糖浆的质量和结晶、葡萄糖的产率和质量都有不利的影响,需要对糖化液进行精制,以尽可能地除去这些杂质。

糖化液精制的方法,一般采用碱中和、活性炭吸附、脱色和离子交换脱盐。

一、中和

采用酸糖化工艺,需要中和,酶法糖化不用中和。使用盐酸作为催化剂时,用碳酸钠中和;用硫酸作为催化剂时,用碳酸钙中和。在这里并不是中和到真正的中和点(pH=7.O),而是中和大部分催化用的酸,同时调节pH值到胶体物质的等电点。糖化液中蛋白质类胶体物质在酸性条件下带正电荷,当糖化液被逐渐中和时,胶体物质的正电荷也逐渐消失,当糖化液的pH值达到这些胶体物质的等电点(pH=4.8~5.2)时,电荷全部消失,胶体凝结成絮状物,但并不完全。若在糖化液中加入一些带负电荷的胶性黏土如膨润土为澄清剂,能更好地促进蛋白质类物质的凝结,降低糖化液中蛋白质的含量。

二、过滤

过滤就是除去糖化液中的不溶性杂质,目前普遍使用板框过滤机,同时最好用硅藻土为助滤剂,来提高过滤速度,延长过滤周期,提高滤液澄清度。一般采用预涂层的办法,以保护滤布的毛细孔不被一些细小的胶体粒子堵塞。

为了提高过滤速率,糖液过滤时,要保持一定的温度,使其黏度下降,同时要正确地掌握过滤压力。因为滤饼具有可压缩性,其过滤速度与过滤压力差密切相关。但当超过一定的压力差后,继续增加压力,滤速也不会增加,反而会使滤布表面形成一层紧密的滤饼层,使过滤速度迅速下降。所以过滤压力应缓慢加大为好。不同的物料,使用不同的过滤机,其最适压力要通过试验确定。

三、脱色

糖液中含有的有色物质和一些杂质必须除去,才能得到澄清透明的糖浆产品。工业上一般采用骨炭和活性炭脱色。活性炭又分颗粒和粉末炭2种。骨炭和颗粒炭可以再生重复使用,但因设备复杂,仅在大型工厂使用。一般中小型工厂使用粉末活性炭,重复使用2或3次后弃掉,成本高,但设备简单,操作方便。

1 脱色工艺条件

1)糖液的温度

活性炭的表面吸附力与温度成反比,但温度高,吸附速率快。在较高温度下,糖液黏度较低,加速糖液渗透到活性炭的吸附内表面,对吸附有利。但温度不能太高,以免引起糖的分解而着色,一般以80℃为宜。

2)pH值

糖液pH值对活性炭吸附没有直接关系,但一般在较低pH值下进行,脱色效率较高,葡萄糖也稳定。工业上均以中和操作的pH值作为脱色的pH值。

3)脱色时间

一般认为吸附是瞬间完成的,为了使糖液与活性炭充分混合均匀,脱色时间以25~30 min为好。

4)活性炭用量

活性炭用量少,利用率高,但最终脱色差;用量大,可缩短脱色时间,但单位质量的活性炭脱色效率降低。因此要恰当掌握,一般采取分次脱色的办法,并且前脱色用废炭,后脱色用好炭,以充分发挥脱色效率。

2 脱色设备

糖液脱色是在具有防腐材料制成的脱色罐内完成的。罐内设有搅拌器和保温管,罐顶部有排汽筒。脱色后的糖液经过滤得到无色透明的液体。

四、离子交换树脂处理

糖液经活性炭处理后,仍有部分无机盐和有机杂质存在,工业上采用离子交换树脂处理糖液,起到离子交换和吸附的作用。离子交换树脂除去蛋白质、氨基酸、羟甲基糠醛和有色物质等的能力比活性炭强。经离子交换树脂处理的糖液,灰分可降低到原来的1/10,对有色物质去除彻底,因而,不但产品澄清度好,而且久置也不变色,有利于产品的保存。

离子交换树脂分为阳离子交换树脂和阴离子交换树脂两种,目前普遍应用的工艺为阳一阴一阳一阴4只滤床,即2对阳、阴离子交换树脂滤床串联使用。

五、浓缩

经过净化精制的糖液,浓度比较低,不便于运输和储存,必须将其中大部分水分去掉,即采用蒸发使糖液浓缩,达到要求的浓度。

淀粉糖浆为热敏性物料,受热易着色,所以在真空状态下进行蒸发,以降低液体的沸点。一般蒸发温度不宜超过68℃。蒸发操作有间歇式、连续式和循环式3种。

采用间歇式蒸发,糖液受热时间长,不利于糖浆的浓缩,但设备简单,最终浓度容易控制,有的小型工厂还在采用。

采用连续式蒸发,糖液受热时间短,适应于糖液浓缩,处理量大,设备利用率高,但最终浓度控制不易,在浓缩比很大时难于一次蒸发达到要求。

采用循环式蒸发可使一部分浓缩液返回蒸发器,物料受热时间比间歇式短,浓度也较易控制,适合糖液的浓缩。蒸发操作中的主要费用是蒸汽消耗量,为了节约蒸汽,可采用多效蒸发,充分利用二次蒸汽,又节约大量的冷却用水。

国外淀粉糖行业发展简介

美国生产淀粉糖已有150多年历史,是世界最大的淀粉糖生产国家,从美国淀粉糖发展历史来看,1850年 开始生产酸转化糖浆,1921年起生产结晶葡萄糖,1930年有了酸酶法工艺,1963年利用离子交换技术精制糖液再用喷雾干燥生产全糖粉,1965年用β淀粉酶生产高麦芽糖浆,1966年麦芽糊精投入生产,196 8年42% 果葡糖浆在食品上得到广泛应用,1976年又开发了第二代55%果葡糖浆,1981年又开始生产 结晶果糖和含20%~50%果糖的各种糖浆。 淀粉糖生产过程需经过高温液化,活性炭脱色,离子交换等一系列净化工艺,所以淀粉糖及其食品一直是美国市场上的放心食品,但自从2001年9月11日美国发生恐怖事件后,食品的安全问题成为第一大事。美国政府下达了一系列有关食品安全和防止恐怖分子破坏的法规,美国国内安全部、农业部、疾病防治中心和食品医药管理部门加强了这方面的管理,加强检查有意或无意造成食品污染的问题,实行从玉米开始直到产品销售到用户桌上(Farm-to-table)的全过程管理,并强调食品安全是所有管理中的首要问题。政府要求工厂周围修建围墙或隔离措施并装有摄像机监控,每个职工进厂或访问者来厂时保卫人员要核对身份证件和照片,厂区增加保卫人员,手边应有一部应急电话,随时检查进入厂区,或靠近设备、设施的各种车辆,发现有可疑活动时,立即报告执法部门,工厂应限制或减少外人来工厂内的活动如参观,学术交流等,对新雇用员工或临时工作人员要事前查阅有关人事资料,工厂生产全部实行GMP和全面质量管理系统,工厂装置如贮槽,反应罐,各类容器等须完全封闭防止异物落入,所有生产设备、建筑、用具等要经过卫生处理并保持良好,车间上空不准有灯泡、日光灯、玻璃等易碎物品,防止落入加工产品中。美国玉米总产量中约1/5供应湿磨工厂, 美国农业部要求选择霉菌污染尽量少的玉米,其质量要符合美国玉米分级标准,重点控制霉菌毒素,霉菌毒素是致癌的,由霉菌生,玉米因气候影响在生长过程,以及后来收割、仓库贮存中,都会生长霉菌,所以应在收割时就对玉米进行霉菌和霉菌毒素检出,玉米进厂后仍要再取样检验,对霉菌毒素高的玉米一律加以拒收。在成品包装灌装和运输方面,对每个容器必需进行清洁卫生检查,每个容器必需经180℉水连续冲洗15分钟,然后再检查一次,如果冲洗过的容器超过24小时尚未装货,就必须再—次冲洗和检查,一旦容器灌装后,立即加封;产品到用户如发现密封有问题,或封印破碎,应予退回。美国各淀粉和淀粉糖生产厂都有市场服务部专门处理产品质量、补偿和撤换等工作,上述一系列安全措施必需有政府部门,玉米种植者,玉米加工工厂,批发商和零售业的紧密合作,其目的是保证食品的安全。 一、美国淀粉糖品种 美国淀粉糖品种很多,基本上可分为五大类 1、各种DE值淀粉糖浆(也称传统糖浆):包括麦芽糖浆和高麦芽糖浆,采用酸法、酸酶法、双酶法或几种酶合并糖化的工艺,几乎能随意控制糖分组成,符合用户应用的要求。生产量最大的是酸法中转化糖浆,DE值38~42,酸法生产工艺流程短,设备简单,不需要酶,成本低,酸法工艺可控制转化程度到DE值55,具有较高甜度,超过此DE值会产生带有苦味的物质,甜味不纯。高转化糖浆DE值一般在60 ~70,采用酸酶法,麦芽糖浆DE值42~49,麦芽糖含量从40%一52%,如要高含量麦芽糖或高DE值葡萄糖糖浆就采用双酶法工艺,糖浆的化学、物理性质及其功能特性随DE值高低而不同,所以美国根据应用将糖浆分成四个类型。 ①DE20一30 糖浆,高粘度、低甜度,适合婴儿奶制品中的辅料以及咖啡类制品喷雾干燥时的助剂。 ②E36 ,DE42,DE62,这三种糖浆可用于糖果生产,但生产硬糖,糖浆中葡萄糖含量要低,麦芽糖含量要高。DE36,DM7糖浆也适用于冰淇淋和冷冻甜食,DE62糖浆高甜度,低估度也适用于果酱、蜜饯、果冻。 ③DE62-70 糖浆具有吸湿性,适用于水果伯头和罐头食品。 ④DE70以上糖浆适用于酵母发酵制品,糕点、蛋糕、甜饼干,这类糖浆能控制温度、甜度和延长食品的保质期。也有干燥低DE值淀粉糖浆而得的粉状产品。

淀粉糖的生产工艺和种类

淀粉糖的生产工艺和种类 生产工艺有酸法、酶法、酸酶法三种,不同的工艺,其甜度、胶粘性、增稠性、保潮性、吸湿性、渗透压力、颜色稳定性、焦化性、还原性、发酵性是不同的,不管哪种工艺都是一个复杂的水解过程。淀粉水解过程存在三种主要反应:一是水解为葡萄糖;二是水解成葡萄糖后重新复合成异麦芽糖等复合糖;三是葡萄糖分解生成5-烃甲基糖醛及酸丙酸色素物质。 1.酸法水解。有盐酸、草酸,其中盐酸的水解淀粉能力高,但酸法水解缺乏专一性,同时产生复合反应,温度愈高,复合反应愈多,生成的有色物质多,颜色深,用酸量多,需中和碱量大,因之产生的灰分也多。 2.酶法水解。具有高度的专一性,副产物少,纯度高,糖色浅,因之减少了净化工序和净化剂的用量,与酸法相比,可以转化较高浓度的固形物,提高效率,减少损耗,降低成本,所得母液还可以利用,而且在常温常压下进行,设备工艺都比较简单。 3.酸酶法。投料资度18~20Bx°,为酸法的两倍,节省费用,缩短时间,DE 值(糖化率)可达96%,纯度高,糖液色浅,容易结晶析出,用酸量少,仅为酸法的20%,产品质量高。 淀粉糖产品由于是淀粉水解而得,因此,淀粉水解的速度、水解的程度、液化、糖化、净化、结晶、淀粉原料、催化效率以及工艺设备性能等,均能影响淀粉糖液的质量。淀粉品种不同,化学结构不同,对液化亦有不同的影响。淀粉中的蛋白质、脂肪、灰分等杂质均能影响催化效率,降低酸的有效浓度,尤其是淀粉中的含氮物质对热稳定性有明显的影响。硫酸铵受热分解产生氮与羧甲基糠醛作用,能产生大量有色物质,迅速焦化。玉米中的植酸盐要消耗部分酸。总之不

管什么液化方法,都存在不溶性淀粉颗粒,这种淀粉颗粒能与脂肪形成络合物,呈螺旋结构,不容易水解,降低了糖化率。 淀粉糖浆种类和品种目前,工业生产上按葡萄糖转化值(DE),把淀粉糖分成若干种,见89页表。 按液体葡萄糖值,还可以分为高转化糖浆(DE60~70)、中转化糖浆(DE38~42)、低转化糖浆(DE20以下)。产品品种有: 1.麦芽糖。是由两个单分子葡萄糖构成的双糖,其甜度低,热稳定性高于葡萄糖,通过氧化反应可以得到葡萄糖和其它低聚糖,还可以转化为麦芽糖醇、葡萄糖醇等。麦芽糖熬糖温度为155℃。比普通熬糖温度高。 2.低聚糖。系指麦芽三糖、四糖,其DE值低,粘度高,吸湿性差,适用于制作硬糖果、雪糕、糕点等等。 名称 DE 甜味 粘度 结晶性 结晶抑制作用 吸湿性 溶液冰点 平均分子量 结晶葡萄糖 99.3~100

淀粉糖品生产与应用手册

淀粉糖品生产与应用手册 尤新主编 前言 随着科学技术的迅速发展,淀粉糖品的内涵赋予了全新的内容,特别是生物技术的进展,不仅使淀粉糖生产工艺有了新的突破,实现了高温喷射液化和快速糖化,使淀粉糖化的转化率大幅度提高,糖液DE值从90%-92%提高到97%-98%。既节约了粮食又提高了纯度,从而使酶法糖化也能生产针剂葡萄糖,而且生物技术也使淀粉糖衍生物的品种增加,功能增加。过去淀粉糖主要是作为食品工业的甜味料,为增加甜食品的花色品种和提高档次作出贡献。随着麦芽糖醇和山梨醇等糖醇的出现,市场上防龋齿食品和糖尿病人专用的无糖食品也迅速发展。近年来由于酶技术的进展,使淀粉糖品的大家庭中又增加了低聚糖新成员,使淀粉糖品不仅有甜味,能防龋,能作糖尿病人的食品,而且对人体肠道有益的双歧杆菌有增殖作用。从而提高了人体健康素质。最近科技界又成功地从淀粉研制成了多糖及海藻等具有特种生理的淀粉糖品,从此淀粉糖品将会对人类健康发挥更大的作用。 为了使淀粉糖行业的广大职工及使用淀粉糖品的食品加工业的职工和广大消费者了解我国淀粉糖品的发展现状,淀粉糖品的性质、生产技术和用途,中国发酵工业协会特组织了全国从事多年淀粉糖品研制开发和生产的专家,经过一年多的辛勤总结和编写,完成了这部淀粉糖品最新的实用生产技术手册。各章节由下列人员执笔。 第一章淀粉原料及生产赵继湘教授级高级工程师,陈光熹教授级高级工程师 第二章淀粉糖品生产用酶制剂王家勤高级工程师,冯德清高级工程师。 第三章双酶法液化糖化技术王兆光副教授 第四章麦芽糊精的生产及应用卢义成工程师

第五章酸法葡萄糖李含明高级工程师 第六章麦芽糖浆、高麦芽糖浆、麦芽糖胡学智教授级高级工程师 第七章果葡糖浆何开祥教授级高级工程师 第八章结晶葡萄糖佟毓芳高级工程师 第九章全糖尤新教授级高级工程师 第十章低聚糖金其荣教授 第十一章海藻糖陈瑞娟高级工程师 第十二章糖醇尤新教授级高级工程师 附录一余淑敏工程师、王家勤高级工程师 附录二赵继湘教授级高级工程师 附录三赵继湘教授级高级工程师 此外,手册还附有国内外淀粉糖品的技术经济资料和淀粉糖品的生产技术理化参数,可以说这是我国改革开放以来国内自行编写的第一部淀粉糖品技术手册。它既有我国传统的淀粉糖品,也有发展中的糖品,还有新近研究中的各种淀粉糖品。它不仅适用于科教,生产第一线的工作人员学习参考,同时也可作为各级管理部门和各地各级政府制订淀粉糖品规划的重要参考资料。 本书中凡成分、含量、浓度等以%表示的,一般均指质量分数(%)。 在淀粉糖品生产技术手册即将出版之际,谨代表中国发酵工业协会,对参与编写的各位专家和为出版手册付出辛勤劳动的所有人员,表示衷心地感谢。 由于本手册内容丰富,涉及面广,编辑时间又较紧,所以,书中的差错在所难免。敬请广大读者批评指正。

淀粉糖产品入库出库计量管理控制规定

淀粉糖产品 入库、出库计量管理 控制规定 编制人:编制时间: 审核人:审核时间: 批准人:批准时间:

二〇一三年七月目录

淀粉糖产品入库、出库 计量管理控制规定 一、目的 为加强产品管理,进一步规范物资的安全,维护公司资产的完整,特制定本制度。 二、术语解释 本文所指的淀粉糖产品为药业公司目前分管生产销售的食用一水葡萄糖、药用一水葡萄糖、药用无水葡萄糖、葡萄糖酸钠、果糖。 本规定中根据各类淀粉糖的不同特性进行分别界定。 三、淀粉糖产品的计量管理控制点 主要为生产包装间的计量控制(包装袋的使用、包装秤校准、皮重偏差、质检抽检)、入库件数清点交接、出库过磅复检、门卫管理控制、盘点控制等。 四、生产包装间的计量控制

(一)包装物的单耗控制 1、车间统计员根据生产计划和批包装指令等规定的包装物类别、用量,通过“EAS系统/供应链管理/库存管理”模块中的出库业务,新增领料申请流程(填写物料编码、数量、发货组织),提交至厂长审核。 注:食用糖二厂、食用糖三厂、酸钠厂由中班领用中班和夜班所需包装物;果糖厂由早班领用当天所需包装物;一水糖厂、无水糖厂各班分别领用,夜间领用时,包装主操开具纸质领料单(见附表1),经带班长审核后先领用,第二天早上提交EAS领料申请。 2、包装主操依据经厂长审核后的领料申请,到物管仓库领取物料。 注:食用糖二厂、食用糖三厂、酸钠厂、果糖厂持打印出的纸质版领料申请(见附表2),到物管仓库领料。

3、仓库保管员依据EAS系统中的领料申请,找出所领包装物。装车过程中,保管员要现场监督,包装物出现破损不得发放。 4、物料发放后,仓库保管员通过EAS系统开具“领料出库单”(见附表3),填写物料分类保管帐(见附表4)。出库单一式三联,第一联物管部留存,第二联财务部留存,第三联生产厂留存。 5、生产厂由厂长直接负责建立《包装袋使用控制表》(见附表5),当班主操对包装袋的领用、使用、结存、损耗情况进行登记,并详细说明损耗原因,由成品主任审核,质量部QA确认。特别是损耗必须经过必要的程序和权限审批通过方可处理,做到班清日结。 包装袋损耗处理程序包括: ①包装袋质量不合格(有异物或不结实)。发现者通知包装主操,由包装主操将不合格数量填写至《包装袋使用控制表》,并电话报至成品主任、

淀粉糖工艺培训教材(doc 106页)

淀粉糖工艺培训教材(doc 106页)

第一章淀粉糖概述 第一节淀粉糖发展史 淀粉糖是利用淀粉为原料生产的糖品的总称,产品种类多,生产历史悠久。1811年德国化学家柯乔夫(Kirchoff)用硫酸处理马铃薯淀粉,原意是制造可能替代阿拉伯树胶用胶粘剂,但酸的作用过度,所得产物为粘度很低的液体,澄清,具有甜味。柯乔夫经过研究将其制成一种糖浆,放置一段时间后有结晶析出,用布袋装盛,压榨,除去大部分母液,得固体产品,即较为粗糙的结晶糖产品。 由淀粉制糖的化学反应称为水解反应,完全水解的最终产品与葡萄果汁中的葡萄糖成分完全相同。这个事实被一位法国化学家沙苏里于1815年确定。在19世纪初,法国人曾研究用许多种原料制糖,1801年朴罗斯特试验成功由葡萄汁提制出葡萄糖,葡萄糖的名称便由此得来,一直沿用到现在。 19世纪曾有很多人从事制造结晶葡萄糖的研究,但成就不大,主要是对于葡萄糖的几种异构体的化学及结晶规律缺乏了解的缘故,沿用蔗糖结晶的方法,困难很多。淀粉糖的生产主要为糖浆和包含糖蜜的固体糖,少量的结晶葡萄糖产品是用有机溶剂重复结晶而得,纯度也相当高,但是成本高,不能大量生产。 大约于1920年美国人牛柯克(Newkirk)发现含水α-葡萄糖比无水α-葡萄糖容易结晶,使用25%-30%湿晶种的冷却结晶法容易控制,所得结晶产品易于用离心机分离,产品质量高,被世界各国普遍采用,现在工业基本上还应用此结晶工艺。 应用麦芽生产饴糖虽已有很悠久的酶法技术,但近年来淀粉酶制剂和技术大发展,促进了淀粉制糖工业大发展。约于1940年美国开始采用酸酶合并糖化工艺生产糖浆,能避免葡萄糖的复合和分解反应,产品甜味纯正。约于1960年日本开始用淀粉酶液化和葡萄糖酶糖化的双酶法生产结晶糖工艺,并被各国普遍采用,逐渐淘汰了酸法制糖工艺。这种双酶法所得糖化液纯度高、甜味纯正,能省去结晶工序直接制成全糖,工艺简单,生产成本低,质量虽不及结晶葡萄

酶工程实验大纲

湖北大学 酶工程实验 (0818800193)实验教学大纲 (第2版) 生命科学学院 生化教研室 2014年7月

前言 课程名称:酶工程实验实验学时:16学时 适用专业:生物工程课程性质:必修 一、实验课程简介 酶工程是生物工程的主要内容之一,是现代酶学和生物工程学相互结合而发展起来的一门新的技术学科。它将酶学、微生物学的基本原理与化工、发酵等工程技术有机结合起来,并随着酶学研究的迅速发展,特别是酶的广泛应用而在国民生产生活中日益发挥着越来越重要的作用。酶工程实验课是生物工程等本科实验教学的一个重要组成部分,通过实验教学可以加强学生对酶工程基本知识和基本理论的理解,掌握现代酶学与相关技术的有关的基本的实验原理与技能。在实验过程中要求学生自己动手,分析思考并完成实验报告。酶工程实验性质有基础性、综合性、设计(创新)性三层次。 二、课程目的 本实验课程主要根据酶工程的三大块内容即酶的生产、酶的改性与酶的应用来设计安排实验,通过这些实验内容,使学生深入理解酶工程课程的基本知识;巩固和加深所学的基本理论;掌握酶工程中基本的操作技能。同时,通过实验培养学生独立观察、思考和分析问题、解决问题和提出问题的能力,养成实事求是、严肃认真的科学态度,以及敢于创新的开拓精神;并在实验中进一步提高学生的科学素养。 三、考核方式及成绩评定标准 考核内容包括实验过程中的操作情况,实验记录及结果的准确性,实验报告的书写及结果分析,思考题的回答情况,仪器设备的使用情况及遵守实验室规章制度的情况等,根据这些方面进行成绩评判和记录,综合给出实验总成绩。 四、实验指导书及主要参考书 1.魏群:生物工程技术实验指导,高等教育出版社,2002年8月。 2.禹邦超:酶工程(附实验),华中师范大学出版社,2007年8月 五、实验项目

淀粉糖生产工艺及设备

淀粉糖生产工艺及设备 1、淀粉糖:凡是以淀粉为原料生产的糖统称为淀粉糖。 2、应用:淀粉糖主要应用于食品工业,医药工业和化学工业。 食品工业主要应用于面包、谷物、食品、糖品、雪糕和乳制品、饮料、罐头、果酱等。 医药工业:有食品级和医药两种。口服糖标准低于医药级,同时有的还加入维生素、钙质等以提高营养供病人、老人、儿童服用。 葡萄糖同时还是重要的化工原料,是生产山梨醇、革露醇、维生素丙、维生素C、葡萄糖酸、葡萄糖醛、味精、洒精、醋酸等各种产品的原料,广泛地应用工业。 淀粉糖生产工艺分三种:酸法、酸酶法、双酶法。酶液化和酶糖化工艺称为双酶法。其特点是:反应条件温和,复合分解反应较少,淀粉转化率高。 二、淀粉的理化性质 1、物理性质:淀粉呈白色粉末,显微镜下呈大小不一的透明小颗粒。1kg 玉米淀粉大约有17000亿个颗粒,有圆形、椭圆形和三角形。玉米淀粉的颗料多为圆形和多角形,椭圆形较少。 玉米淀粉颗粒是5~30微米,平均为15微米。 2、糊化:淀粉乳受热膨胀,晶体结构消失,体积涨大,互相接触,变成粘稠糊状液体,虽停止搅拌,淀粉也不会沉淀,此现象称为糊化。玉米的糊化温度62~72℃。 糊化作用的本质是淀粉中有序(晶体)和无序(非晶质)态的淀粉分子间的氢键断裂,分散在水中成为亲水性胶体溶液。 3、化学结构:淀粉是由葡萄糖组成的多糖,分子式(C6H12O5)n,淀粉由支链和直链淀粉组成。玉米淀粉中直链占27%。 淀粉遇碘产生蓝色反应,加热到约70℃蓝色消失,冷却后又重现蓝色,这种蓝色反应是物理反应。 聚合度是指直链淀粉分子的葡萄糖单位数目。聚合度(DP)4~6时遇碘不变色,8~12变红,大于15时变蓝。

淀粉糖品生产与应用手册

淀粉糖品生产与应用手册 令狐采学 尤新主编 前言 随着科学技术的迅速发展,淀粉糖品的内涵赋予了全新的内容,特别是生物技术的进展,不仅使淀粉糖生产工艺有了新的突破,实现了高温喷射液化和快速糖化,使淀粉糖化的转化率大幅度提高,糖液DE 值从90%92%提高到97%98%。既节约了粮食又提高了纯度,从而使酶法糖化也能生产针剂葡萄糖,而且生物技术也使淀粉糖衍生物的品种增加,功能增加。过去淀粉糖主要是作为食品工业的甜味料,为增加甜食品的花色品种和提高档次作出贡献。随着麦芽糖醇和 令狐采学创作

山梨醇等糖醇的出现,市场上防龋齿食品和糖尿病人专用的无糖食品也迅速发展。近年来由于酶技术的进展,使淀粉糖品的大家庭中又增加了低聚糖新成员,使淀粉糖品不仅有甜味,能防龋,能作糖尿病人的食品,而且对人体肠道有益的双歧杆菌有增殖作用。从而提高了人体健康素质。最近科技界又成功地从淀粉研制成了多糖及海藻等具有特种生理的淀粉糖品,从此淀粉糖品将会对人类健康发挥更大的作用。 为了使淀粉糖行业的广大职工及使用淀粉糖品的食品加工业的职工和广大消费者了解我国淀粉糖品的发展现状,淀粉糖品的性质、生产技术和用途,中国发酵工业协会特组织了全国从事多年淀粉糖品研制开发和生产的专家,经过一年多的辛勤总结和编写,完成了这部淀粉糖品最新的实用生产技术手册。各章节由下列人员执笔。 令狐采学创作

第一章淀粉原料及生产赵继湘教授级高级工程师,陈光熹教授级高级工程师 第二章淀粉糖品生产用酶制剂王家勤高级工程师,冯德清高级工程师。 第三章双酶法液化糖化技术王兆光副教授 第四章麦芽糊精的生产及应用卢义成工程师 第五章酸法葡萄糖李含明高级工程师 第六章麦芽糖浆、高麦芽糖浆、麦芽糖胡学智教授级高级工程师 第七章果葡糖浆何开祥教授级高级工程师 第八章结晶葡萄糖佟毓芳高级工程师 第九章全糖尤新教授级高级工程师 令狐采学创作

塔格糖行业标准编制说明

《塔格糖》行业标准(征求意见稿)编制说明 一.工作简况 1.任务来源 D-塔格糖(D-tagatose)属于稀有糖的一种,是一种罕见的天然己酮糖,甜味类似于蔗糖,而热量值只有1.5kcal/g,仅相当于蔗糖热量值的30%;10%(w/w)浓度D-塔格糖甜度为蔗糖的92%,没有后味也不会产生任何不良风味,是FDA批准的5种低能量甜味剂中唯一一个口感、甜度和蔗糖最相似的甜味剂。D-塔格糖具有低热量、降血糖、调节肠道菌群、防龋齿、抗衰老作用、防止心血管疾病等功效,本标准项目属于战略性新兴产业中的生物技术领域,及时制定标准规范非常重要。 2001年美国食品与药物管理局(FDA)已正式批准D-塔格糖作为甜味剂用于食品饮料业以及医药制剂中;JECFA第57次会议批准D-塔格糖用于食品添加,推荐ADI值0—80 mg/kg:欧盟也于2005年12月批准D-塔格糖在欧洲上市;目前D-塔格糖在美国已被大量用于健康饮料以及酸奶、果汁等产品中作为白糖的代用品。D-塔格糖产品目前已获得美国、澳大利亚、日本、韩国、新西兰等食品卫生部门批准使用,在我国仍未获得产业化。本标准国内首次制定。 本标准由中国生物发酵产业协会于2011年组织上报,被工业和信息化部列入2011年第三批行业标准制修订计划,本标准由中国轻工业联合会提出,全国食品工业标准化技术委员会(SAC/TC64)归口,计划号为2011-2447T-QB,计划名称为《结晶塔格糖》,后调整为《塔格糖》。 2.简要起草过程 2011年10月工信部标准制修订计划下达后,中国生物发酵产业协会于2012年3月15日召开了标准启动工作会议,和有关起草单位一同针对制定《结晶塔格糖》行业标准的具体工作进行了认真研究,确定了总体工作方案,并组建了标准起草工作小组,中国生物发酵产业协会牵头组织该标准的制定工作,山东绿健生物技术有限公司作为主起草单位,负责写出标准文本(第一稿)。按照具体工作时间和进度,2012年6月15日,中国生物发酵产业协会在北京组织召开《结晶塔格糖》行业标准第二次起草工作组会议。针对标准文本(第一稿)进行讨论,会后,综合各方意见,整理修改成标准文本(第二稿)。之后,进行了大量样品检验,完成数据汇总分析,为标准方法的确定提供了有力依据,标准名称调整为《塔

淀粉糖工艺培训教材(106页)

第一章淀粉糖概述 第一节淀粉糖发展史 淀粉糖是利用淀粉为原料生产的糖品的总称,产品种类多,生产历史悠久。1811年德国化学家柯乔夫()用硫酸处理马铃薯淀粉,原意是制造可能替代阿拉伯树胶用胶粘剂,但酸的作用过度,所得产物为粘度很低的液体,澄清,具有甜味。柯乔夫经过研究将其制成一种糖浆,放置一段时间后有结晶析出,用布袋装盛,压榨,除去大部分母液,得固体产品,即较为粗糙的结晶糖产品。 由淀粉制糖的化学反应称为水解反应,完全水解的最终产品与葡萄果汁中的葡萄糖成分完全相同。这个事实被一位法国化学家沙苏里于1815年确定。在19世纪初,法国人曾研究用许多种原料制糖,1801年朴罗斯特试验成功由葡萄汁提制出葡萄糖,葡萄糖的名称便由此得来,一直沿用到现在。 19世纪曾有很多人从事制造结晶葡萄糖的研究,但成就不大,主要是对于葡萄糖的几种异构体的化学及结晶规律缺乏了解的缘故,沿用蔗糖结晶的方法,困难很多。淀粉糖的生产主要为糖浆和包含糖蜜的固体糖,少量的结晶葡萄糖产品是用有机溶剂重复结晶而得,纯度也相当高,但是成本高,不能大量生产。 大约于1920年美国人牛柯克()发现含水α-葡萄糖比无水α-葡萄糖容易结晶,使用2530%湿晶种的冷却结晶法容易控制,所得结晶产品易于用离心机分离,产品质量高,被世界各国普遍采用,现在工业基本上还应用此结晶工艺。 应用麦芽生产饴糖虽已有很悠久的酶法技术,但近年来淀粉酶制剂和技术大发展,促进了淀粉制糖工业大发展。约于1940年美国开始采用酸酶合并糖化工艺生产糖浆,能避免葡萄糖的复合和分解反应,产品甜味纯正。约于1960年日本开始用淀粉酶液化和葡萄糖酶糖化的双酶法生产结晶糖工艺,并被各国普遍采用,逐渐淘汰了酸法制糖工艺。这种双酶法所得糖化液纯度高、甜味纯正,能省去结晶工序直接制成全糖,工艺简单,生产成本低,质量虽不及结晶葡萄糖,但适用于若干种食品工业应用。 我国淀粉制糖历史悠久。首先发明了利用麦芽和米制糖的酶法工艺,麦芽中

酶工程实验一

实验目的:①、了解掌握双酶法制备淀粉糖。 ②、掌握用3,5-二硝基水杨酸法测定葡萄糖含量的方法。 目前国内外淀粉糖的生产大都采用双酶法。双酶法生产淀粉糖是以淀粉为原料,先经α-淀粉酶液化成糊精,再用糖化酶催化生成淀粉糖浆。α-淀粉酶又称为液化型淀粉酶,它作用于淀粉时,随机地从淀粉分子内部切开α-1,4葡萄糖苷键,使淀粉水解成糊精和一些还原糖。糖化酶又称为葡萄糖淀粉酶,它作用于淀粉时,从淀粉分子的非还原端开始逐个地水解α-1,4葡萄糖苷键,生成葡萄糖和一些低聚糖。且糖化酶还有一定的水解α-1,6葡萄糖苷键和α-1,3葡萄糖苷键的能力。 1.仪器:恒温水浴器、烧杯、玻璃棒、天平、量筒及其他常规仪器用具。 2.试剂:生粉、α-淀粉酶、糖化酶、0。1mol/L HCI、无水CaCl2、。碘液、活性炭。1.液化: 取12g生粉,加150mL水配制成淀粉浆,加入0.1gCaCl2,2gα-淀粉酶,在75℃温度下保温45min,使淀粉液化成糊精。液化中可每隔3分钟搅拌一下, 每隔15分钟用碘反应检测,观察颜色变为褐色或棕色的情况,记录观察结果。45min后升温至100℃并保温10min。 2.糖化: 将液化淀粉液冷却至55℃~60℃,用0.1m1/LHCl调pH至4.5~5.0,加入0.5g糖化酶,将水浴槽温度升至60℃,保温糖化过夜,使糊精转变为葡萄糖和低聚糖(淀粉糖浆)。 3.脱色: 淀粉糖浆中加入1g活性炭,在80℃下搅拌15min后,抽滤,得浅黄色透明糖液。 4. 所得糖液中葡萄糖含量的测定。取1 m1滤液,加水稀释到10ml,用3,5-二硝基水杨酸法测定葡萄糖含量。

a=(0.406-0.0648)/0.5341=0.64 b=(0.395-0.0648)/0.5341=0.62 实验现象观察 1 6 7 思考题: 1液化时加入0.1gCaCl2的目的是什么? 答:钙离子有提高热稳定性的作用。 2液化后冷却和调pH的目的是什么? 答:盐酸容易挥发,所以要冷却。 调ph是为了提供酶催化的环境。

淀粉糖的生产制作工艺和种类模板

淀粉糖的生产制作工艺和种类模板

淀粉糖的生产工艺和种类 生产工艺有酸法、酶法、酸酶法三种, 不同的工艺, 其甜度、胶粘性、增稠性、保潮性、吸湿性、渗透压力、颜色稳定性、焦化性、还原性、发酵性是不同的, 不论哪种工艺都是一个复杂的水解过程。淀粉水解过程存在三种主要反应: 一是水解为葡萄糖; 二是水解成葡萄糖后重新复合成异麦芽糖等复合糖; 三是葡萄糖分解生成5-烃甲基糖醛及酸丙酸色素物质。 1.酸法水解。有盐酸、草酸, 其中盐酸的水解淀粉能力高, 但酸法水解缺乏专一性, 同时产生复合反应, 温度愈高, 复合反应愈多, 生成的有色物质多, 颜色深, 用酸量多, 需中和碱量大, 因之产生的灰分也多。 2.酶法水解。具有高度的专一性, 副产物少, 纯度高, 糖色浅, 因之减少了净化工序和净化剂的用量, 与酸法相比, 能够转化较高浓度的固形物, 提高效率, 减少损耗, 降低成本, 所得母液还能够利用, 而且在常温常压下进行, 设备工艺都比较简单。 3.酸酶法。投料资度18~20Bx°, 为酸法的两倍, 节省费用, 缩短时间, DE值( 糖化率) 可达96%, 纯度高, 糖液色浅, 容易结晶析出, 用酸量少, 仅为酸法的20%, 产品质量高。淀粉糖产品由于是淀粉水解而得, 因此, 淀粉水解的速度、水解的程度、液化、糖化、净化、结晶、淀粉原料、催化效率以及工艺设备性能等, 均能影响淀粉糖液的质量。淀粉品种不同, 化学结构不同, 对液化亦有不同的影响。淀粉中的蛋白质、脂肪、灰分

等杂质均能影响催化效率, 降低酸的有效浓度, 特别是淀粉中的含氮物质对热稳定性有明显的影响。硫酸铵受热分解产生氮与羧甲基糠醛作用, 能产生大量有色物质, 迅速焦化。玉米中的植酸盐要消耗部分酸。总之不论什么液化方法, 都存在不溶性淀粉颗粒, 这种淀粉颗粒能与脂肪形成络合物, 呈螺旋结构, 不容易水解, 降低了糖化率。淀粉糖浆种类和品种当前, 工业生产上按葡萄糖转化值( DE) , 把淀粉糖分成若干种, 见89页表。按液体葡萄糖值, 还能够分为高转化糖浆( DE60~70) 、中转化糖浆( DE38~42) 、低转化糖浆( DE20以下) 。产品品种有: 1.麦芽糖。是由两个单分子葡萄糖构成的双糖, 其甜度低, 热稳定性高于葡萄糖, 经过氧化反应能够得到葡萄糖和其它低聚糖, 还能够转化为麦芽糖醇、葡萄糖醇等。麦芽糖熬糖温度为155℃。比普通熬糖温度高。 2.低聚糖。系指麦芽三糖、四糖, 其DE值低, 粘度高, 吸湿性差, 适用于制作硬糖果、雪糕、糕点等等。名称D E 甜味粘度结晶性结晶抑制作用

玉米淀粉厂工程设计规范 编制说明

《玉米淀粉厂工程设计规范》行业标准 编制说明 随着食品工业化的发展,玉米深加工的增值效益明显;以及化工、纺织、医药、饲料、造纸、石油等行业对变性淀粉的需求量越来越大,玉米淀粉的应用快速发展,玉米深加工扩建、再建的形势非常积极。同时,对生产规模、产业链条、产品结构、产品质量、产品发放、节能环保、生产安全和食品安全等方面提出了新的要求。 制定《玉米淀粉厂工程设计规范》,不仅提升玉米淀粉生产设计水平和规范程度,满足玉米淀粉生产厂建设需求,推动玉米淀粉生产向规模化、产业化、安全化、智能化、专用化可持续发展;还将适应现代农业发展的需要,满足市场配置资源和政府宏观调控的需求,对支撑国家粮食安全战略有着深远的意义。 1工作简况 1.1任务来源及起草单位 1.1.1任务来源 本标准来源于国家粮食局办公室《关于下达2017年第二批粮油行业标准制修订计划的通知》(国粮办发〔2017〕177号),明确由河南工业大学牵头制定《玉米淀粉厂工程设计规范》粮食行业标准。于2017年8月接到计划下达及签订通知后,于次月完成粮油标准制修订计划项目委托协议的签订。 1.1.2起草单位 根据国家粮食局粮油行业标准制定计划的要求,由河南工业大学牵头,河南工大设计研究院、郑州精华实业有限公司、河南亿德制粉工程技术有限公司共同负责《玉米淀粉厂工程设计规范》标准起草工作。起草单位成立的标准起草组负责进行本标准的各项工作。 1.2主要工作过程 2017年粮油行业标准计划下达后,标准起草组根据项目内容确定该项工作的具体方案和工作计划,按照项目任务要求,迅速开展工作。

1.2.1收集、查阅、整理相关资料 收集整理玉米淀粉厂生产工艺等信息。对玉米淀粉的原料、生产工艺、销售、应用等情况进行了调查和研究。查阅了大量的有关玉米淀粉生产的国内外文献,对其生产工艺的文献资料进行了归纳、总结,并了解了玉米淀粉加工整个行业的生产工艺现状。收集、查阅、更新与玉米淀粉相关的原料质量标准、生产加工、计量等需遵循的国内外法规、标准、规范、办法。 1.2.2企业调研 调查近20年来,特别是近10年来,已建成典型的玉米淀粉厂的实际技术经济指标,如占地面积、绿化率、工艺、设备、造价等;玉米淀粉厂建成的时间、功能、规模、构成、投资及运营情况等;玉米淀粉厂的仓储、运输等情况;玉米淀粉的加工工艺、设备类型、规格、功率、能耗指标、环保情况等;调查了解国有企业和民营企业的建设和使用情况;机械化、自动化、信息化、数字化建设与运营情况;工厂富足设施与配套设施建设与运营情况,如种类构成、规模、标准、实际作用、使用率及效率等;玉米淀粉厂发展需求预测;玉米淀粉厂建设工期;玉米淀粉厂定员与用工数量;玉米淀粉厂安全设施情况,如消防、安全保护等。 做好调查研究,进行专题研究,使所制定的标准能支撑玉米淀粉生产建设,作为国家行政主管部门审批或核准时的重要参考依据,具有前瞻性,以推动技术进步、促进管理水平提高,努力实施新技术、新设备、新工艺、电子信息及数字化,力求节能、高效、绿色、环保。 1.2.3编制《玉米淀粉厂工程设计规范》行业标准征求意见稿 标准起草小组根据确定的工作方案,于2017年8月~12月广泛收集、查阅、整理相关资料,同时进行企业调研。随后在2018年1月~5月,经过多次讨论论证,标准起草单位河南工业大学、河南工大设计研究院、郑州精华实业有限公司、河南亿德制粉工程技术有限公司,在调研企业的协助下完成了详细的设计玉米淀粉厂的各项技术标准,并对设计标准条文进行说明。依据《中华人民共和国标准化法》《中华人民共和国标准化法实施条例》《行业标准制定管理办法》《标准化工作导则》《标准化工作指南》等法律、法规、条例、办法、标准的要求,起草《玉米淀粉厂工程设计规范》行业标准征求意见稿初稿。

淀粉及淀粉糖制造工职业技能标准

淀粉及淀粉糖制造工职业技能标准 一、职业概况 1.职业名称: 淀粉及淀粉糖制造工 2.职业编码 6-01-07-01 3.职业定义 操作清洗、浸泡、磨碎、分离、干燥等设备,将玉米加工成淀粉,并对淀粉进行液化、糖化等工序加工,制取淀粉糖及其副产品的人员。 4.职业技能等级 本职业共设五个等级,分别为:五级/初级工、四级/中级工、三级/高级工、二级/技师、一级/高级技师。 5.职业环境条件 室内、外保持清洁、常温且部分存在高温或高处作业,存在一定的粉尘、噪声及化学品。 6.职业能力特征 具有一定的学习、理解、判断、计算及表达能力,空间感强,四肢灵活,动作协调,听觉、嗅觉较灵敏,视力、色觉良好。 7.普通受教育程度 初中毕业(或相当文化程度)。 8.职业技能鉴定要求

8.1申报条件(见第四部分) 8.2鉴定方式 分为理论知识考试、技能考核以及综合评审。理论知识考试以闭机考方式为主,主要考核从业人员从事本职业应掌握的基本要求和相关知识要求;技能考核主要采用现场操作、模拟操作、口试、闭卷笔试等方式进行,主要考核从业人员从事本职业应具备的技能水平。 理论知识考试、技能考核实行百分制,成绩皆达 60 分(含)以上者为合格。职业标准中标注“★”的为涉及安全生产或操作的关键技能,如考生在技能考核中违反操作规程或未达到该技能要求的,则技能考核成绩为不合格。 监考人员、考评人员与考生配比 理论知识考试中的监考人员与考生配比为1∶15,且每个考场不少于2名监考人员。技能考核中要求每个工位不少于3名考评人员,综合评审委员不少于5人。 8.3鉴定时间 理论知识考试时间均90min;技能考核时间均不少于60min;技师、高级技师评审时间不少于20min。 8.4鉴定场所设备 理论知识考试在标准教室进行;技能考核可在生产装置、标准教室进行,应具有满足本职业鉴定所需的装备、工具、劳保用具和安全设施。

玉米淀粉期货交易操作手册

玉米淀粉期货交易操作手册 玉米淀粉概述 玉米淀粉是将玉米经粗细研磨,分离出胚芽、纤维和蛋白质等副产品后得到的产品,一般来说,约1.4吨玉米(含14%水分)可以提 取1吨玉米淀粉。据中国淀粉工业协会数据,2013年我国玉米淀粉 产量约2350万吨。从地域上看,前五大生产省份依次为山东(约 1032万吨,占43.9%)、吉林(约417万吨,占17.7%)、河北(约257 万吨,占10.9%)、黑龙江(约153万吨,占6.5%)和河南(约144万吨,占6.1%)。 玉米淀粉用途广泛,下游产品达3500多种,涉及淀粉糖、啤酒、医药、造纸等众多行业,其中淀粉糖用量最大,约占玉米淀粉消费 总量的55%,其后依次是啤酒(约占10%)、医药(约占8%)、造纸和 化工(分别约占7%)、食品加工(约占6%)、变性淀粉(约占5%)等。 玉米淀粉消费地域分布较广,沿海地区占据突出地位,其中长三角 地区约占17%,珠三角地区约占14%,胶东半岛约占12%,福建地区 约占7%。 据中国海关数据,2013年我国玉米淀粉出口量约9.7万吨,进 口量约0.15万吨。玉米淀粉产业集中度较高,前10大企业(集团) 产量占比达到59%。玉米淀粉物流流向清晰,华北地区(含山东)和 东北地区(含内蒙)除供应区域内部外,主要流向华东和华南地区。 据中国淀粉工业协会数据,2009~2014年上半年全国玉米淀粉平均 出厂价格在1606~3134元/吨之间波动,波动幅度约为95%。2014 年上半年全国玉米淀粉平均出厂价格在2608至3095元/吨之间波动,波动幅度约为18.7%,2014年上半年平均出厂价格均值约为2800元 /吨。 玉米淀粉生产、贸易与消费概况 ●我国玉米淀粉生产概况

第三届全国淀粉糖行业二十强企业要点

第三届全国淀粉糖行业二十强企业 申报材料制作及填写说明 一、申报材料要求 1.申报材料装订成一册(一式五份),不要分上下册。 2.所有申报材料一律使用统一的申请表。幅面A4,双面打印。申请表不另制作封面及封底,不采用硬皮材质,沿长边装订。在材料侧脊打印企业名称。 3.申报材料页码用阿拉伯数字连续编页,位于页脚的外侧,综述内容采用四号字体。 4.提供的有关证明材料复印件或图形扫描件,请在保证内容清楚的前提下紧凑排版,建议两份证书占用一页。 5.材料装订顺序为:《全国淀粉糖行业二十强企业申报书》、申报材料附件目录(按照“需提交的材料清单”顺序编排页码)、申报材料附件等,同时报送电子版文件(邮箱:ljj@https://www.360docs.net/doc/e312683683.html,,邮件注明“XX企业淀粉糖二十强申报材料”)。 二、填表说明 1.表中产品不包括淀粉,产品产量及销售额均是指淀粉糖和糖醇,请注意。 2.按表中所列内容认真、详实填写,填报内容均06年至08年三年中的情况,获得资质认证和获奖情况按照“需提交的材料清单”中规定的年限提供。 3.表中涉及金额单位,除出口额为万美元外,其余为万元人民币。 4.地址、法定代表人、注册资本、企业类型、成立日期、法人营业执照号以企业法人营业执照内容为准填报; 5.主营业务及兼营业务内容根据企业最近一年经营状况填报。 6.参照近三年资产负债表和损益表填写。其中新品销售收入指近三年企业每年上市的新产品的销售收入,需提供市级以上新产品认定证书。 7.有关指标解释。 a.总资产贡献率(%) =(利润总额+税金总额+利息支出)/平均资产总额×100% b.工业成本费用利税率(%) =(利润总额+税金总额)/成本费用总额×100%

淀粉糖工艺

包装材料液体食品包装用原辅材料ZBY39002 二、过程检验及控制 1、淀粉乳精制 为进一步提高淀粉乳的质量,要进一步分离去除蛋白质等杂质,提取纯淀粉乳。1)蛋白质分离:出料淀粉乳含量为22%~40%。 2)淀粉洗涤:蛋白含量0.4%~0.5%。 在这一工序中,操作人员应严格控制出料淀粉乳的蛋白含量。 蛋白质含量控制:定时检测出料淀粉乳的蛋白质含量,不达标的淀粉乳回流继续进行洗涤,直至检测达标后才能往下一工序出料。并分析蛋白含量不达标的原因,是洗涤不彻底,还是蛋白质分离效果不好,及时调整洗涤水流量,同时控制分离机蛋白分离效果。 如果淀粉乳蛋白含量过高,在后续生产中,虽然离子交换工序有去除蛋白质和氨基酸的功能,但是因其浓度高,漏过离子交换树脂的机率也增大,所以,有时虽离子交换后糖液色泽好,但一经加热后色泽就变深。这是由于糖类的还原性羰基与蛋白质分子中氨基酸的氨基在加热过程中进行美拉德反应,产生具有特殊气味的棕褐色缩合物。 检测内容:品控员每天检查旋流分离器分离记录,抽测精制淀粉乳蛋白质含量,控制在0.4%~0.5%。 2、液化 1)液化调浆 为液化做准备,在液化之前将各工艺参数调到工艺指标: ①淀粉乳浓度 一般控制淀粉乳干物质含量30%~35% (16~18°Be)。实际生产中,为了达到比较好的液化效果和好的流速,结合所使用的酶制剂,并通过生产实践,淀粉乳浓度控制在17°Be。最高可调到18.5°Be,再高就影响液化效果。在酶质量受限、蒸汽压力达不到等不利于液化的情况下,可以适当降低淀粉乳浓度。 ② pH值 所使用的液化酶来自诺维信,其使用pH值范围:5.2~5.8,最佳pH值5.5。(市场上出售的液化酶,使用pH值范围一般在6.0~6.5。)在此范围内,pH值低,液化液色泽相对比较好;液化时产生的麦芽酮糖比较少,能保证糖化时DX值≥96%。 淀粉乳pH值不稳定,液化时pH值一直在下降,喷射结束后仍处于淀粉糊状态,无法生产。 ③ Ca2+含量 耐热性α-淀粉酶只需要很少量的钙离子维持活力的稳定性,5mg/kg已足够。淀粉乳中一般含有此量的钙离子,无须另外添加。 ④加酶量:加酶量与酶活力有关,加入耐高温α-淀粉酶4L/T干基淀粉,在生产设 备及操作完备的情况下可降低加酶量,使用0.35L/T干基淀粉,在生产稳定条件下,可减少原辅料用量。 2)喷射液化

《淀粉糖单位产品能源消耗限额》编制说明-上海地方标准

上海市地方标准《淀粉糖单位产品能源消耗限额》 编制说明 一、工作简况 (一)任务来源 本标准任务由上海市质量技术监督局于2017年7月28日下达,根据沪质技监标〔2017〕322号文,《淀粉糖单位产品能源消耗限额》被列入2017年度第二批(节能减排类)上海市地方标准制修订项目计划第26项。 (二)产业情况 淀粉糖消费领域广,消费数量大,是淀粉深加工的支柱产品,长期以来被广泛地应用于食品,医药,造纸等诸多行业。淀粉糖是经过高科技生物酶制剂液化、糖化、精制而成的,它是淀粉深加工产业链中产量最大的产品,为推动食品工业的发展,促进以生物科技带动农业产业化发展做出了重要贡献。在我国蔗糖尚不能满足市场需求的情况下,淀粉糖的发展为市场提供了多糖源,对于稳定市场价格,带动农民增收,促进农业和食品工业协调发展有着重要意义。 近年来,我国淀粉糖生产的集中度进一步提高,行业10 强企业淀粉糖的生产规模占到全行业的68%,企业集约化规模化经营,淀粉糖产品成本下降,淀粉糖市场逐步扩大,成为食糖市场的重要补充或替代。淀粉糖行业生产企业的规模化发展是未来的主要趋势之一,这有利于提高行业的产出集中度,对于提升产品质量扩大出口十分有利。近几年,淀粉糖行业生产技术发展发生了质的飞越,淀粉糖单耗下降明显;而标准中的单位产品能耗限定值、准入值和先进值已不能满足目前企业的实际生产能耗水平。通过本标准的修订,进一步推进本市淀粉糖生产企业的节能减排工作,促进企业技术创新,管理升级,鼓励先进等措施来降低装置能源消耗,提高装置能耗水平。

(三)标准执行情况及行业现状 2013年标准第一次制定时,上海有2家重点用能企业中粮融氏生物科技有限公司和上海好成食品发展有限公司,产品技术质量水平和能耗水平处于国内先进。随着限额标准的执行以及淀粉糖生产技术水平的飞速提高,2家淀粉糖生产企业均开展了节能改造,能效水平提升明显。编制组调研中粮融氏生物科技有限公司(以下简称“中粮融氏”)和上海好成食品发展有限公司(以下简称“上海好成”),分析企业的生产和能耗状况,并对近年的电耗、蒸汽耗量等能耗数据进行了收集整理及研究。调研发现,中粮融氏和上海好成生产情况稳定,且2016年-2018年的淀粉糖单位产品能耗呈明显下降趋势,这是由于液化-蒸发一体化工艺、MVR技术改造等原因引起单耗大幅度下降。 原标准中的单位产品能耗限定值、准入值和先进值已不能满足目前企业的实际生产能耗水平。通过本次标准修订,对原标准进一步完善,使标准能够适应淀粉糖生产企业的节能管理要求,满足行业、企业可持续发展的需要。 (四)主要工作过程 上海市能效中心接获市质量技术监督局下达的任务后,即与着手成立《淀粉糖单位产品能源消耗限额》标准起草组,标准起草工作由上海市能效中心、上海市节能技术服务有限公司、上海市节能环保服务业协会、上海市能源标准化技术委员会等单位代表参加。 2018年3月底标准起草组根据沪质技监标[2017]322号文的要求,制定了标准编制工作各阶段工作计划并召开标准起草小组第一次工作会议,就工作目标、工作程序、时间节点作布置并将调研任务落实至参加单位。2018年7月起草组完成前期国内外相关标准、文献收集汇总。 2018年8月至12月,标准起草组召集相关淀粉糖企业、行业专

相关文档
最新文档