单片射频微波集成电路技术与设计 放大器

单片射频微波集成电路技术与设计 放大器
单片射频微波集成电路技术与设计 放大器

射频与微波技术知识点总结

射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振 微波频率:300MHz-3000GHz 波长:0.1mm-1m 独特的特点:RF/MW 的波长与自然界物体尺寸相比拟 在RF/MW 波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。 长线概念:通常把RF/MW 导线(传输线)称为长线,传统的电路理论已不适合长线! RF/MW 系统的组成: 传输线:传输RF/MW 信号 微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波 天线:辐射或接收电磁波 微波、天线与电波传播的关系:(简答) 微波: 对象:如何导引电磁波在微波传输系统中的有效传输 目的:希望电磁波按一定要求沿微波传输系统无辐射的传输; 天线 任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波 作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量 电波传播 分析和研究电波在空间的传播方式和特点 常用传输线机构:矩形波导 共面波导 同轴线 带状线 微带线 槽线 分析方法 称为传输线的特性阻抗 特性阻抗Z0通常是个复数, 且与工作频率有关。 它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗 对于均匀无耗传输线, R=G=0, 传输线的特性阻抗为 此时, 特性阻抗Z0为实数, 且与频率无关。 常用的平行双导线传输线的特性阻抗有250Ω, 400Ω和600Ω三种。 常用的同轴线的特性阻抗有50 Ω 和75Ω两种。 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数, 故不宜直接测量。 无耗传输线上任意相距λ /2处的阻抗相同, 一般称之为λ /2重复性。 传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿-z 方向传播的行波(称为入射波)和沿+z 方向传播的行波(称为反射波)叠加而成。 传播常数γ: α为衰减常数, 单位为dB/m β为相移常数 对于均匀无耗传输线来说, 由于β与ω成线性关系, 故导行波的相速与频率无关, 也称为无色散波。当传输线有损耗时, β不再与ω成线性关系, 使相速υp 与频率ω有关,这就称为色散特性。 定义传输线上任意一点 z 处的反射波电压(或电流)与入射波电压(或电流)之比为电压(或电流)反射系数(越小越好) 当Zl=Z0时, Γl=0, 即负载终端无反射, 此时传输线上反射系数处处为零, 一般称之为负载匹配。而当Zl ≠Z0时, 负载端就会产生一反射波, 向信源方向传播, 若信源阻抗与传输线特性阻抗不相等时, 则它将再次被反射。 定义传输线上波腹点电压振幅与波节点电压振幅之比为电压驻波比, 用ρ表示: 0L Z C =)j /()j (0C G L R Z ωω++=βωωγj )j )(j (+=++≈a C G L R min max U U =ρ

微波电路设计基础知识

微波电路及设计的基础知识
1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith 圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的 CAD 软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器 9. 应用电路举例
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/ea17447551.html,

第1章
概述
所谓微波电路,通常是指工作频段的波长在 10m~1cm(即 30MHz~30GHz)之 间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz) 等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频 (RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以 及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多 独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工 艺、元器件、以及设计 技术等方面,都已经发展得非常成熟,并且应用领域越来 越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过 了 1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路 的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电 路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
第2章
微波电路的基本常识
2.1 电路分类
2.1.1 按照传输线分类
微波电路可以按照传输线的性质分类,如:
图 1 微带线
图 2 带状线
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/ea17447551.html,

MSA-0486-TR1 双极微波单片集成电路分放大器

Cascadable Silicon Bipolar MMIC?Amplifier Technical Data Features ?Cascadable 50 ? Gain Block ? 3 dB Bandwidth:DC to 3.2 GHz ?8 dB Typical Gain at 1.0?GHz ?12.5 dBm Typical P 1 dB at 1.0?GHz ?Unconditionally Stable (k>1)?Surface Mount Plastic Package ?Tape-and-Reel Packaging Option Available [1] MSA-0486 86 Plastic Package Typical Biasing Configuration Note: 1.Refer to PACKAGING section “Tape-and-Reel Packaging for Surface Mount Semiconductors”. R V CC > 7 V IN OUT Description The MSA-0486 is a high perfor-mance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost,surface mount plastic package.This MMIC is designed for use as a general purpose 50 ? gain block.Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications. The MSA-series is fabricated using HP’s 10 GHz f T , 25?GHz f MAX ,silicon bipolar MMIC process which uses nitride self-alignment,ion implantation, and gold metalli-zation to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

微波电路及设计的基础知识

微波电路及设计的基础知识 1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的CAD软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器 9. 应用电路举例

微波电路及其设计 1.概述 所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz)等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频(RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。 2.微波电路的基本常识 2.1 电路分类 2.1.1 按照传输线分类 微波电路可以按照传输线的性质分类,如:

图1 微带线 图2 带状线 图3 同轴线 图4 波导

图5 共面波导 2.1.2 按照工艺分类 微波混合集成电路:采用分离元件及分布参数电路混合集成。 微波集成电路(MIC):采用管芯及陶瓷基片。 微波单片集成电路(MMIC):采用半导体工艺的微波集成电路。 图6微波混合集成电路示例 图7 微波集成电路(MIC)示例

射频功放设计

基于ADS的射频功率放大器仿真设计 1.引言 各种无线通信系统的发展,如GSM、WCDMA、TD-SCDMA、WiMAX和Wi-Fi,大大加速了半导体器件和射频功放的研究过程。射频功放在无线通信系统中起着至关重要的作用,它的设计好坏影响着整个系统的性能。因此,无线通信系统需要设计性能优良的放大器。而且,为了适应无线系统的快速发展,产品开发的周期也是一个重要因素。另外,在各种无线系统中由于采用了不同调制类型和多载波信号,射频工程师为减小功放的非线性失真,尤其是设计无线基站应用的高功率放大器时面临着巨大的挑战。采用Agilent ADS 软件进行电路设计可以掌握设计电路的性能,进一步优化设计参数,同时达到加速产品开发进程的目的。功放(PA)在整个无线通信系统中是非常重要的一环,因为它的输出功率决定了通信距离的长短,其效率决定了电池的消耗程度及使用时间。 2.功率放大器基础 2.1功率放大器的种类 根据输入与输出信号间的大小比例关系,功放可以分为线性放大器与非线性放大器两种。输入线性放大器的有A、B、AB类;属于非线性放大器的则有C、E 等类型的放大器。 (1)A类:其功率器件再输入信号的全部周期类均导通,但效率非常低,理想状态下效率仅为50%。 (2)B类:导通角仅为180°,效率在理想状态下可达到78%。 (3)AB类:导通角大于180°但远小于360°。效率介于30%~60%之间。 (4)C类:导通角小于180°,其输出波形为周期性脉冲。理论上,效率可达100%。 (5)D、E类:其原理是将功率器件当作开关使用。 设计功放电路前必须先考虑系统规格要求的重点,再来选择电路构架。对于射频功放,有的系统需要高效率的功放,有些需要高功率且线性度佳的功放,有些需要较宽的操作频带等,然而这些系统需求往往是相互抵触的。例如,B、C、E类构架的功率放大器皆可达到比较高的效率,但信号的失真却较为严重;而A

【CN209266394U】一种90度电桥微波集成电路芯片结构【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920218935.5 (22)申请日 2019.02.21 (73)专利权人 华芯智造微电子(重庆)股份有限 公司 地址 401420 重庆市綦江县古南街道金福 大道57号5幢 (72)发明人 彭朝亮  (51)Int.Cl. H01L 23/40(2006.01) H01L 23/467(2006.01) H01L 23/367(2006.01) H01L 23/00(2006.01) (54)实用新型名称 一种90度电桥微波集成电路芯片结构 (57)摘要 本实用新型公开了一种90度电桥微波集成 电路芯片结构,包括基板所述基板的顶部通过第 一减震机构连接有两个对称设置的第一微带,两 个所述第一微带顶部通过金属带连接,所述基板 的顶部通过第二减震机构连接有第二微带,所述 第一微带的底部固定连接有散热机构。本实用新 型通过固定杆和第一弹簧的弹性势能,对外部震 动进行削弱,同时利用滑块辅助固定杆的上下移 动,再利用连接杆、转轴、活动块和第二弹簧的弹 性势能对外部震动进行抵消,同时利用震动的动 能带动转轴上下移动,使扇叶带动转轴转动,从 而将微波集成电路芯片的热量通过散热口排出 基板外,同时利用防尘网进行防尘,防止灰尘干 扰本装置运行。权利要求书1页 说明书3页 附图2页CN 209266394 U 2019.08.16 C N 209266394 U

权 利 要 求 书1/1页CN 209266394 U 1.一种90度电桥微波集成电路芯片结构,包括基板(1),其特征在于,所述基板(1)的顶部通过第一减震机构连接有两个对称设置的第一微带(2),两个所述第一微带(2)顶部通过金属带(3)连接,所述基板(1)的顶部通过第二减震机构连接有第二微带(4),所述第一微带(2)的底部固定连接有散热机构。 2.根据权利要求1所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述第一减震机构包括固定连接在第一微带(2)的底部的固定杆(5),所述基板(1)的底部设有与固定杆(5)对应的连接槽,所述固定杆(5)的两侧均固定连接有滑块(6),所述连接槽的内侧壁设有与滑块(6)对应的滑槽,所述固定杆(5)的底部通过第一弹簧(7)与连接槽的内底部固定连接。 3.根据权利要求1所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述散热机构包括转动连接在第一微带(2)底部的转轴(8),所述转轴(8)远离第一微带(2)底部的一端固定连接有扇叶(9),所述基板(1)的内设有与扇叶(9)对应的散热口。 4.根据权利要求3所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述散热口的内侧壁固定连接有防尘网(10)。 5.根据权利要求1所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述第二减震机构包括转动连接在第二微带(4)上的连接杆(11),所述连接杆(11)远离第二微带(4)的一端转动连接有活动块(12),所述基板(1)上设有与活动块(12)对应的活动槽,所述活动槽的内侧壁固定连接有活动轴(13),所述活动块(12)滑动套接在活动轴(13)上,所述活动轴(13)上套设有第二弹簧(16),所述第二弹簧(16)的两端分别与活动块(12)和活动槽的内侧壁固定连接。 6.根据权利要求5所述的一种90度电桥微波集成电路芯片结构,其特征在于,所述第二微带(4)的底部和活动块(12)的底部均固定连接有安装座(14),所述安装座(14)的内侧壁固定连接有转动轴(15),所述连接杆(11)的两端分别转动套接在两个转动轴(15)上。 2

关于射频微波去嵌入技术的调研

关于射频微波去嵌入技术的调研 在微波射频电路中,一个不可避免的问题就是测量电路或者器件的参数,由于高频电路的特殊性,对于器件参数的测量要求很苛刻,为了使测量的指标和实际的情形十分接近,我们需要考虑很多因素对测量系统的影响,其中最重要的因素之一就是夹具的去嵌入问题,下面就国内外在去嵌入技术上的重大突破做一下调研。 对于微波有源器件建模和性能特性测量,矢量网络分析仪发挥了重要作用,以矢量网络分析仪为核心的有源器件和MMIC自动测试系统得到了快速发展。矢量网络分析仪等测量仪器的测试端口或者参考面一般为标准同轴连接器或波导,如3.5mm和2.4mm 同轴连接器,有源器件如微波晶体管、场效应管和二极管等一般为未封装的管芯或梁式引线封装,在被测有源器件和测量仪器之间必须引入测量夹具予以转换。测量夹具的引入解决了有源器件的直流偏置、信号激励与检测的问题,但同时引入了测量误差,去除有源器件测量夹具引入的误差必须进行去嵌入运算。 矢量网络分析仪测量有源器件事先必须进行测量校准,一般在矢量网络分析仪的同轴测量端口或波导测量端口采用OSLT校准方法或TR L校准方法进行校准,可以去除矢量网络分析仪本身的系统误差,从而提高测量精度;另一种测量校准方法就是在测量夹具上进行测量校准, 如TRL、LRL、LRM、TOM、SOLD和OSL等校准方法,这些校准方法都有一个共同的特点就是需要一个微带或共面波导等平面传输线制成的校准件,把测量夹具引入的误差作为整个矢量网络分析仪的系统误差,通过在微带或共面波导参考面上进行测量校准和误差修正和误差修正予以剔除。 微带型或共面波导型校准件存在两个方面的问题:一是微带型或共面波导型校准件制作工艺比较复杂,性能指标难以提高;二是微带型或共面波导型校准件定标问题一般单位难以解决,现有的测量手段只能解决具有同轴或波导参考面的部件和组件测量问题,无法满足微带和共面波导等平面传输线校准件的定标要求。鉴于这些原因有源器件测量夹具的去嵌入问题,一直是有源器件建模和测量领域研究的热点问题。 在有源测量夹具完全对称的假设下,提出了一种无需在微带或共面波导等平面传输线参考面上进行校准的去嵌入方法,这种方法的优点就是不需要微带或共

微波毫米波单片集成电路综述论文

微波毫米波单片集成电路综述论文 摘要 微波集成电路(Microwave Integrated Circuit缩写为MIC)是工作在微波波段和毫米波波段即30GHz~300GHz频率范围,由微波无源元件、有源器件、传输线和互连线集成在一个基片上,具有某种功能的电路。微波集成电路起始于20世纪50年代。微波电路技术由同轴线、波导元件及其组成的系统转向平面型电路的一个重要原因,是微波固态器件的发展。60~70年代采用氧化铝基片和厚膜薄膜工艺;80年代开始有单片集成电路。 微波集成电路大致可以分为两种电路:混合微波集成电路和单片微波集成电路。 混合微波集成电路是用厚膜技术或薄膜技术将各种微波功能电路制作在适合传输微波信号的介质(如高氧化铝瓷、蓝宝石、石英等)上,再将分立有源元件安装在相应位置上组成微波集成电路。这种电路的特点是根据微波整机的要求和微波波段的划分进行设计和制造,所用集成电路多是专用的。常用的混合微波集成电路有微带混频器、微波低噪声放大器、功率放大器、倍频器、相控阵单元等各种宽带微波电路。 单片微波集成电路(Monolithic Microwave Integrated Circuit缩写为MMIC)则是将微波功能电路用半导体工艺制作在砷化镓或其他半导体芯片上的集成电路。这种电路的设计主要围绕微波信号的产生、放大、控制和信息处理等功能进行,大部分电路都是根据不同整机的要求和微波频段的特点设计的,专用性很强。在这类器件中,作为反馈和直流偏置元件的各个电阻器都采用具有高频特性的薄膜电阻,并且与各有源器件一起封装在一个芯片上,这使得各零件之间几乎无连线,从而使电路的感抗降至最低,且分布电容也极小,因而可用在工作频率和频宽都很高的MMIC 放大器中。 目前,MMIC的工作频率已可做到40GHz,频宽也已达到15GHz,因而可广泛应用于通信和GPS, 等各类设备的射频、中频和本振电路中。 本文主要从单片微波集成电路工艺、基于Si的单片微波集成电路的电路结构的

微波混合集成电路 合成频率源-编制说明

国家标准《微波混合集成电路合成频率源》(征求意见稿)编制说明 1工作简况 1.1任务来源 本项目是国家质量基础(NQI)项目中的一项。本国家标准的制定任务已列入2018年国家标准制修订项目,项目名称为《微波混合集成电路合成频率源》,项目编号为:20192058-T-339。本标准由中国电子科技集团公司第十三研究所负责组织制定,标准归口单位为全国半导体器件标准化技术委员会集成电路分技术委员会(TC78/SC2)。 1.2主要工作过程 接到编制任务,项目牵头单位中国电子科技集团公司第十三研究所成立了标准编制组。中国电子技术标准化研究院等相关单位参与标准编制工作。编制组落实了各单位职责,并制定编制计划。 编制组查找了国际、国内集成电路相关标准,认真研究了现行混合集成电路标准体系和相关标准技术内容,在此基础上形成了标准征求意见稿。 2标准编制原则和确定主要内容的论据及解决的主要问题 2.1本标准制定原则 本标准遵循“科学性、实用性、统一性、规范性”的原则进行编制,依据GB/T 1.1-2009规则起草,确立了标准范围、规范性引用文件、术语和定义、分类、技术要求、电特性测试方法、检验规则、标志、定货信息、交货准备等一系列合成频率源的技术指标。 2.2标准的主要内容与依据 2.2.1本标准的定位 目前我国混合集成电路相关标准主要有GB/T 8976-1996《膜集成电路和混合膜集成电路总规范》、GB/T 11498-2018 《半导体器件集成电路第21部分:膜集成电路和混合膜集成电路分规范(采用鉴定批准程序)》、GB/T 13062-2018 《半导体器件集成电路第21-1部分:膜集成电路和混合膜集成电路空白详细规范(采用鉴定批准程序)》等。 从目前微波混合集成电路合成频率源的技术发展来看,还未有相关合成源的相关规范,只有相关测试要求,如:GB/T 35002-2018《微波电路频率源测试方法》。本标准给出了合成频率源的指标体系,并规定产品分类、检验规则、参数测试方法、标志、包装、贮存、运输等要求,可作为合成频率源一类产品的空白详细规范使用。下面对标准技术内容详细说明。 2.2.2术语和定义

射频_微波工程师经典参考书汇总

1.《射频电路设计--理论与应用》『美』Reinhold Ludwig 著电子工业出版社 个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解. 随便提一下,关于看射频书籍看不懂的地方怎么办?我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。 2. 《射频通信电路设计》『中』刘长军著科学技术出版社 个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。值得一看,书上有很多归纳性的经验. 3.《高频电路设计与制作》『日』市川欲一著科学技术出版社 个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看.. 5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社 个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行. 6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社 个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。好书,值得收藏! 7. 《信号完整性分析》『美』Eric Bogatin著电子工业出版社 个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口) 8. 《高速数字设计》『美』Howard Johnson著电子工业出版社 个人书评:刚刚卓越买回来,还没有动“她”呢,随便翻了下目录,做高速电路和PCB Layout 的工程师一看要看下,这本书也是经典书喔! 10.《EMC电磁兼容设计与测试案例分析》『中』郑军奇著电子工业出版社 个人书评:实战性和很强的一本书,本人做产品经常要送去信息产业部电子研究5所做EMC 测试,认证.产品认证是产品成功的临门一脚,把这脚球踢好,老板会很赏识你的,如果你也负责产品的EMC,这本书必读。作者写有很多实例,很有代表性,对你解决EMC问题,会有引导性(指导性)的的意义。

50MHz-250W射频功率放大器的设计复习课程

50M H z-250W射频功率放大器的设计

实例介绍设计与制作功放(二) 出处:何庆华发布日期:2007-8-2 浏览次数:2249 在上篇的文中,我用实例的方法基本地讲述了功放的一些参数计算与设定,其实这也可应用于音响系统中使用晶体管放大的电路中. 由于觉得使用实例会让初入门的朋友会有更深刻的认识,所以此篇也将用实例去介绍功放中各级的匹配传输.但要我一个可典型说明的例子让我想了不少时间,最终决定选用了之前制作的全无环路反馈的功放电路.由于没有使用级间的环路反馈,以致级间的匹配以及各级的电路但总显得十分重要. 见图,在后级的放大线路,是没有环路反馈的这将会电路的指标有所劣化.因电路工作于开环状态,这需要选用性能较好的电路组态,以取得更好的实际音质.而没有使用环路 负反馈,好处是大家所熟知的.如避免了各类的互相失 真,既然无环路反馈有如此.全音质更纯真透明.正如胆 友所追求的效果.但有点却要说明,胆与石,都是为了满 是个人的喜好.而在进口的众多名器中,可以有很多是超 过十万的晶体管后级.甚至有几十万过百万的钽却先见 有超过十万的胆机!而在低挡商品机中,如万元下的进口 器材,胆机却是可以优于石机,但中高挡机中.石机不再 受制于成本,全电路性能大幅提高.同价位的胆石机间胆 机已处于劣势,这从实际试听及一些前辈的言论中也得 到证实.而在DIY中由于没有过多的广告费用,可令成 本都能集中到机内,如电路合理工艺精良,性价比大优于 商品机. 再说回电路,之所以使用无反馈电路就是想用晶体管 收集于网络,如有侵权请联系管理员删除

去取得胆机那中清晰温暖的声音,在这里,使用共射共基电路是必然的,共射共基电路又叫渥尔曼电路,前管共射配合后管的共基放大,让两管中间严重失配,却大降低了前管的密勒电容效应,使前管的频响大改善,而后管是共基电路,天生是频响的高手。在放大能力上,基射共基电路与一般的单管共射电路是没有分别的,但频响却在高频上独领风骚,故而在许多的进口名器上不乏其影,用于本机却可大大改善了开环响应与高频线性。 电路的参数计算在上篇已介绍过,这里就不再罗索了,第一级的工作电流是5mA,增益是2K2与470欧的比值,增益约为15dB,注意的是两个33欧的电阻是配合了K170/J74的参数,如要换用其他的管子可能需要更改这两个电阻的数值。第二级的工作电流约为13mA,增益约为18dB,忽略了输出级的轻微损耗,整机增益在33dB 左右,可以直驳CD机了。 第一级电路与第二级电路在匹配上是没有问题的,但第二级与输出级却由于无反馈而有一定的要求了。若在此输出级使用一般常见的两级射极跟随器,输入阻抗一般只能达到15K欧,由于音箱的阻抗在全频段的不平均,将令第二级电压放大电路的负载(为输出级的输入阻抗)变得不平均稳定。这将导致此级在全频带的放大量不一致,而本机又没有使用环路负反馈来纠正增益。 要解决这一问题有两种方法,一个是输出级用场效应管作推动,使输入阻抗阻抗在理论上达百万M欧,,在实际的应用中可在50K欧,但使用场效应管往往需要有120mA如此大的静态电流,否则音色显得干硬,而如此大的功耗而使功放级的偏置难于补偿。另一种方法是使用近年来许多进口高档机采用的三级双极型三极管组成的输出级电路,本机就采用这种电路,使实际的输入阻抗在50K以上,且不易受音箱负载的影响,但50K的负载对于第二级放大电路来说是太高的,为免增益太高,在第二级放大电路的集电极上各并上了一个10K的电阻,从而令本级达到了预期的增益,且使本级负载的更为稳定,频响更平坦。 输出管使用三对5200/1943并联,以降低输出阻抗,由于无负反馈,这级往往需要较大的静态电流来克服失真与改善音色。另外,直流化电路也是国外高档功放的基本电路形式,本机也不例外,使用直流放大电路可以杜绝耦合电容的音染,获得更好的音色效果,至此后级功放的电路已告完成。 在此有必要提及一下的是音量电位器与后级电路的匹配.在沙的国内DIY的朋友中,多有喜欢在后级的输入端加个音量电位器控制音量就算了,就算是有前级放大的,电位器多是放于前后级之间,这样做本是没有问题的,但如今的电路多数会在后级的输入端加有低通滤波网络,这时就会产生问题了。 电位器的输出阻抗相对较大,而后级的输入低通滤波的截止频率大多是忽略前面的输出阻抗而计算的,而音量电位器的输出阻抗是无法估计的,因其在不同的刻度位置时会有不同的输出阻抗,这样一来,所设计的理想截止频率却变得不理想,截止频率下移了,限制了高频的延伸,为此我在电位器与后级间加入了一级的缓冲电器,以将电位器与后级的直接关联切断,在实际的听感中,会觉得有此电路后高频的延伸力增强,分析力提高,声音却更顺耳,当然这也会与增加了一级的电路有关。而事实上这个缓冲电路也可以说是一个前级。 后级的电压放大级单独用上一组并联稳压电源,本机的缓冲级与音调电路使用另一组关联稳压,音调的切换使用一个OMRON的高品质继电器,以求减低故障率。 收集于网络,如有侵权请联系管理员删除

微波传输线理论及应用

第一章:引言 随着时代的发展,微波技术以及工艺在近年来等到了飞速的发展,这主要是得益于新的微波器件以及新一代的微波传输线的发展。 在微波系统中,单刀双掷开关作为最简单,最常用的微波控制器件在大型的微波设计中起着很重要的作用,我在指导老师刘老师和何老师的悉心指导下,我参阅了一些有关的设计资料,完成了对单刀双掷开关的研制。 在本文中,我将从原理开始,具体分析和介绍研制的过程。在第二章中,主要介绍单刀双掷开关的基本构造,主要参数,匹配网络等等。在第三章中,主要介绍本次设计所使用的软件MicroWave Office,其操作形式,优化方法和自己的一些使用心得。第四章,将着重介绍本次设计的图形,参数的测量、优化指标。 第三章微波固态电路介绍 微波固态电路的发展与微波集成电路技术密切相关,而微型化技术则是以提高集成度为基础的。目前对雷达,电子战和通讯等电子设备中微波电路“微型化”的呼声甚高;“微型化”的含义远比其名词本身寓意要广泛,它至少还意味着:一致性,低价格和高可靠。微波集成电路(MIC)的概念来自低频集成电路(IC),其发展也是遵循着低频的途径。60年代后期随着各种微波半导体器件的问世以及微带传输线理论和薄膜工艺的成熟,以混合集成电路(HMIC)的形式出现。

是采用薄膜或厚膜工艺在介质衬底表面制作以分布参数为主的微波电路,其中有源器件和集总参数元件(电容,电阻等)通过键合,焊接或压接加到衬底表面。70年代HMIC发展迅速,应用广泛,使原先用分立元件实现的微波系统在小型化,轻量化方面起了变革,性能与价格方面也有所得益,而且逐渐出现了集成度提高的多功能HMIC。HMIC的发展对微波技术本身起了推动作用,并为单片微波集成电路的研制奠定了基础。MMIC的含义是采用半导体多层工艺(如外延,离子注入,溅射,蒸发,扩散等方法或这些方法与其他方法的结合)将所有的微波或毫米波有源器件或无源元件(包括连接线)制成一整体或制作于半绝缘衬底表面以实现单个芯片的功能部件或整件。近10年来,MMIC事业蓬勃发展,归因于:性能优良的GaAs 半绝缘衬底材料的大量应用及外延,离子注入等工艺的成熟,MESFET的大力开发并已成为多用途器件;肖特基势垒二极管与各种MESFET(包括双栅FET)可用相同工艺在同一衬底上制作;特别是可进行精确定模和优化设计的CAD工具日臻完善。与功能相同的HMIC相比,MMIC的体积,重量可减至1/100或更小(频率愈低,减少愈多,在L波段可减至1/1000,或更小)。因MMIC适于批加工,在材料均匀性好和工艺成熟的前提下可实现良好的电性能一致。由于大大减少接插件,联线和外接元器件,可靠性改善因数可达20---100,由于寄生参量减至最小,MMIC具有宽带本能,其抗辐射能力也较强。但MMIC也有其缺点。首先。采用半导体工艺在衬底上制成的电路,从占有面积来看,无源元件比有源元件大,因此不仅价格高,也不利

MMIC单片微波集成电路

单片微波集成电路(MMIC),有时也称射频集成电路(RFIC),它是随着半导体制造技术的发展,特别是离子注入控制水平的提高和晶体管自我排列工艺的成熟而出现的一类高频放大器件。 微波集成电路 Microwave Integrated Circuit 工作在300M赫~300G赫频率范围内的集成电路。简称MIC。分为混合微波集成电路和单片微波集成电路。前者是用厚膜技术或薄膜技术将各种微波功能电路制作在适合传输微波信号的介质(如高氧化铝瓷、蓝宝石、石英等)上,再将分立有源元件安装在相应位置上组成微波集成电路。这种电路的特点是根据微波整机的要求和微波波段的划分进行设计和制造,所用集成电路多是专用的。单片微波集成电路则是将微波功能电路用半导体工艺制作在砷化镓或其他半导体芯片上的集成电路。这种电路的设计主要围绕微波信号的产生、放大、控制和信息处理等功能进行,大部分电路都是根据不同整机的要求和微波频段的特点设计的,专用性很强。 在这类器件中,作为反馈和直流偏置元件的各个电阻器都采用具有高频特性的薄膜电阻,并且与各有源器件一起封装在一个芯片上,这使得各零件之间几乎无连线,从而使电路的感抗降至最低,且分布电容也极小,因而可用在工作频率和频宽都很高的MMIC放大器中。 目前,MMIC的工作频率已可做到40GHz,频宽也已达到15GHz,因而可广泛应用于通信和GPS, 等各类设备的射频、中频和本振电路中。 根据制作材料和内部电路结构的不同,MMIC可以分成两大类:一类是基于硅Silicon晶体管的MMIC,另一类是基于砷化镓场效应管(GaAs FET)的MMIC。GaAs FET类MMIC具有工作频率高、频率范围宽、动态范围大、噪声低的特点,但价格昂贵,因此应用场合较少;而硅晶体管的MMIC性能优越、使用方便,而且价格低廉,因而应用非常广泛. 微波集成电路是工作在微波波段和毫米波波段,由微波无源元件、有源器件、传输线和互连线集成在一个基片上,具有某种功能的电路。可分为混合微波集成电路和单片微波集成电路。 微波集成电路起始于20世纪50年代。微波电路技术由同轴线、波导元件及其组成的系统转向平面型电路的一个重要原因,是微波固态器件的发展。60~70年代采用氧化铝基片和厚膜薄膜工艺;80年代开始有单片集成电路。 微波集成电路的分类 混合微波集成电路是采用薄膜或厚膜技术,将无源微波电路制作在适合传输微波信号的基片上的功能块。电路是根据系统的需要而设计制造的。常用的混合微波集成电路有微带混频器、微波低噪声放大器、功率放大器、倍频器、相控阵单元等各种宽带微波电路。

最新50MHz-250W射频功率放大器的设计

实例介绍设计与制作功放(二) 出处:何庆华发布日期:2007-8-2 浏览次数:2249 在上篇的文中,我用实例的方法基本地讲述了功放的一些参数计算与设定,其实这也可应用于音响系统中使用晶体管放大的电路中. 由于觉得使用实例会让初入门的朋友会有更深刻的认识,所以此篇也将用实例去介绍功放中各级的匹配传输.但要我一个可典型说明的例子让我想了不少时间,最终决定选用了之前制作的全无环路反馈的功放电路.由于没有使用级间的环路反馈,以致级间的匹配以及各级的电路但总显得十分重要. 见图,在后级的放大线路,是没有环路反馈的这将会电路的指标有所劣化.因电路工作于开环状态,这需要选用性能较好的电路组态,以取得更好的实际音质.而没有使用环路负反馈,好处是大家所熟知的.如避免了各类的互相失真,既然无环路反馈有如此.全音质更纯真透明.正如胆友所追求的效果.但有点却要说明,胆与石,都是为了满是个人的喜好.而在进口的众多名器中,可以有很多是超过十万的晶体管后级.甚至有几十万过百万的钽却先见有超过十万的胆机!而在低挡商品机中,如万元下的进口器材,胆机却是可以优于石机,但中高挡机中.石机不再受制于成本,全电路性能大幅提高.同价位的胆石机间胆机已处于劣势,这从实际试听及一些前辈的言论中也得到证实.而在DIY中由于没有过多的广告费用,可令成本都能集中到机内,如电路合理工艺精良,性价比大优于商品机.

再说回电路,之所以使用无反馈电路就是想用晶体管 去取得胆机那中清晰温暖的声音,在这里,使用共射共 基电路是必然的,共射共基电路又叫渥尔曼电路,前管 共射配合后管的共基放大,让两管中间严重失配,却大 降低了前管的密勒电容效应,使前管的频响大改善,而 后管是共基电路,天生是频响的高手。在放大能力上, 基射共基电路与一般的单管共射电路是没有分别的,但 频响却在高频上独领风骚,故而在许多的进口名器上不 乏其影,用于本机却可大大改善了开环响应与高频线 性。 电路的参数计算在上篇已介绍过,这里就不再罗索了,第一级的工作电流是5mA,增益是2K2与470欧的比值,增益约为15dB,注意的是两个33欧的电阻是配合了K170/J74的参数,如要换用其他的管子可能需要更改这两个电阻的数值。第二级的工作电流约为13mA,增益约为18dB,忽略了输出级的轻微损耗,整机增益在33dB左右,可以直驳CD机了。 第一级电路与第二级电路在匹配上是没有问题的,但第二级与输出级却由于无反馈而有一定的要求了。若在此输出级使用一般常见的两级射极跟随器,输入阻抗一般只能达到15K欧,由于音箱的阻抗在全频段的不平均,将令第二级电压放大电路的负载(为输出级的输入阻抗)变得不平均稳定。这将导致此级在全频带的放大量不一致,而本机又没有使用环路负反馈来纠正增益。 要解决这一问题有两种方法,一个是输出级用场效应管作推动,使输入阻抗阻抗在理论上达百万M欧,,在实际的应用中可在50K欧,但使用场效应管往往需要有120mA

射频功率放大器模块的设计与实现

射频功率放大器模块的设计与实现 摘要:提出了功率放大器设计中的两个关键问题,结合GSM直放站功率放大器模块的工程实例,详细分析了该功率放大器模块的设计过程。最后给出该模块样机的实测结果,进一步验证了设计方法的有效性。 关键词:功率放大器;射频电路;线性化 引言 随着现代数字移动通信技术的蓬勃发展,用户对无线通信设备的性能要求越来越高,实现在各种环境中的稳定、高速的数据传输是未来移动通信系统研究者的主要目标之一。射频功率放大器是发射机的末级,它将已调制的频带信号放大到所需要的功率,保证在覆盖区域内的接收机可以收到满意的信号电平,但不能过于干扰相邻信道的通信,同时又要尽量地保持放大后的大功率信号不失真畸变。这些不同方面的要求使得功率放大器的设计者要面面俱到地考虑到很多指标的平衡,功率放大器的设计也成为无线通信系统设计过程中的关键步骤之一。 功率放大器设计中的两个重要问题 电路设计中的电磁兼容(EMC)措施 射频电路工作在很高的频率上,在元件引脚或者电路引线上会产生一定的寄生参量。而射频功率放大器中,在高功率、大电流的环境下,寄生参量对于系统的影响大大增加,另外,引线电感及走线电感等又是引起高频辐射干扰的重要因素,这些功率不小的电磁干扰(EMI)可能会使功率放大器本身、电源部分或者系统的其他部分的性能大幅下降,很多情况下会直接影响系统的多项主要指标。 为了尽可能减小电磁干扰的影响,需要在电路设计及PCB设计中采取电磁兼容(EMC)措施,这样做也能有效地减少后期调试工作量,增加产品的可靠性和一致性,提高产品性能。 我们在工程中采取的措施主要有:电源线应尽量粗,器件电源或偏置网络都应该多加去耦电容和扼流电感,并选用高频性能好的器件,从而增加电源的稳定性,减少电源波动对于器件的影响;PCB设计要合理布局,功率放大器部分应该与其他低功率或者数字部分尽量远离,并在中间加装金属隔条、屏蔽罩或微波吸附材料,避免功率放大器与其他部分的相互辐射干扰;PCB设计中,在无元件、线路经过的位置多加保护地,并多加金属化通孔造成多点接地;射频走线尽量短,严格控制线头、引脚长度,匹配网络应尽量靠近需要匹配的器件,等等。实践证明,这些措施都能够很好地减少电磁干扰,改善电路性能。 功率放大器的线性化

微波集成电路及其CAD概念综述

第1章绪论 微波电路开始于40年代应用的立体微波电路[1],它是由波导传输线、波导元件、谐振腔和微波电子管组成。随着微波固态器件的发展以及分布型传输线的出现,60年代初,出现了平面微波电路,它是由微带元件、集总元件、微波固态器件等利用扩散、外延、沉积、蚀刻等制造技术将这些无源微波器件和有源微波元件制作在一块半导体基片上的微波混合电路[2],即HMIC。它属于第二代微波电路。与以波导和同轴线等组成的第一代微波电路相比较,它具有体积小、重量轻等优点,避免了复杂的机械加工,而且易与波导器件,铁氧体器件连接,可以适应当时迅速发展起来的小型微波固体器件。又由于其性能好、可靠性强、使用方便等优点,因此即被用于各种微波整机,并且在提高军用电子系统的性能和小型化方面起了显著的作用[3]。 70年代,GaAs材料制造工艺的成熟,对微波半导体技术的发展有着极为重要的影响。GaAs材料的电子迁移率比Si高七倍,而且漂移速度也比Si高的多,这种高频高速性能是由其材料特性决定的。又由于GaAs材料的半绝缘性(其电阻率可达105Ω/cm)可以不需要采用特殊的隔离技术而将平面传输线,所以无源元件和有源元件集可以成在同一块芯片上,更进一步地减小了微波电路的体积。 正是由于GaAs技术的问世与GaAs材料的特性而促成了由微波集成电路向单片集成电路的过渡。与第二代的微波混合电路HMIC相比较,MMIC的体积更小、寿命更长、可靠性高、噪声低、功耗小、工作的极限频率更高等优点。例如在在HMIC与MMIC就高增益放大器的比较中可以发现(见表1-1)[4]:放大器的尺寸,MMIC元件数,连线接头数均比要HMIC少,且二者的电器性能相近,MMIC的极限频率和增益要比HMIC大。因此,受到广泛的重视。尽管MMIC技术发展很快,但至今为止仍然存在这某些互联困难。某些性能指标的常规电路元件不能制造,开发费用高等问题。我国MMIC受到投资不足,技术水平低等条件的限制,发展一直比较缓慢。相对而言MHMIC技 1 — —

射频功率放大器仿真设计

射频功率放大器仿真设计 本设计采用Freescale的功放管MRF7S38010H。 一、静态工作点直流扫描 功率放大器设计时,需输出功率、效率、线性度等指标要求选择功放管的工作状态。本设计根据datasheet给出的静态工作点来仿真,为AB类,如图1所示。 图1 静态工作点直流扫描 仿真结果如图2所示,静态电流为162mA,栅极电压为2.85V。

图2 静态工作点仿真结果 二、稳定性分析 对于功放来说,稳定性非常重要。不稳定的电路很容易引起功放管自激甚至损坏。所以,在放大器匹配电路设计的时,首先需要进行稳定性分析和稳定电路的设计,保证稳定系数K在整个频段内大于1。如果在整个频段内难以做到无条件稳定,有时只需确保晶体管工作频段以及附近频段的K>1即可。 该功放管的稳定性电路和仿真结果分别如图3和图4所示。 图3 稳定性仿真电路原理图 从图4的结果来看,在3.5GHz以下的频率范围内K值基本小于1,所以该电路是条件稳定,需要做稳定性措施。 解决稳定性的常用办法是在功放管输入端加入电阻等有损元件来消耗掉过多的能量,特别是低频部分。输出端一般不加入电阻,以免造成输出功率损失。在射频输入端口插入电阻和电容组成的并联网络;同时,在栅极端接射频扼流的 传输线,再并联射频去耦电容,最后串联一个稳定电阻,如图5所示。此方/4 法稳定效果好,但增益会降低。具体数值需要通过仿真结果来不断调试。

图4 稳定性仿真结果 图5 加入稳定元件后的稳定电路原理图 仿真结果如图6所示。从图6可见,稳定系数在整个频段内都大于1。加入了稳定电路后,整个系统的增益有所降低。

图6 稳定性仿真结果 一般情况下,稳定性与偏置电路的设计是结合在一起的。因为供电端和射频信号是连接在一起的,所以在进行匹配设计时也需要考虑偏置电路特性。/4λ传输线是匹配电路的一部分,在匹配设计中要注意这一点。实际上,射频扼流作用的微带线长度并非一定要为/4λ,而是小于/4λ,所以图5中的栅极电长度并非为90度。 在选择射频耦合电容时,要求电容的谐振点要高于所应用频率范围最高值。本设计中,最高频率为3.5GHz ,所以选择村田的2.7PF ,0603封装的射频电容。 三、 Loadpull 负载牵引 负载阻抗决定了功放电路的最大输出功率和效率。 在设计功率放大器时,为了得到最大的功率输出,采用功率匹配。通过Load-Pull 仿真得到最大功率点的最优负载阻抗值,然后进行输出匹配电路的设计,如图7所示。 需要注意的是,要保证功放输出功率达到最大,需将输入功率设定为合理的值,此设计中设置为25dBm 。

相关文档
最新文档