重庆大学岩石力学往年题

重庆大学岩石力学往年题
重庆大学岩石力学往年题

这是我自己搜集的,答案可能不全,仅供参考。

1. 试论述岩石的水理性

岩石与水相互作用时所表现的性质称为 岩石的水理性。包括岩石的吸水性、透水性、软化性和抗冻性。 A 天然含水率

天然状态下岩石中水的质量m w 与岩石的 烘干质量m dr 的比值,称为岩石的天然含水率,以百分率表示,即:

%100?=

dr

m m ω

? B 吸水性

定义:岩石在一定条件下吸收水份的性能。 影响因素:孔隙的数量、大小、开闭程度和分布情况等。

表征岩石吸水性指标吸水率、饱和吸水率、饱水系数。

(1)吸水率a ω是岩石在常压下吸入水的质量与其烘干质量dr m 的比值,即

%1000?-=

dr

dr

a m m m ω

式中,0m 为烘干岩样浸水48小时后的总质量。

(2)饱和吸水率是岩石在强制状态下岩石吸入水的质量与岩样烘干质量的比值,即

%100?-=

dr

dr

sa sa m m m ω

式中,sa ω为岩石的饱和吸水率;dr m 为真

空抽气饱和或煮沸后之间的质量(kg )。 (3)饱水系数w k 是指岩石吸水率与饱和率的比值,即

%100?=

sa

a

w k ωω C 透水性

透水性:岩石能被水透过的性能 达西定律:当地下水沿着岩石中的孔隙或裂隙流动时,其水流速度与水力梯度成正比,即

dl

dh

k l h h K

-=?--=12ν D 软化性

定义:岩石浸水后强度降低的性能

软化系数:c

cw

c σση=

式中:c η为岩石的软化系数

cw σ为饱水岩样的抗压强度(MPa) c σ为自然风干岩样的抗压强度(MPa)

E 抗冻性

定义:岩石抵抗冻融破坏的性能,岩石的抗冻性常用抗冻系数来表示。 抗冻系数:

%100?-=

c

cf

c f c σσσ 式中,f c 为岩石的抗冻系数,c σ为岩石动容钱的抗压强度(kpa )。cf σ为岩样冻融后的抗压强度(kpa )。

2.论述影响岩石力学性质的主要因素 (A )水对岩石力学性质的影响 地下水包括结合水和重力水。对岩石力学性质影响的5个方面:连接作用、润滑作用、水楔作用、孔隙压力作用、溶蚀及潜蚀作用 (B )温度对岩石力学性质的影响

随着温度的增高,岩石的延性加大,屈服点降低,峰值强度也降低。

(C )加载速度对岩石力学性质的影响 随着加荷速度的降低,岩石的延性加大,屈服点降低,峰值强度也降低。 (D )围压对岩石力学性质的影响

随着围压的增高,岩石的延性加大,屈服点增加,峰值强度也增加。

(E )风化对岩石力学性质的影响 主要表现在以下3个方面:

产生新的裂隙、矿物成分发生变化、结构和构造发生变化

3.试论述岩体中的初始地应力及分布规律 a.定义:地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。

b.组成:自重应力、构造应力、热应力、地震应力、扰动应力

c. 地应力的成因 大陆板块边界受压、地幔热对流、地心引力、岩浆侵入、地温梯度、地表剥蚀等引起的地应力场。

d.地应力分布的基本规律(归纳)

1)地应力是一个具有相对稳定的非稳定应力场,它是时间和空间的函数

2)实测垂直应力基本等于上覆岩层的重量 3)水平应力普遍大于垂直应力

4)平均水平应力与垂直应力的比值随深度增加而减小,但不同地区变化的速度不同 5)最大水平主应力和最小水平主应力也随速度呈线性增长关系

6)最大水平主应力和最小水平主应力之值一般相差较大,显示出很强的方向性

7)地应力分布受地形、地表剥蚀、风化、岩体结构特征、岩体力学性质、温度和地下水等因素的影响。

4.论述岩石流变特性以及岩石蠕变变形曲线的基本特征。 1)a.流变性定义:岩石的流变性是指材料的应力应变与时间因素有关的性质,材料变形过程中具有时间效应的现象称为流变现象。岩石的流变包括蠕变、松弛和弹性后效。 b.蠕变、松弛与弹性后效

蠕变:当应力不变时,变形随时间增加而增长的现象。

松弛:当应变不变时,应力随时间增加而减小的现象。

弹性后效:加载或卸载时,弹性应变滞后于应力的现象。

c.流变方程包括本构方程、蠕变方程和松弛方程。所有流变模型均可由三个基本元件组成,包括弹性元件,粘性元件和塑性元件。

2)蠕变变形曲线的基本特征

当岩石在某一较小的恒定荷载持续作用下,其变形量虽然随时间增加有所增加,但蠕变变形的速率则随时间而减少,最后变形趋于一个稳定的极限值,这种蠕变称为稳定蠕变。当荷载交大时,蠕变不能稳定于某一极限值,而是无限增长直到破坏,这种蠕变称为不稳定蠕变。

典型的非稳定型蠕变曲线可分为4个基本阶段:

(1)瞬时弹性变形阶段(OA ):E

0σε=

(2)第一蠕变阶段(AB ):022 t

d d ε

,应变速

率随时间增加而减小,又称减速蠕变阶段。

(3)第二蠕变阶段(BC ):022=t

d d ε

,应变速

率保持不变,又称等速蠕变阶段。

(4)第三蠕变阶段(CPD ):022 t

d d ε

应变速

率迅速增加直到岩石破坏。又称加速蠕变阶段。

一种岩石既可发生稳定蠕变也可发生不稳

定蠕变,这取决于岩石应力的大小,超过某

一临界应力时,蠕变向不稳定蠕变发展,与此临界应力时,蠕变按稳定蠕变发展。

蠕变变形总量:

)()()(3210t t t εεεεε+++= 式中:0ε为瞬时弹性应变,

)(),(),(321t t t εεε为与时间有关的一次蠕

变、二次蠕变、三次蠕变。

5.试论述库伦准则的基本内容并简单说明对其研究的工程实际意义

a.基本观点:库仑认为,岩石的破坏主要是剪切破坏,岩石的强度等于岩石本身抗剪切摩擦的粘结力和剪切面上法向力产生的摩擦力,即平面中的剪切强度

b.用正应力和剪应力表述的库仑准则: 库伦准则可用莫尔极限应力圆直观的图解表示。即为:

φστtan ?+=c 或c =?-φστtan

式中,τ为剪切面上的剪应力;σ为剪切面

上的正应力;c 为粘结力;Φ为内摩擦角。图中直线AL 表示方程所确定的准则,斜率为φtan =f ,c 为截距,平面上应力σ和τ有主应力σ1和σ3的应力圆决定。如果应力圆上的点在AL 之下,材料不发生破坏,点在AL 之上,材料破坏,点在线上,材料处于极限平衡状态。

c.用主应力表述的库仑准则: 基于库伦准则和实验结构分析,有下图给出的简单而有用游泳的准则表示,

表达式:

c f f f f 2112321=++--+σσ ( c σσ2

1

1 )

13σσ-= ( c σσ2

1

1≤ ) 坐标系中的库仑准则完整强度曲线:

从图中可以看到岩石可能发生以下四种破

坏:

当0<σ1≤1/2σ c (σ 3 = -σt )时,岩石属

单轴拉伸破断。

当1/2σc <σ1<σc (-σ1<σ3<0 )时,岩石

属双轴拉伸破断。

当σ1=σc (σ 3 =0)岩石属单轴拉伸破断。

当σ1>σc (σ 3 >0)时,岩石属双轴拉伸破

断。

直线AP 的倾角β为:

c t

σσβ2arctan =

由此看来,在主应力σ1,σ3坐标平面的库

伦准则可以利用单轴抗压强度和抗拉强度来确定。 其研究的工程实际意义 在研究实验中,用压力机、直剪仪、扭

转仪及三轴仪,现场做直剪试验和三轴

试验,以确定强度参数;在工程实践中,

用于解决地表挖掘的岩石工程问题,如

水库边坡、高坝岸坡、渠道、运河、路

堑、露天开采坑等天然和人工边坡的稳定、变形及加固问题。

非常“5+3”

以下是个人猜测的几个可能出现的考点,完全没有根据的。谨慎参考! 6.岩石的变形特性。

a.岩石变形的定义

所谓岩石的变形是指岩石在外界因素的影

响下,所产生的形态变化。

b.岩石变形的表示方法 在以应力为纵轴、以应变为横轴的直角坐标

系中绘制的各类应力-应变关系曲线来表

述。

c 岩石变形的一般特征: 1.岩石一般不遵从虎克定律,在加载过程中也不出现明显的屈服极限点,其应力-应变曲线也非严格的直线;

2. 岩石一旦在外力作用下产生了变形,不论

该变形有多小,卸载后都或多或少地残留有一定数量的永久变形(亦称塑性变形),且该永久变形的大小将随外力的增加而增大,该现象在结构疏散或软岩中更为突出; 3.反复加、卸载过程中,每对加、卸载曲线都不互相重合,其间呈现所谓“塑性滞环”现象,这表明岩石在反复加、卸载过程中,其应力-应变曲线具有明显的非单值性。但

若将加、卸载值固定,并反复进行,则相应的“塑性滞环”的面积将可能随加、卸载循环次数的递增而减少,且其卸载至零时的永久变形量也随循环次数的递增而降低; 4.节理、裂隙较多的岩石,在受载初期在应力-应变曲线上表现为弹塑性,而对于结构致密坚硬的岩石,则在应力-应变曲线上表现为弹脆性; 5.描述岩石的变形特性时,所采用的“线性”、“可逆”等等术语,都是简化近似的概念,而像“弹性极限”、“弹性模量”、“泊松比”

等材料参数也都是在一定条件下的近似值或平均值。

d.岩石变形的三种基本类别 1)弹性变形: 在受外力作用的瞬间即产生全部变形,而去除外力(卸载)后又能立即恢复其原有形状和尺寸的变形。

2)塑性变形:

受外力作用后产生变形,在外力去除(卸 载)后变形不能完全恢复的变形。 3)粘性变形: 受外力作用后变形不能在瞬时完成,且 其应变率随应力增加而增加的变形。

7. 岩石的物理性质 1) 岩石的容重(密度) ①定义:单位体积的岩石的质量称为岩石的密度,单位体积的岩石的重力称为岩石的重度。

②影响因素分类

矿物成分、孔隙发育程度、含水量

③测量方法

量积法、水中称重法、蜡封法 2) 岩石的比重

岩石的比重就是指岩石固体的质量与同体积水的质量之比值。岩石固体体积,就是指不包括孔隙体积在内的体积。岩石的比重可在实验室进行测定,其计算公式为:

3) 岩石的孔隙性

定义:即岩石中发育有裂隙和孔隙的性质。 孔隙度:即描述岩石的裂隙和孔隙发育的程 度,其衡量指标为孔隙率(n)或孔隙比(e)。 闭型空隙:岩石中不与外界相通的空隙。 开型空隙:岩石中与外界相通的空隙。 4) 岩石的水理性

天然含水率、吸水性、透水性、软化性、抗冻性

5) 岩石的碎胀性 定义:岩石破碎后的体积比原体积增大的性能。 碎胀系数:

其中: V 和VP 为岩石破碎前、后的体积。 永久碎胀系数:岩石破碎后的体积将随时间的变化而逐渐减小,并逐渐趋于稳定,岩石体积不再发生变化是的碎胀系数即永久碎胀系数。

8.岩体的水力学性质

1) 岩体与土体渗流的区别 土体的渗流特点:

岩体的渗流特点:

附,值得关注的问题:

(3-21-----第三份课件第21页)

(3-23)

(4-13)

(5-12)

重庆大学材料力学答案..

重庆大学材料力学答案 2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积 21mm 8004200=?=?=t b A 202mm 4004)100200()(=?-=?-=t b b A (3) 计算正应力 MPa 175800 1000140111=?== A N σ MPa 350400 1000 140222=?== A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段 的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力 kN 10==P N (2) 计算横截面上的正应力 MPa 50100 2100010=??==A N σ (3) 计算斜截面上的应力 MPa 5.37235030cos 2 230 =??? ? ???==ο ο σσ

MPa 6.212 3250)302sin( 2 30=?= ?= ο ο σ τ MPa 25225045cos 2 245 =??? ? ???==οο σσ MPa 2512 50 )452 sin(2 45=?= ?= οο σ τ (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , ο454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。 题图2.17 解:(1) 计算直杆各段的轴力及画轴力图 kN 101==P N (拉) kN 102-=-=P N (压)

《岩石力学与工程》蔡美峰版总结

《岩石力学与工程》内容概要总结 地应力是存在于地层中的为受工程扰动的天然应力。也称为岩体初始应力、绝对应力或原岩应力。 地质软岩:单轴抗压强度小于25MPa的松散、破碎、软化及风化膨胀性一类岩体的总称。 工程软岩:工程力作用下能产生显著性变形的工程岩体。声发射:材料在受到外载荷作用时,其内部贮存的应变能快速释放产生弹性波,发生声响。 岩石岩石地下工程:地下岩石中开挖并临时获永久修建的各种工程。 围岩:在岩石地下地下工程中,由于受开挖影响而发生应力状态改变的周围岩体。 锚喷支护:锚杆与喷射混凝土联合支护的简称。 边坡:岩体、土体在自然重力作用或人为作用而形成一定倾斜度的临空面。 岩石:自然界各种矿物的集合体,是天然地质作用的产物。 容重:岩石单位体积的重量。根据含水情况将岩石的容重分为天然容重、干容重、饱和容重。孔隙性:天然岩石中包含着数量不等、成因各异的孔隙和裂隙。 孔隙率:指岩石孔隙的体积与岩石总体积的比值,以百分数表示。分为总孔隙率、总开孔隙率、大开孔隙率、小开孔隙率、和闭孔隙率。孔隙率愈大,岩石力学性能越差。 水理性:岩石与水相互作用时所表现的性质。 包括岩石的吸水性、透水性、软化性和抗冻性。 岩石强度:岩石在各种载荷作用下达到破坏时所能承受的最大应力。 单轴抗压强度:岩石在单轴压缩载荷作用下达到破坏前所能承受的最大压应力。 岩石破坏形式:x状共轭斜面剪切破坏。这种破坏形式是最常见的破坏形式;单斜面剪切破坏。这两种破坏都是由于破坏面上的剪应力超过极限引起的。 拉伸破坏:横向拉应力超过岩石抗拉极限引起的。 流变破坏:岩石的三轴抗压强度:岩石在三向荷载作用下,达到破坏时所能承受的最大压应力。 莫尔强度包络线:同一种岩石对应各种应力状态下破坏莫尔应力圆外公切线。直线型、抛物线型、双曲线型。 点载荷试验:试验所获得的强度指标值可以用做岩石分级的一个指标。点载荷实验装置是便携式的,可带到岩土工程现场去做实验。点载荷试验对试件的要求不严格。缺点是要根据经

完整版重庆大学岩石力学总结

重庆大学岩石力学总结第一章 1岩石中存在一些如矿物解理,微裂隙,粒间空隙,晶格缺陷,晶格边界等内部缺陷,统称微结构面。2岩石的基本构成是由组成岩石的物质成分和结构两大方面来决定。3岩石的结构是指岩石中矿物颗粒相互之间的关系,包括颗粒的大小,形状,排列,结构连接特点及岩石中的微结构面。其中以结构连接和岩石中的微结构面对岩石工程性质影响最大。4岩石中结构连接的类型主要有两种:结晶连接,胶结连接。5岩石中的微结构面是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。它包括矿物的解理,晶格缺陷,晶粒边界,粒间空隙,微裂隙等。6矿物的解理面指矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。7岩石的物理性质是指由岩石固有的物质组成和结构特征所决定的比重,容重,孔隙率,岩石的密度等基本属性。8岩石的孔隙率是指岩石孔隙的体积与岩石总体积的

比值。9岩石的水理性:岩石与水相互作用时所表现的性质称为岩石的水理性。包括岩石的吸水性,透水性,软化性和抗冻性。 10 岩石的天然含水率w m w m w表示岩石中水的质量,岩石的烘干质量m rd m rd 11 岩石在一定条件下吸收水分的性能称为岩石的吸水性。它取决于岩石孔隙的数量,大小,开闭程度和分布情况。表征岩石吸水性的指标有吸水率,饱和吸水 率和饱水系数。岩石吸水率w a m o m dr. m dr为岩石烘干质量,m o为岩石浸 m dr 水48 小时后的总质量。 12岩石的饱水率是岩石在强制状态下(高压,真空或煮沸)岩石吸入水的质量与岩石烘干质量的比值。13岩石的透水性:岩石能被水透过

的性能。可用渗透系数衡量。主要取决于岩 石孔隙的大小,方向及相互连通情况。q x k dh A K 为岩石的渗透系数,h 为 dx 水头的高度,A为垂直于X方向的截面面积,qx 为沿X方向水的流量。透 水性物理意义:是介质对某种特定流体的渗透能力,渗透系数的大小取决于岩石的物理特性和结构特征。 14岩石在反复冻融后强度降低的主要原因:1构成岩石的各种矿物的膨胀系数不同,当温度变化时,由于矿物的胀缩不均而导致岩石结构的破坏。2当温度降到0℃以下时,岩石孔隙的水结冰,体积增大约%9,会产生很大的膨胀压力,使岩石的结构发生改变甚至破坏。15进行岩石强度实验选用的试件必须是完整岩块,而不应包含节理裂隙。16岩石强度指标值受下列因素影响:①试件尺寸②试件形状③试件三维尺寸比例④加载速率(加载速率越多,所测岩石强度指标值越高⑤湿度

重庆大学材料力学答案审批稿

重庆大学材料力学答案 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

重庆大学材料力学答案 2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 (2) 计算横截面的面积 (3) 计算正应力 (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力 (2) 计算横截面上的正应力 (3) 计算斜截面上的应力 (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , 454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。

(注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。 题图2.17 解:(1) 计算直杆各段的轴力及画轴力图 kN 101==P N (拉) kN 102-=-=P N (压) (2) 计算直杆各段的轴向变形 mm 2.0100 1000200400 1000101111=????== ?EA l N l (伸长) mm 4.050 1000200400 1000102222-=????-== ?EA l N l (缩短) (3) 直杆AC 的轴向变形 m m 2.021-=?+?=?l l l (缩短) (注:本题的结果告诉我们,直杆总的轴向变形等于各段轴向变形的代数和) 2.20 题图2.20所示结构,各杆抗拉(压)刚度EA 相同,试求节点A 的水平和垂直位移。 ( a) (b) 题图2.20 (a) 解: (1) 计算各杆的轴力 以A 点为研究对象,如右图所示,由平衡方程可得

(完整版)重庆大学-博士、硕士岩石力学考题2

重庆大学二零零五年博士生(秋季)入学考试试题一、论述岩石的流变特性以及蠕变变形曲线特征。 (20分) 二、论述摩尔判据的基本内容,并简要评述摩尔判据的优缺 点。(20分) 三、什么是初始地应力?试论述初始地应力的成因及其分布 规律。(20分) 四、评述岩石在复杂应力条件下的的变形特性。 (20分) 五、论述在单轴压缩载荷作用时岩石试件的端部约束效应。 (20分) 重庆大学博士生入学考试试题答案

一、论述岩石的流变特性以及蠕变变形曲线特征(20分) 所谓岩石的流变性质就是指岩石的应力-应变关系与时间因素有关的性质,包括蠕变、松弛与弹性后效三个方面。所谓蠕变是指当载荷不变时,变形随着时间而增长的现象;所谓松弛是指当应变保持不变时,应力 随着时间增长而减小的现象;所谓弹性后效是指当加载或卸载时,弹性应变滞后于应力的现象。 岩石的蠕变变形特性曲线可以通过单轴或三轴压缩、扭转或弯曲等蠕变实验来进行研究。实验表明,在恒定载荷作用下,只要有充分长的时间,应力低于或高于弹性极限均能产生蠕变现象。但在不同的恒 定载荷下,变形随时间增长的蠕变曲线却有差异。岩石的蠕变曲线不仅与应力大小、性质及岩石种类有 关、而且还与其所在的物理环境如温度、围压、湿度等因素有关,上图为岩石的一典型蠕变曲线。当在 岩石试件上施加一恒定载荷,岩石立即产生一瞬时弹性应变ε e (OA段)。这种变形往往按声速完成,可 以近似认为在t=0完成,其应变为ε e =σ/E。若载荷保 持恒定且持续作用,应变则随时间缓慢地增长,进入到 蠕变变形阶段,将蠕变变形一般可分成三个阶段:(1)第 一蠕变阶段(AB段),也称过渡蠕变阶*段,在这个阶段内, 蠕变为向下弯曲的形状,也就是说曲线的斜率逐渐变小, 若在这一阶段之中(曲线上某一点E)进行卸载,则应变沿 着曲线EFG下降,最后应变为零、其中EF曲线为瞬时弹 性应变之恢复曲线,而FG曲线表示应变随时间逐渐恢复 为零;(2)第二蠕变阶段(BC段), 也称稳定蠕变阶段,蠕 变变形曲线近似一倾斜直线,即蠕变应变率保持常量, 一直持续到C点。若在这一阶殷中进行卸载,则应变沿 曲线HIJ逐渐恢复趋近于一渐近线,最后保留一定永久应变;(3)第三蠕变阶段(CD段),也称加速蠕变阶段,应变率由C点开始迅速增加,达到D点,岩石即发生破坏,这一阶段完成时间较短,严格地说,这 一阶段可分为两个区间:即发育着延性变形但尚未引起破坏的阶段(CP段)和微裂隙剧烈发展导致变形剧 增和引起破坏的阶段(PD段),它相当于褶皱形成后的断裂形成阶段。 同一种岩石,其载荷值越大,在第二阶段持续的时间也就越短,第三阶段破坏出现也就越快。在载 荷很大的情况下,几乎加载之后立即产生破坏。一般中等载荷,所有的三个蠕变变形阶段表现得十分明 显。任何一个蠕变变形阶段的持续时间,都取决子岩石类型、载荷值及温度等因素。 二、论述摩尔判据的基本内容,并简要评述摩尔判据的优缺点(20分)。 摩尔假定是摩尔于1900年提出的一种剪切破坏理论,该理论认为岩石受压后产生的破坏主要是由 于岩石中出现的最大有效剪应力所引起,并提出当剪切破坏在一平面上发生时,该破坏平面上的法向应 力σ和剪应力τ由材料的函数特征关系式联系: |τ|=f(σ) 按摩尔假定可以看出:①岩石的破坏强度是随其受力条件而变化的,周向应力越高破坏强度越大; ②岩石在三向受压时的破坏强度仅与最大和最小主应力有关,而与中间主应力无关;③三向等压条件下,摩尔应力圆是法向应力σ轴上的一个点圆,不可能与摩尔包络线相切,因而岩石也不可能破坏;④岩石 的破裂面并不与岩石中的最大剪应力面相重合,而是取决于其极限摩尔应力圆与摩尔包络线相切处切点 的位置,这也说明岩石的破裂不仅与破裂面上的剪应力有关,也与破裂面上出现的法向正应力和表征岩 性的内聚力和内摩擦角有关。 摩尔判据的优点是:①在判断复杂应力状态下岩石是否发生破坏以及破坏面的方向时,很简单,也 很方便;②能比较真实地反映岩石的抗剪特性;③可以解释为什么在三向等拉时会发生破坏,而在三向 等压时不会发生破坏。但其缺点是:①只考虑了最大主应力和最小主应力对岩石破坏强度的影响,而忽 略了中间主应力的作用,实验表明中间主应力对岩石破坏强度是有一定程度影响的;②摩尔判据不适用 于含有结构面的岩石试件,尽管岩石中的结构面会严重地影响岩石试件的破坏强度;③摩尔判据只适用 于剪切,对受拉区研究不够充分,不适于膨胀或蠕变破坏。 三、什么是初始地应力?试论述初始地应力的成因及其分布规律(20分)。 回答要点: 初始地应力 初始地应力是指未受到任何工程扰动的岩体在天然状态下所具有的内应力,主要由岩体自重及地质 构造作用所引起,地形、地质构造、地震力、水压力、热应力等也会在一定的时间和空间范围内一定程 度上影响到岩体中的初始地应力。

材料力学 重庆大学试题集

拉压静不定 如图所示结构由刚性横梁AD 、弹性杆1和2组成,梁的一端作用铅垂载荷F ,两弹性杆均长l ,拉压刚度为EA ,试求D 点的垂直位移。(图上有提示) 解:在力F 作用下,刚性梁AD 发 生微小转动,设点B 和C 的铅垂位移分别为δ1和δ2,则 δ1=δ2 设杆1和杆2的伸长量分别为 △l 1和△l 2,根据节点B 和C 处的变形关系,有 1113cos 302 l δδ?=?= 2221cos 602 l δδ?=?= 则△l 1和△l 2的关系为 1232 l l ?= ? (a ) 由平衡条件,对A 点取矩得 12sin 60sin 3023N N F a F a F a ?+?= 即 12332l l EA EA F l l ??+= (b ) 联立方程(a )和(b ),解得 2127F l l E A ?= D 点位移为 223336222 7D a F l l a E A δ?= = ?= ------------------------------------------------------------------------------------------------------ 一.摩尔积分 单位载荷法 直径80m m d =的圆截面钢杆制成的钢架,在自由端C 处受到集中力1kN F =作用,钢杆的弹性模量为200G Pa E =,0.8m R =, 2.4m h =,不计剪力和轴力的影响,试求自由端c 处的水平位移。(提示:可采用莫尔积分方法求解)

题图 解:(1)求梁的内力方程 半圆弧BC 段: θθcos )(F F N = )(πθ≤≤0 )c o s ()(θθ-=1FR M )(πθ≤≤0 直杆AB 段: F x F N -=)( )(h x ≤≤0 FR x M 2=)( )(h x ≤≤0 (2)求自由端的水平位移 在自由端水平方向加单位载荷,如图)(b 所示,由水平单位载荷产生的轴力和弯矩方程分别为: 半圆弧BC 段: θθsin )(=N F )(πθ≤≤0 θθs i n )(R M -= )(πθ≤≤0 直杆AB 段: 0=)(x F N )(h x ≤≤0 x x M =)( )(h x ≤≤0 由莫尔积分,可得自由端c 处的水平位移为: 3 3 2 ()() ()() cos sin 2(1cos )(sin )208.91m m N N C x l l h F x F x M x M x dx dx E A E I F F R F R dx d xdx E A E I E I F R F R h E I E I π π δθθθθθ= + = + --+ =-+ =∑∑?? ? ? ? ------------------------------------------------------------------------------------------------------ A B C R F h θ

(完整版)重庆大学岩石力学往年题

这是我自己搜集的,答案可能不全,仅供参考。 1. 试论述岩石的水理性 岩石与水相互作用时所表现的性质称为 岩石的水理性。包括岩石的吸水性、透水性、软化性和抗冻性。 A 天然含水率 天然状态下岩石中水的质量m w 与岩石的 烘干质量m dr 的比值,称为岩石的天然含水率,以百分率表示,即: %100?= dr m m ω ? B 吸水性 定义:岩石在一定条件下吸收水份的性能。 影响因素:孔隙的数量、大小、开闭程度和分布情况等。 表征岩石吸水性指标吸水率、饱和吸水率、饱水系数。 (1)吸水率a ω是岩石在常压下吸入水的质量与其烘干质量dr m 的比值,即 %1000?-= dr dr a m m m ω 式中,0m 为烘干岩样浸水48小时后的总质量。 (2)饱和吸水率是岩石在强制状态下岩石吸入水的质量与岩样烘干质量的比值,即 %100?-= dr dr sa sa m m m ω 式中,sa ω为岩石的饱和吸水率;dr m 为真 空抽气饱和或煮沸后之间的质量(kg )。 (3)饱水系数w k 是指岩石吸水率与饱和率的比值,即 %100?= sa a w k ωω C 透水性 透水性:岩石能被水透过的性能 达西定律:当地下水沿着岩石中的孔隙或裂隙流动时,其水流速度与水力梯度成正比,即 dl dh k l h h K -=?--=12ν D 软化性 定义:岩石浸水后强度降低的性能 软化系数:c cw c σση= 式中:c η为岩石的软化系数 cw σ为饱水岩样的抗压强度(MPa) c σ为自然风干岩样的抗压强度(MPa) E 抗冻性 定义:岩石抵抗冻融破坏的性能,岩石的抗冻性常用抗冻系数来表示。 抗冻系数: %100?-= c cf c f c σσσ 式中,f c 为岩石的抗冻系数,c σ为岩石动容钱的抗压强度(kpa )。cf σ为岩样冻融后的抗压强度(kpa )。 2.论述影响岩石力学性质的主要因素 (A )水对岩石力学性质的影响 地下水包括结合水和重力水。对岩石力学性质影响的5个方面:连接作用、润滑作用、水楔作用、孔隙压力作用、溶蚀及潜蚀作用 (B )温度对岩石力学性质的影响 随着温度的增高,岩石的延性加大,屈服点降低,峰值强度也降低。 (C )加载速度对岩石力学性质的影响 随着加荷速度的降低,岩石的延性加大,屈服点降低,峰值强度也降低。 (D )围压对岩石力学性质的影响 随着围压的增高,岩石的延性加大,屈服点增加,峰值强度也增加。 (E )风化对岩石力学性质的影响 主要表现在以下3个方面: 产生新的裂隙、矿物成分发生变化、结构和构造发生变化 3.试论述岩体中的初始地应力及分布规律 a.定义:地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。 b.组成:自重应力、构造应力、热应力、地震应力、扰动应力 c. 地应力的成因 大陆板块边界受压、地幔热对流、地心引力、岩浆侵入、地温梯度、地表剥蚀等引起的地应力场。 d.地应力分布的基本规律(归纳) 1)地应力是一个具有相对稳定的非稳定应力场,它是时间和空间的函数 2)实测垂直应力基本等于上覆岩层的重量 3)水平应力普遍大于垂直应力

(完整版)重庆大学岩石力学总结

重庆大学岩石力学总结 第一章 1 岩石中存在一些如矿物解理,微裂隙,粒间空隙,晶格缺陷,晶格边界等内部缺陷,统称微结构面。 2 岩石的基本构成是由组成岩石的物质成分和结构两大方面来决定。 3 岩石的结构是指岩石中矿物颗粒相互之间的关系,包括颗粒的大小,形状,排列,结构连接特点及岩石中的微结构面。其中以结构连接和岩石中的微结构面对岩石工程性质影响最大。 4岩石中结构连接的类型主要有两种:结晶连接,胶结连接。 5 岩石中的微结构面是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。它包括矿物的解理,晶格缺陷,晶粒边界,粒间空隙,微裂隙等。 6 矿物的解理面指矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。 7 岩石的物理性质是指由岩石固有的物质组成和结构特征所决定的比重,容重,孔隙率,岩石的密度等基本属性。 8 岩石的孔隙率是指岩石孔隙的体积与岩石总体积的比值。 9岩石的水理性:岩石与水相互作用时所表现的性质称为岩石的水理性。包括岩石的吸水性,透水性,软化性和抗冻性。 10 岩石的天然含水率rd w m m w = w m 表示岩石中水的质量,岩石的烘干质量rd m 11 岩石在一定条件下吸收水分的性能称为岩石的吸水性。它取决于岩石孔隙的数量,大小,开闭程度和分布情况。表征岩石吸水性的指标有吸水率,饱和吸水率和饱水系数。岩石吸水率dr dr o a m m m w -=. dr m 为岩石烘干质量,o m 为岩石浸水48小时后的总质量。 12 岩石的饱水率是岩石在强制状态下(高压,真空或煮沸)岩石吸入水的质量与岩石烘干质量的比值。 13岩石的透水性:岩石能被水透过的性能。可用渗透系数衡量。主要取决于岩石孔隙的大小,方向及相互连通情况。A dx dh k q x = K 为岩石的渗透系数,h 为水头的高度,A为垂直于X方向的截面面积,qx 为沿X方向水的流量。 透水性物理意义:是介质对某种特定流体的渗透能力,渗透系数的大小取决于岩石的物理特性和结构特征。 14 岩石在反复冻融后强度降低的主要原因:1构成岩石的各种矿物的膨胀系数不同,当温度变化时,由于矿物的胀缩不均而导致岩石结构的破坏。2当温度降到0℃以下时,岩石孔隙的水结冰,体积增大约%9,会产生很大的膨胀压力,使岩石的结构发生改变甚至破坏。 15 进行岩石强度实验选用的试件必须是完整岩块,而不应包含节理裂隙。 16 岩石强度指标值受下列因素影响:①试件尺寸②试件形状③试件三维尺寸比例④加载速率(加载速率越多,所测岩石强度指标值越高⑤湿度

岩石力学总结

第一章 岩块:是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体 结构面:是指地质历史发展过程中,在岩体内部形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。(结构面根据地质成因不同分为原生,构造和次生结构面)(结构面对工程岩体的完整性、渗透性、物理力学性质及盈利传递等都有显著地影响) 岩体:是指在地质历史过程中形成的,由岩石单元体(或称岩块)和结构面网络组成的,具有一定的结构并赋存予一定的天然应力状态和地下水等地质环境中的地质体。 第三章 渗透系数的物理意义是介质对某种特定流体的渗透能力,岩石的参透系数表征的就是岩石对水的渗透能力,其取决于岩石的物理性质和结构特征例如岩石中孔隙和裂隙的大小 岩石遇水后体积增大的特性成为岩石的膨胀性 岩石的膨胀性大小主要通过膨胀力和膨胀率两个指标来体现,测定方法由平衡加压法,压力恢复法和加压膨胀法 第四章 弹性指物体在外力作用下发生变形,而当撤除外力后能够恢复原状的性质(线性,非线性) 塑性是指物体在外力的作用下发生不可逆变形的性质 脆性是指物体在力的作用下变形很小时即发生破坏的性质 延性是指物体在力的作用下破坏前能够发生大量的应变的性质,其中主要是塑性变形 黏性指的是在力的作用下物体能够抑制瞬间变形,使变形因时间效应而滞后的性质 岩石单轴压缩试验的目的:通过测定岩石试件在单轴压缩应力条件下的应变值,绘制应力-应变曲线,分析岩石的变形特性,并计算岩石的变形指标 岩石的应变可分为三种:轴向应变εa(试样沿压力方向长度的相对变化)、横向应变εc(试样在垂直于压力的方向上长度的相对变化)和体应变εv(试样体积的相对变化) 岩石典型的全应力-应力曲线:1.微裂隙闭合阶段(OA段)2.弹性变形至微破裂稳定发展阶段(ABC 段)3.裂隙非稳定发展和破坏阶段(CD段)4.破坏后阶段(D点以后) 岩石典型的全应力-应力曲线决定于岩石的矿物质成分和结构特征 岩石记忆:逐级一次循环加载条件下,其盈利-应变曲线的外包线与连续加载条件下的曲线基本一致,说明加、卸过程并未改变岩石变形的习性,这种现象成为~ 回滞环:每次加荷、卸荷曲线都不重合,且围成一环形面积,成为~ 疲劳强度:岩石的破坏产生在反复加、卸荷曲线与应力-应变全过程交点处。这时的循环加、荷试验所给定的应力,成为疲劳强度。 岩石流变力学特性主要包括以下几个方面:(1)蠕变现象:当应力保持恒变时,应变随时间逐渐增长的过程(2)应力松弛:当应变保持恒定时,应力随时间逐渐减小的过程(3)流动特征:时间一定时,应变速率与应力大小的关系(4)长期强度:在长期何在持续作用下岩体的强度 蠕变是指岩石在恒定的荷载作用下,变形随时间逐渐增大的性质 蠕变分为稳定蠕变和非稳定蠕变稳定蠕变型是岩石在较小的恒定应力作用下,变形随时间增加到一定程度后就趋于稳定,最后变形保持一个常数,不在随时间增大。非稳定蠕变型是岩石承受的恒定荷载比较大,当超过某一临界值时,变形随时间的增加不仅不会保持常数,反而变形速率逐渐增加,最终导致岩体的整体失稳破坏了 一个典型的非稳定型蠕变曲线分为瞬间弹性变形阶段、一次蠕变阶段、二次~、三次~ 岩石的强度是指岩石对荷载的抗力,或者成为岩石抵抗破坏的能力 岩石的强度有:抗压强度、抗拉强度和抗剪强度。抗剪强度又有抗剪断强度,抗切强度和弱面的剪切强度三种。 岩石的破坏形式:脆性、延性、弱面剪切破坏 岩石的抗压强度是指岩石试件在单轴压力作用下,抵抗破坏的极限能力,他在数值上等于破坏时的最大压应力

重庆大学博士研究生试题岩石力学2006年春

一. 试述库仑准则和莫尔假定的基本内容。(20分) 二. 论述岩石在复杂应力状态下的破坏类型,并阐述其在工程岩 体稳定性研究中的意义。(20分) 三. 论述影响岩石力学性质的主要因素。(20分) 四. 什么是岩石的水理性?如何描述岩石的水理性?(20分) 五. 什么是岩石的应力-应变全过程曲线,研究应力-应变全过程 曲线的意义是什么?(20分)

一. 试述库仑准则和莫尔假定的基本内容 该准则是1773年由库仑引入的,他认为趋于使一平面产生破坏的剪应力受到材料的内聚力和乘以常数的平面的法应力的抵抗,即 |τ| = S 0 + μσ 其中,σ和τ是该破坏平面的法向应力和剪应力,S 0可以看作是材料的固有剪切强度的常数,μ是材料的内摩擦系数的常数。根据该理论可以推论出,当岩石发生破坏时所产生的破裂面将有两个可能的共轭破裂 面,且均通过中间主应力的方向,并与最大主应力方向成夹角(φπ2 141-),这里的内摩擦角μφ1tan -=。 莫尔假定是莫尔于1900年提出的一种剪切破坏理论,该理论认为岩石受压后产生的破坏主要是由于岩石中出现的最大有效剪应力所引起,并提出当剪切破坏在一平面上发生时,该破坏平面上的法向应力σ和剪应力τ由材料的函数特征关系式联系: |τ| = f (σ) 按莫尔假定可以看出:①岩石的破坏强度是随其受力条件而变化的,周向应力越高破坏强度越大;②岩石在三向受压时的破坏强度仅与最大和最小主应力有关,而与中间主应力无关;③三向等压条件下,莫尔应力圆是法向应力σ轴上的一个点圆,不可能与莫尔包络线相切,因而岩石也不可能破坏;④岩石的破裂面并不与岩石中的最大剪应力面相重合,而是取决于其极限莫尔应力圆与莫尔包络线相切处切点的位置,这也说明岩石的破裂不仅与破裂面上的剪应力有关,也与破裂面上出现的法向正应力和表征岩性的内聚力和内摩擦角有关。 总之,莫尔假定考虑了岩石的受力状态、周向应力约束的影响和岩石的本身性能,能较全面的反映岩石的破坏强度特征,但该假定忽视了中间主应力对岩石破坏强度的影响,而事实证明中间主应力对其破坏强度是有一定程度影响的。 二. 论述岩石在复杂应力状态下的破坏类型,并阐述其在工程岩体稳定性研究中的意义 在关于岩石破裂的所有讨论中,破裂面的性质和描述是最重要的,出现的破裂类型可用下图中岩石在各种围压下的行为来说明。 在无围压受压条件下,观测到不规则的纵向裂缝[见图(a)],这个普通现象的解释至今仍然不十分清楚;加中等数量的围压后,图(a)中的不规则性态便由与方向倾斜小于45度 角的单一破裂面所代替[图(b)],这是压应力条件下的典型破裂,并将其表述为剪切破坏,它的特征是沿破裂面的剪切位移,对岩石破裂进行分类的Griggs 和Handin(1960)称它为断层;因为它符合地质上的断层作用,后来有许多作者追随着他们;然而,更可取的似乎是限制术语断层于地质学范围,保留术语剪切破裂于试验范围更好;如果继续增加围压,使得材料成为完全延性的,则出现剪切破裂的网格[图(c)],并伴有个别晶体的塑性。 破裂的第二种基本类型是拉伸破裂,它典型地出现于单轴拉伸中,它的特征是明显的分离,而在表面

重庆大学材料力学答案精编版

重庆大学材料力学答案 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

重庆大学材料力学答案 2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积 21mm 8004200=?=?=t b A 202mm 4004)100200()(=?-=?-=t b b A (3) 计算正应力 MPa 175800 1000140111=?== A N σ MPa 350400 1000 140222=?== A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力σ及τ,并问τ发生在哪一个截面?

解:(1) 计算杆的轴力 kN 10==P N (2) 计算横截面上的正应力 MPa 50100 2100010=??== A N σ (3) 计算斜截面上的应力 MPa 5.37235030cos 2 230 =??? ? ???== σσ MPa 6.212 3250)302sin(2 30=?= ?= σ τ MPa 25225045cos 2 245 =??? ? ???== σσ MPa 2512 50 )452sin(2 45=?= ?= σ τ (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , 454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。

重庆大学材料力学复习试题

1、构件的强度、刚度、稳定性 C 。 A:只与材料的力学性质有关B:只与构件的形状尺寸有关 C:与二者都有关D:与二者无关 2、均匀性假设认为,材料内部各点的 D 是相同的。 A:应力B:应变C:位移D:力学性质 3、各向同性认为,材料沿各个方向具有相同的 A 。 A:力学性质B:外力C:变形D:位移 4、在下列四种材料中, C 不可以应用各向同性假设。 A:铸钢B:玻璃C:松木D:铸铁 5、根据小变形条件,可以认为: D A:构件不变形B:构件不破坏 C:构件仅发生弹性变形D:构件的变形远小于原始尺寸 6、外力包括: D A:集中力和均布力B:静载荷和动载荷 C:所有作用在物体外部的力D:载荷与支反力 7、在下列说法中,正确的是 A 。 A:内力随外力的增大而增大;B:内力与外力无关; C:内力的单位是N或KN;D:内力沿杆轴是不变的; 8、静定杆件的内力与其所在的截面的 D 有关。 A:形状;B:大小;C:材料;D:位置 9、在任意截面的任意点处,正应力σ与剪应力τ的夹角α= A 。A:α=90O;B:α=45O;C:α=0O;D:α为任意角。 10、图示中的杆件在力偶M的作用下,BC段上 B 。 A:有变形、无位移;B:有位移、无变形;

C:既有位移、又有变形;D:既无变形、也无位移; 11、等直杆在力P作用下: D A:N a大B:N b 大C:N c 大D:一样大 12、用截面法求内力时,是对 C 建立平衡方程而求解的。 A:截面左段B:截面右段C:左段或右段D:整个杆件13、构件的强度是指 C ,刚度是指 A ,稳定性是指 B 。 A:在外力作用下抵抗变形的能力; B:在外力作用下保持其原有平衡态的能力; C:在外力的作用下构件抵抗破坏的能力; 14、计算M-M面上的轴力 D 。 A:-5P B:-2P C:-7P D:-P 15、图示结构中,AB为钢材,BC为铝材,在P力作用下 C 。 A:AB段轴力大 B:BC段轴力大 C:轴力一样大

重庆大学2016-2017材料力学期末试题

模拟题 一、选择题(3x5=15分): 1. 有A、B、C三种材料,其拉伸应力-应变实验曲线如图1所示,曲线()材料的弹性模量E最大,曲线()材料的强度高,曲线()材料的塑性好。 2.轴向拉伸杆,正应力最大的截面和剪应力最大的截()。 A分别是横截面、45°斜截面;B都是横截面; C 分别是45°斜截面、横截面;D都是45°斜截面。 3. 设计某一主轴,发现原方案刚度不足,将进行修改设计,有效的措施是()。 A轴材料改用优质高强钢;B减小轴的长度;C加大轴径;D把轴挖空

4. 等截面直梁在弯曲变形时,挠曲线的曲率最大发生在()处。 A挠度最大;B转角最大;C剪力最大;D弯矩最大 5. 压杆柔度大小与压杆的哪个参数无关()。 A 压杆的长度; B 压杆所受的外力; C 压杆的约束条件;D压杆的截面形状和尺寸。 二、计算题 1. 题图所示结构,AB为刚体,载荷P可在其上任意移动。试求使CD杆重量最轻时,夹角α应取何值? 题图1

2. 一阶梯形圆轴如题图2所示。已知轮B 输入的功率B N =45kW ,轮A 和轮C 输出的功率分别为A N =30Kw, C N =15kW ;轴的转速n=240r/min, 1d =60mm, 2d =40mm;许用扭转角[]θ=2 ()/m ?,材料的[]τ=50Mpa,G=80Gpa.试校核轴的强度和刚度。 3. 图示外伸梁在外伸段受均布载荷q 作用,全梁EI 为常数。试用莫尔积分计算梁在C 截面的挠度C y 。 q

4. 空心圆杆AB和CD杆焊接成整体结构,受力如图。AB杆的外径D=140mm,内、外径之比α= d/D=0.8,材料的许用应力[ ]=160MPa。试用第三强度理论校核AB杆的强度。

重庆大学采矿工程考研真题全总结

岩石力学历年考题(2013考研) 一、名词解释 1、矿物与岩石(2003,2009) 矿物指由地质作用所形成的天然单质或化合物。 岩石是自然界各种矿物的集合体,是天然地质作用的产物,是构成岩体的基本单元。 2、地质体与岩体(2003)岩石与岩体(2004)p75 地质体是指地壳内占有一定的空间和有其固有成分,并可以与周围物质相区别的地质作用的产物。 岩体是指在一定的地质条件下,含有诸如节理、裂隙、层理和断层等地质结构面的复杂地质体。 3、岩石的容重(2006,2010)天然容重、干容重与饱和容重(2003)p24-25 岩石的容重:岩石单位体积(包含岩石内孔隙体积)的重量。g v w ργ== ,式中r 为岩石容重,w 为被测岩样的重量,v 为被测岩样的体积。 天然容重:天然状态下岩石的容重。 干容重:在105-110°烘干24小时的的岩石的容重。 饱和容重:饱水状态下岩石的容重。 4、岩石的天然含水率(2010),岩石的比重(2010) 岩石的天然含水率:天然状态下岩石中的水的质量与岩石的烘干质量的比值。 岩石的比重:岩石固体部分的重量与4摄氏度时同体积纯水重量的比值。 5、岩体完整性(龟裂)系数(2003,2006,2007,2009,2010)p110 岩体完整性系数又称裂隙系数,为岩体与岩石的纵波速度平方之比,用来判断岩体中裂隙的发育程度。(附上书上的公式) 6、岩石(芯)质量指标RQD (2003,2004,2005,2006,2007,2009,2010,2011)p119 岩石质量指标(RQD ):将长度在10cm (含10cm )以上的岩芯累计长度占钻孔总长的百分比。(附上书上公式) 7、岩石的流变性(2003,2006,2010,2011)与蠕变、松弛和弹性后效(2003)p198 流变性:材料应力—应变曲线关系与时间因素有关的性质,包括蠕变、松弛和弹性后效。 蠕变:应力不变时,变形随时间增加而增长的现象。 松弛:应变不变,应力随时间增加而减小的现象。 弹性后效:加载或卸载时,弹性应变滞后于应力的现象。 8、岩石的透水性与渗透系数(2003)p29 岩石的透水性:岩石能被水透过的性能。透水性的大小可用渗透系数来衡量,它主要取决于岩石中孔隙的大小,方向及相互连通情况。 渗透系数:单位水力梯度下的单位流量,它表示岩体被水透过的难易程度。 9、(岩体)结构面的裂隙度和切割度(2003)p88-89 岩体裂隙度:沿取样线方向单位长度上的节理数量。 切割度:岩体被节理割裂分离的程度。 10、岩石的抗冻性(2004,2009)p30 岩石的抗冻性是指岩石抵抗冻融破坏的性能,通常用抗冻系数表示。抗冻系数指岩石试样在±250C 的温度区间内,反复降温、冻结、融解、升温,其抗压强度有所下降,岩样抗压强度的下降值与冻融前的抗压强度的百分比。 11、抗剪切强度(2004) p43

重庆大学材料力学答案..

重庆大学材料力学答案 2.9题图2.9所示中段开槽的杆件,两端受轴向载荷 P 的作用,试计算截面1-1 和 2-2上的应力。已知:P = 140kN , b = 200mm , b 0 = 100mm , t = 4mm 。 1 2 题图2.9 N “ = N 2 二 P =140 kN 计算横截面的面积 2 A 2 = (b - b 0) t = (200 -100) 4 = 400 mm 计算正应力 山=迴型=175 MPa A 1 800 血=140 100°=350 MPa A 2 400 (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段 的危险截面) 2.10横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30° 的及45 计算杆的轴力 N =P =10 kN 计算横截面上的正应力 N 10汉1000 “ w 50 MPa A 2 100 计算斜截面上的应力 子 2 =37.5 Mpa 2 二 30 30 =50 解:⑴ 计算杆的轴力 A i = b t = 200 4 = 800 2 mm 斜截面上的应力一.及■-.,并问pax 发生在哪一个截面? 解:⑴

2 。(42f 二45 - cos 45 二50 =25 MPa cr . ?50 -45 sin(2 45 ) 1 = 25 MPa 2 2 ⑷? max发生的截面 d . c o 2() =0取得极值 d: c o S?( ) = 0 JI 二一二45 4 故:rax发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2 2.17 题图2.17 所示阶梯直杆AC, P=10kN, l1=l2=400mm, A1=2A2=100mm , E=200GPa=试计算杆AC的轴向变形△ I。 A A B 题图2.17 解:(1)计算直杆各段的轴力及画轴力图 2P

岩石力学实习报告

岩石力学实习报告 试验一岩石点荷载强度试验 一.试验目的 岩体的点荷载试验是将岩石块体置于一对点接触的加荷装置上, 岩石破坏主要是呈劈裂破坏的性质,破坏的机理是张破坏。用来测定岩石的抗拉强度,又根据岩石的抗拉强度与抗压强度之间的内在联系,由点荷载试验结果换算出岩石的抗压强度。 二.试验原理 试件在一对点荷载作用下发生破坏iao,主要是由于加荷轴线上 的拉应力引起的,其破坏机制为张破裂。试验表明,不同形状的试件在点荷载作用下,其加荷轴附近的应力状态基本相同,这为采用不同形状的试件在点荷载作用下,其加荷轴附近的应力状态基本相同,这为采用不同形状及不规则试件进行点荷载试验提供了理论依据。点荷载试验得出的基本力学指标是点荷载强度指数,其计算公式为: Is?p2De 式中: P——作用于试件破坏时的荷载值(KN); De——等效岩芯直径(mm),对于采取的钻孔岩芯径向试验, De2==D2(D——岩芯直径),对于岩芯的轴向试验,方块体以及不规则岩块试验De?24A ?(A=DW,D

——试件上、下两加荷点间距离,W——试件破裂面垂直于加荷轴的平均宽度)。 试验表明,同一种岩石当试件尺寸不同时,对点荷载强度会产生影响,因此试验方法标准中规定以D=50mm时的点荷载强度为基准,当D值不等于500mm时,需对点荷载强度进行修正,其修正公式为: Is(50) 式中: F——尺寸修正系数; M——修正指数,由同类岩石的经验值确定,1985年国际岩石力学协会(ISRM)建议m=0.45,近似取m=0.5。?De?F??FIs??50??M 由点载荷强度指数可进一步计算出岩石的单轴抗压强度(?c)及抗拉强度(?t)计算公式如下: .75?c?22.8210 s(50)?t?K1Is(50) 三.试验步骤 (一)试件制备 1.试样应取自于工程岩体,具有代表性。可利用钻孔岩芯,或在基岩露头、勘探抗槽探硐、巷道中采取岩块。试件应完整,在取样及制备过程中避免产生裂缝。 2.试件尺寸应符合以下规定: (1)应采用岩芯试件作径向试验时,试件的长度与直径之比不应小于1.0;作轴向试验时,加荷两点距离与试件直径之比为0.3~1.0;

相关文档
最新文档