桥梁移动荷载动力时程分析_迈达斯

桥梁移动荷载动力时程分析_迈达斯
桥梁移动荷载动力时程分析_迈达斯

17 关于悬索桥移动荷载分析理解

关于悬索桥移动荷载分析理解 1 实例介绍 人行悬索桥桥跨150m,f/L=1/15,桥面宽4.5m。主缆和吊杆采用索单元模拟,其他为空间梁单元。 图1 有限元模型 图2 一次成桥验证 2 问题重现 在公路-Ⅱ级作用下,位移达到1756mm,如下图: 图3 移动荷载最大竖向位移

3 问题分析 一次成桥验证,桥梁的位移基本满足要求,表明在恒载作用下,索单元的无应力长度是合适的,成桥的设计状态是合理的。此时,关于索单元有大位移分析需要的几何刚度,到拆分析需要的平衡单元节点内力,以及小位移线性分析需要的初始单元内力。 施工阶段分析控制 当进行移动荷载分析时,索单元自动转化为桁架单元并考虑初始单元内力的影响(几何刚度),进行线性分析,此时移动荷载的分析状态为:活载+桁架单元(考虑初始单元内力)+成桥边界。但要注意,初始单元内力只有刚度效应,没有内力效应。实际移动荷载的分析状态为:活载+桁架单元(考虑初始单元内力)+桁架单元初拉力(由恒载内力产生)+成桥边界。对比发现,相差桁架单元初拉力,因此,程序进行移动荷载分析时,输出的位移是没有实际意义的。 4 验证 建立成桥模型:索改为桁架单元,给桁架单元添加恒载产生的初拉力,这样自重+初拉力进行线性分析时,应该达到成桥平衡状态。这也是实际的成桥分析状态。 图4 桁架模型成桥状态 由图可以看出,在自重+初拉力作用下,基本满足设计状态。 分别查看MVmax+初拉力和MVmin+初拉力位移

此时查看的位移,才是有实际意义的。但要注意仅是指线性分析合理的情况。 5 结果分析 实际位移达到1372mm,表明该桥的成桥刚度非常小,可以从成桥(自重)吊杆力看出。

第8-1章 移动荷载列作用下的桥梁动力分析

第三章 简支梁在移动荷载作用下动力响应分析 3.1 简支梁在匀速移动力作用下的位移响应 简支梁在移动力作用下的振动分析:如果移动荷载的质量与梁的质量相比小得多,就可以不考虑荷载的质量惯性力而简化成为图3-1所示的分析模型,相当于仅考虑移动荷载的重力作用,用一个移动的力P(t)来表示。 图3-1 移动力P (t )作用下的简支梁模型 假设简支梁为等截面(EI 为常数),恒载质量均匀分布(单位长度梁的质量m 为常数),阻尼为粘滞阻尼(即阻尼力与结构的振动速度成正比),阻尼效应和质量及刚度性质成正比,荷载P (t )以匀速V 在梁上通过,梁的运动满足小变形理论并在弹性范围内,按照图3-1所示的坐标系,梁的强迫振动微分方程可表示为: ()()2424 ,,(,)()(y x t y x t y x t m c EI x Vt t t x δ???++=????)p t (3-1) 对于简支梁,边界条件为:(0,)0,(,)0y t y L t ==。上式中c 为阻尼系数。 对式(3-1)的求解,其方法与之前求解偏微分方程的方法相同,即用振型分解法(数学上称分离变量法 )。这一变换的表达式如(2-38)所示,为。 式中为广义振型坐标,是时间t 的函数;1(,)()()i i i y x t x q t φ∞ ==∑()i q t ()i x φ为主振型函数。这个式子说明:结构的任一合理位移都可以由此结构具有相应振幅的各个振型的叠加表示。 结构任一变形的振型分量均可由振型的正交特性得到。对于本章讨论的具有均匀截

面特性的梁,为了计算第n 阶振型对位移的贡献,把(2-38)式的两端都乘以()n x φ并进行积分,结果为 1 ()(,)()()()L L n i n n i x y x t dx q t x x dx φφ∞ ==∑∫ ∫φi (3-2) 由于振型的正交性,当时,等式的右边的积分为0,最终,无穷级数就只剩下一项。于是得到剩下的第n 项的振幅表达式为 n ≠ 2 ()(,)()()L n n L n x y x t dx q t x dx φφ=∫∫ (3-3) 按上述原理对简支梁的振动方程进行分解。将(2-38)式代入(3-1)式,得 2424 111 ()()() ()()()()()n n n n n n n n n d q t dq t d x m x c x EI q t x Vt p dt dt dx φφφδ∞ ∞∞ ===++=?∑∑∑t (3-4) 将上式的每一项都乘以第i 个振型函数()i x φ,并沿梁的全长积分,并考虑振型的正交性(根据前面的假定,结构的质量、刚度和阻尼均满足正交条件),第i 个振型的广义坐标运动方程为 2422240000 ()()() ()()()() ()()()L L L i n i i i i L i d q t dq t d x m x dx c x dx EIq t x dt dt dx x Vt p t x dx φφφφδφ++=?∫∫∫∫i (3-5) 对于等截面简支梁,振型函数可假定为三角函数,由于式中的下标均表示任意阶, 为方便叙述,用n 替代(3-5)中的i 表示,这时 ()sin n n x x L πφ= (3-6) 由于2 0sin 2 L n x L dx L π=∫ 0 ()()sin ()sin L n x n Vt x Vt p t dx P t L L ππδ?=∫ 则将(3-6)式代入(3-5)式,并积分,得到 24424 ()()()()sin 222n n n d q t dq t mL cL L n n Vt EIq t P t dt dt L L ππ++= (3-7)

2018年公路水运试验检测师_桥梁隧道真题答案与解析和解析[完整版]

word 格式 2017公路水运试验检测师桥梁隧道真题答案与 解析完整版 一、单选题(共30 题,每题 1 分,共30 分) 。 1. 桥梁用塑料波纹管环刚度试验,应从()根管材上各截取长300mn±10mn i式样一 段。 A. 二 B. 三 C. 五 D. 六 2. 桥梁锚具组装件静载锚固性能试验加载以预应力钢绞线抗拉强度标准值分() 级 等速加载。 A. 5 B. 10 C. 6 D. 4 3. 桥梁异形钢单缝伸缩装置试验检测项目为() 试验。 A. 拉伸、压缩 B. 垂直变形 C. 水平摩阻力 D. 橡胶密封带防水 4. 按照《公路隧道设计规范》(JTGD70-2004)的规定,长度为1000m的隧道为()。 A. 特长隧道 B. 长隧道 C. 中隧道 D. 短隧道 5. 在建设项目中,根据签订的合同,具有独立施工条件的工程,如独立大桥、中 桥、互通式立交应划分为( )。 A. 分项工程 B. 分部工程 C. 单位工程

word格式 D. 子分部工程 6. 对经久压实的桥梁地基士,在墩台与基础无异常变位的情况下可适当提高承载 能力,最大提高系数不得超过()。 A. 1.15 B. 1.20 C. 1.25 D. 1.35 7. 当钢筋保护层厚度测试仪的探头位于()时,其指示信号最强。 A. 钢筋正上方 B. 与钢筋轴线垂直 C. 与钢筋轴线平行 D. 与钢筋轴线平行且位于钢筋正上方 8. 钻芯法中对芯样要求其公称直径不宜小于集料最大粒径的();也可采用小直径 芯样试件,但其工程直径不直小于()且不得小于集料最大粒径的()。 A. 4 倍,80mm 3 倍 B. 3 倍,70mm 2 倍 C. 3 倍,60mm 2 倍 D. 3 倍,50mm 2 倍 9. 回弹法检测混凝土强度时如果为非水平方向且测试因为非混凝土的浇筑侧面时, ()。 A. 应先对回弹值进行角度修正再对修正后的值进行浇筑面修正 B. 应先进行浇筑面修正再对回弹值进行角度修正 C. 修正顺序不影响检测结果 D. 对回弹值进行角度修正即可 10. 对混凝士桥梁主要构件或主要受力部位布设测区检测钢筋锈蚀电位,每一测区的测点 数不宜少于()个。 A. 5 B. 10 C. 15 D. 20 610 CDBAD word 格式

Midas-移动荷载-设置流程

midas Civil 技术资料 ----移动荷载设置流程 目录 midas Civil 技术资料 1 ----移动荷载设置流程 1 一、定义车道线(车道面) 2 二、定义车辆荷载 5 三、定义移动荷载工况 7 四、移动荷载分析控制 9 五、运行并查看分析结果 12 参考文献 14 北京迈达斯技术有限公司 桥梁部 2013/05/17

本章主要结合中国规范JTG D60-2004[1]进行纵向(顺桥向)移动荷载分析介绍,移动荷载分析主要是计算移动荷载(车道、车辆或人群荷载)在指定路径上(车道线、车道面)移动时产生的各种效应(反力、内力、位移、应力)的包络结果,具体分析过程如下:(1)定义车道线/面; (2)定义车辆荷载--车道荷载、车辆荷载、人群荷载等活荷载; (3)定义移动荷载工况; (4)定义移动荷载分析控制; (5)运行分析并查看结果。 一、定义车道线(车道面) 荷载>移动荷载>移动荷载规范-china,定义车道线或车道面,确定移动荷载路径,程序提供车道单元和横向联系梁两种方法,其中,车道单元法是将作用在车道中心线上的荷载换算到车道单元上(换算为集中力和扭矩),单梁模型中常用;而横向联系梁法是将移 图1-1车道单元法及横向联系梁法示意图 动荷载作用在横梁上,然后由横梁按比例传递到临近的纵梁单元上,梁格模型中常用,此时需要将横梁定义成为一个结构组,传力示意如图1-1所示。 随后即可进行车道线定义,首先是“斜交角”设置,对于斜桥梁格模型可以输入起点和终点的斜交角度,此设置需跟横向联系梁法配合使用,车道单元法不需要设置此项。 “车辆移动方向”,对于直桥,选择三者无差别;如果是斜桥,则车辆移动方向不同,分析结果也不同,故要选择“往返”。

移动荷载作用下主梁绝对最大弯矩的计算

移动荷载作用下主梁绝对最大弯矩的计算 摘要:在设计起重机梁等承受移动荷载的结构时,利用内力包络图可以求的在横荷载和移动活荷载共同作用下各杆件、各截面可能出现的最大内力、最小内力。其中弯矩包络图表示各截面的最大弯矩值,其中弯矩最大者称为绝对最大弯矩。我们已经学习了简支梁绝对最大弯矩的求法,那么主梁在移动荷载作用下绝对最大弯矩的求法是怎样的呢?本文根据简支梁绝对最大弯矩的求法,给出了一组平行荷载直接沿着纵梁移动时,主梁承受结点荷载作用下绝对最大弯矩的计算方法。 关键词:结点荷载,绝对最大弯矩,主梁,影响线 桥梁或房屋建筑中的某些主梁,是通过一些次梁(纵梁和横梁)将荷载传递到主梁上的。主梁这些荷载的传递点称为主梁的结点。从移动荷载来说,不论是荷载作用在次梁的哪些位置,其作用都是通过这些固定的结点传递到主梁上。如下图所示: 本文研究的主要问题是一组平行荷载直接沿着纵梁移动时怎样判断主梁绝对最大弯矩的发生的截面位置和计算主梁的绝对最大弯矩(假定相邻两横梁间的距离、节间距是相等的)。 1.主梁绝对最大弯矩的发生截面位置 回想我们学过的简支梁,有两种计算方法。一种是近似计算,划分30个以上等分截面,画出梁的弯矩包络图,采取电算的方法。另一种是精确计算,也是最常用的方法。它的求法是:由于荷载在任一位置时,梁的弯矩图顶点永远发生在集中荷载下。因此可以断定,绝对最大弯矩必定发生在某一集中何在的作用点。 取一集中荷载F pcr ,它的弯矩为: F R 为梁上实际荷载的合力,M cr 为F Pcr 以左梁上实际荷载对F Pcr 作用点的力矩,a 为F R 与 F Pcr 作用线之间的距离。经分析可得,F pcr 作用点弯矩最大时,梁的中线正好平分F pcr 与F R 之间的距离。如下图所cr R cr yA M x L a x L F M x F M ---=-=

道路桥梁荷载计算与设计方法

道路桥梁荷载计算与设计方法 摘要:桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称。本文依托实测车辆的统计数据,对桥梁车辆设计荷载进行了研究和分析,为公路桥梁荷载设计理念和设计方法的逐步完善实现科学化和合理化。 关键词:设计荷载;公路桥梁;荷载效应;分项系数 前言 桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称,包括恒载、活载和其他荷载。包括铁路列车活载或公路车辆荷载,及它们所引起的冲击力、离心力、横向摇摆力(铁路列车)、制动力或牵引力,人群荷载,及由列车车辆所增生的土压力等。在公路桥上行驶的车辆种类很多,而且出现机率不同,因此把大量出现的汽车排列成队,作为计算荷载;把出现机率较少的履带车和平板挂车作为验算荷载。车辆活载对桥梁结构所产生的动力效应中,铅直方向的作用力称冲击力、它使桥梁结构增加的挠度或应力对荷载静止时产生的挠度或应力之比称为动力系数μ,也称冲击系数。最近的研究成果把动力系数分为两部分:一为适用于连续完好的线路部分μ1;另一为受线路不均匀性影响部分μ2。动力系数则为μ1与μ2之和。在计算公式中,除考虑桥梁的跨度外,反映了车辆的运行速度和桥梁结构的自振频率。公路桥梁汽车荷载的冲击力为汽车荷载乘以冲击系数,平板挂车和履带车不计冲击力。 1 公路桥梁荷载标准 2004 年修订的《公路桥涵设计通用规范》(JTGD60-2004)采用车道荷载形式。2004 版公路桥梁荷载标准中规定:汽车荷载修改调整为车道荷载的模式,废除车队荷载计算模式。并且提出车道荷载的均布荷载kq和集中荷载KP 的标准值 2 荷载效应计算 2.1 影响线计算 桥梁结构必须承受桥面上行驶车辆时的移动荷载的作用,结构的内力也随作用点结构上的变化而变化。所以需要研究并确定其变化范围和变化规律和内力的最大值此过程中作为设计标准。因此,需要确定的是荷载最不利位置和最大值。首先要确定在移动荷载作用下,结构内力的变化规律,将多种类型的移动荷载抽象成单位移动荷载P=1 的最简单基本形式。只要经过清楚地分析内力变化规律,其他类型的荷载就可以根据单位移动荷载作用下的结构内力变化规律叠加原理求出。影响线是内力(或支座反力)在移动单位荷载的作用下的引起的变化规律的图形。所以,影响线是研究车辆荷载等移动荷载作用下桥梁结构内力最大值的基本工具。初步选定对周围环境的影响的工程规模及结构类型、使用要求、材料

midas问题解答

1.在midas中横向计算问题. 在midas中横向计算时遇到下列几个问题,请教江老师. 1.荷载用"用户定义的车辆荷载",DD,FD,BD均取1.3m,P1,P2为计算值,输入时为何提示最后一项的距离必须为0? 2.同样在桥博中用特列荷栽作用时,计算连续盖梁中中支点的负弯距相差很大.其他位置相差不多. 主要参数:两跨2X7.5m,bXh=1.4X1.2m,P1,P2取100 midas结果支点活载负弯矩-264.99kn.m 桥博结果支点活载负弯矩-430kn.m 通过多次尝试及MIDAS公司的大力支持,现在最终的结果如下: 肯定是加载精度的问题,可以通过将每个梁单元的计算的影响线点数改成6,或者,将梁单元长度改成0.1米,就能保证正好加载到这一点上。 由这个精度引起的误差应该可以接受的,如果非要消除,也是有办法的。 2.梁板模拟箱梁问题 腹板用梁单元,顶底板用板单元,腹板和顶底板间用什么连接,刚性?用这个模型做顶底板验算是否合适?在《铁道标准》杂志的“铁道桥梁设计年会专辑”上有一篇文章,您可以参考一下: 铁四院康小英《组合截面计算浅析》 里面讨论组合截面分别用MIDAS施工阶段联合截面与梁+板来实现,最后得出结论是用梁+板的结果是会放大板的内力。可能与您关心的问题有相似的地方。 建议您可以先按您的想法做一个,再验证一下,一定要验证!c 3.midas里面讲质量转换为荷载什么意思! 是否为“荷载转为质量”? 在线帮助中这么写: 将输入的荷载(作用于整体坐标系(-)Z方向)的垂直分量转换为质量并作为集中质量数据。 该功能主要用于计算地震分析时所需的重力荷载代表值。 直观的理解就是将已输入的荷载,转成质量数据,不必第二次输入。一般用得比较多的是将二期恒载转成质量。 另外,这里要注意的是,自重不能在这里转换,应该在模型--结构类型中转换。 准确来讲,是算自振频率时(特征值分析)时用的,地震计算时需要各振形,所以间接需要输入质量。 一般计算可以不考虑。 但是,新通规D60要求:冲击系数的计算依据是基频,所以,如果可能,还是需要算一下基频的。 4.拱桥的屈曲分析中如何考虑移动荷载 现在做一个下承式拱桥,桥面较宽(近期双向4车道加两个非机动车道,远期为双向6车道),无横向联系,在屈曲分析中怎么考虑移动荷载的影响? 需将活载按最不利的加载位置求出来,再作为静力荷载加入。(幸亏MIDAS有一个移动荷载**的功能,上面有一按钮,可直接将最不利荷载存成文本文件,然后,另存为一个项目,导入这个文本文件就有了新的静力工况了,里面的荷载就是最不利的荷载。值得注意的是:最不利的荷载位置布置后,是没有考虑冲击的。不好意思,纠正一下,可能是我记错了,前二天用6.71版的做了一下,发现保存的文本文件中已经考虑了冲击系数,特此更正! 在采用梁单元模型进行建模的时候,如何模拟横桥向多个支座,来进行抗扭验算。我采用了横向建立节点后,与主梁采用钢接,这样计算的扭矩结果好像同不采用直接计算扭矩的值时一样的,这样好象在PSC设计的时候抗扭计算总是不能通过。横向的支座一般就是按您这样

浅谈预应力桥梁荷载试验分析

浅谈预应力桥梁荷载试验分析 发表时间:2019-01-15T11:08:20.687Z 来源:《建筑学研究前沿》2018年第31期作者:郭利娜 [导读] 结合某预应力桥梁工程实例,对桥梁荷载试验分析要点内容进行研究,首先详细论述静载试验的要求,同时在分析测试方法及检测仪器相关内容的基础上,归纳总结了桥梁荷载试验检测结果,实践可知整个桥梁的载荷满足设计标准,符合运营要求。 山西晋城路桥建设有限公司 摘要:结合某预应力桥梁工程实例,对桥梁荷载试验分析要点内容进行研究,首先详细论述静载试验的要求,同时在分析测试方法及检测仪器相关内容的基础上,归纳总结了桥梁荷载试验检测结果,实践可知整个桥梁的载荷满足设计标准,符合运营要求。 关键词:公路桥梁;预应力;荷载;试验分析 0前言 在公路桥梁工程中,桥梁荷载大小直接影响到桥梁整体工程的质量,因此,在建设过程中,必须要财务有效的方式对桥梁荷载进行试验,从而保证桥梁工程的质量得到提高。 1工程概况 某桥梁工程建设在二级公路项目中,其主要的结构形式即为预应力混凝土简支梁桥。桥梁的上部结构主要应用的是预应力混凝土简支空心板的形式,应用C50混凝土进行施工。空心板桥跨中部分的结构形式即为空心断面,支点连接位置上应用的是实心断面结构形式。桥梁工程的自上而下分别有沥青面层、防水层以及找平层组成。 2静载试验 根据桥梁的实际情况,需要进行如下几个方面的检查。 ①截面附近区域的结构性能 ②桥梁的截面挠度与挠度横向分布情况 ③在满足设计条件下,截面附近位置是否存在裂缝问题; ④试验过程中,检测混凝土应变参数;⑤试验过程中是否存在变形的问题。 2.1测试方法及检测仪器 根据施工工艺规范要求,主要应用的是落地支架为参考点的形式,利用电测位移计来确定挠度参数,其分辨率为±1mm。应变测试主要针对的是截面位置,应用的是应变计与静变计来进行测试。根据实际测量的应变值以及桥梁材料的弹性模量参数来进行应力的测试。裂缝问题通常都是通过肉眼观测确定的,使用裂缝宽度检测仪来确定具体尺寸。 2.2试验荷载 根据设计荷载参数的要求,需要在桥梁的2车道中分别进行纵向载荷布置,汽车荷载按照规定的要求来计入到冲击系数H1,并且通过计算确定截面内力值,以此为基础来开始进行试验加载进行。按照设计正常载荷作为试验过程的荷载参数,然后根据截面内力等效原则开始进行载荷设置,确保测试截面试验荷载达到相应技术规范的要求,保证最终的试验结果的准确性与可行性。加载车辆的规格和数量要根据结构来最终确定,同时也要结合荷载等级参数来确定。根据试验工艺规范的要求,静力试验的过程中,一般可以按照偏左加载、偏右加载以及居中加载等3中主要的形式,这几种加载形式可以达到15个工况,最终可以确保加载试验参数的准确性,也能够精确的判定桥梁的性能是否能够满足使用的需要。 3检测结果及分析 如果将所有的截面测试点都进行详细的描写是比较复杂的篇幅也会比较长,本文只选择1截面在偏左试验荷载之下的测试结果与计算结果进行对比分析,其他的截面测试结果就不再进行列举和分析。 3.1挠度检测结果 根据所测量的挠度参数,将试验测试中的挠度参数变化绘制成为下图1分布曲线,其主要是横向分布的方式,同时与计算数据进行对比分析,详见下表1所示。 图1 比较图 表1 应变检测结果 分析表明:在试验荷载的影响之下,所有结构截面中的实测挠度值都要比计算数据小,其检测数据系数全部都在 0.37~0.85之间,

中英桥梁移动荷载对比研究

第16卷 第10期 中 国 水 运 Vol.16 No.10 2016年 10月 China Water Transport October 2016 收稿日期:2016-08-05 作者简介:曾 卓(1986-),女,2011年毕业华中科技大学,桥梁与隧道工程专业,研究生,中交武汉港湾工程设计研 究院有限公司,工程师。 乔长江(1985-),男,武汉市政工程设计研究院有限责任公司,工程师。 中英桥梁移动荷载对比研究 曾 卓1 ,乔长江2 (1. 中交武汉港湾工程设计研究院有限公司,湖北 武汉 430000; 2. 武汉市政工程设计研究院有限责任公司,湖北 武汉 430023) 摘 要:基于目前越来越多的国际项目的背景下,将在国际上广泛使用的英国规范BS5400-2中的移动荷载与中国规范(JTG D60-2015)的移动荷载进行了对比,同时将2006版和1978版英国规范的荷载效应也进行了对比分析。得到了对于中小跨径简支梁、连续梁,即使在中国规范考虑冲击系数的情况下,06版英国规范的移动荷载效应仍然比中国规范大16%~20%。本文可以作为相关海外项目很好的参考。 关键词:BS5400;移动荷载;英国规范;冲击系数;中国公路桥涵设计通用规范 中图分类号:U441.2 文献标识码:A 文章编号:1006-7973(2016)10-0184-03 一、概述 近年来伴随着“一带一路”和“走出去”战略,我国的工程建设企业在国外的项目越来越多,而英国作为曾经的老牌殖民地国家,曾经在地球上有着广阔的版图,于是英国标准在全球有着广泛的认可度和使用度(特别是对于曾经的英属殖民地国家),于是对英标可以熟练的使用并有深刻的认识成为了新时代对于海外项目的工程师们的新的要求。而桥梁设计领域在我国的海外项目中又占有相当重要的地位,许多重大桥梁会成为当地的新地标,对于树立中国的国际形象,改善当地居民的出行条件有着十分重要的意义。本文就中国桥梁设计通用规范(JTG D60-2015)[1]与英国桥梁设计规范(BS5400-2-2006[2],BS5400-2-1978[3])对于桥梁的移动荷载进行对比研究,在对比中引入英标的旧规范是因为在一些国家和地区仍然使用的是旧版本的规范。在本文中引入工程实例,对几种荷载对于桥梁产生的效应进行了对比研究,希望可以作为海外设计项目的参考。 二、车道荷载对比研究 图1 HA 均布荷载加载曲线(2006版) (注:Load W per metre of lane 车道每延米荷载W, Loaded length L 加载长度 L) 图2 HA 均布荷载加载曲线(1978版) (注:Load W per metre of lane 车道每延米荷载W, Loaded length L 加载长度L) BS5400-2中公路桥梁移动荷载分为HA 和HB 荷载,HA 荷载是一个均布荷载加上一个集中荷载,均布荷载根据加载长度变化,图一为BS5400-2(2006)的HA 均布荷载变化曲线,图2为BS5400-2(1978)的HA 均布荷载变化曲线,集中荷载在两版规范中对每一个计算车道均为120kN。 从两张图我们可以直观的看到新规范对于较小的加载长度荷载有明显的提升,下表中为不同加载长度HA 均布荷载的变化以及新老规范均布荷载的对比。 表1 不同加载长度HA 均布荷载变化 L(m)BS5400(1978) BS5400(2006) 差值比(%) 10 30.0 71.8 139.5 20 30.0 45.1 50.5 30 30.0 34.4 14.7 40 26.2 28.4 8.4 50 23.5 24.4 3.8 60 21.6 23.9 10.7 70 20.1 23.5 17.3 80 18.8 23.2 23.3 90 17.8 23.0 28.9 100 16.9 22.7 34.1

MIDAS中移动荷载车道的定义

MIDAS中移动荷载车道的定义——我的理解MIDAS中关于移动荷载车道的定义很多人都不是很清楚原理,MIDAS自己也讲的不是很清楚,事实上很多累死软件对横向荷载的分布处理也不是很完善,下面我就我个人理解,参考其他前辈的理解,说说我的看法,希望大家积极跟帖,多多讨论,把这个问题搞清楚。定义一般车道时,应该就是选择距离设计车道中心线最近的一根纵梁作为车道单元,然后定义偏心来按规范规定的等效车道荷载加载。偏心距离是车道中心距离就近梁单元中心的距离。结构尺寸确定后,车道中心和每个纵梁的中心(如果是单梁那就是结构的中心)都是已知的,这时就很容易确定车道的偏心距离了。横向联系梁车道定义时和一般车道定义方法是一样的,要选择就近的一根纵梁作为车道单元,定义偏心、定义跨度、定义车道分配单元,唯一不同的就是横向联系梁要选择横向联系梁结构组而已。MIDAS官方的说法是: 车道单元是定义车道位置的参考单元,civil中目前横向车道位置需由用户定义。车道偏心量为车辆中心线距参考单元距离。我理解的具体加载情况是: 一根单梁,车道中心布置,如果定义车道时不考虑车辆宽度,则荷载加载在梁单元中心线上;而如果定义车道时考虑车辆宽度(貌似2006版才有了这个功能) 1.8m,则荷载为偏心梁单元荷载,分别加载在梁单元中心两侧 0.9m的位置上,因此换算成梁单元荷载就是集中载和换算扭矩。 对于单梁分析,是否考虑车辆宽度对结构没有影响,但如果是梁格模型,是否考虑车辆宽度对结果的影响还是很大的。规范规定的等效车道荷载是没有考虑车辆宽度的(但是,我在邵旭东的《桥梁工程》中看到了一句大实话: 车道荷载的单向布载宽度为 3.0m,这个才更接近实际情况)。具体的,根据规范进行双车道中载和偏载加载时,一个是把车道荷载分别加载在两个车道设计中心线上,一个就是以最小间距3m来在一侧布置2个车道加载。如具体偏载情况: 第一个车道中心位置:

公路桥梁设计荷载研究

公路桥梁设计荷载研究 文章依托实测车辆的统计数据,对桥梁车辆设计荷载进行了研究和分析,为我国公路桥梁荷载设计理念和设计方法的逐步完善及其科学化和合理化提出一点看法,以供同行参考。 标签:设计荷载;公路桥梁;荷载效应;分项系数 1 公路桥梁荷载标准现状 2004年修订的《公路桥涵设计通用规范》(JTGD60-2004)采用车道荷载形式如图1所示。2004版公路桥梁荷载标准中规定:汽车荷载修改调整为车道荷载的模式,废除车队荷载计算模式。并且提出车道荷载的均布荷载kq和集中荷载KP的标准值。 2 车辆荷载效应计算理论 2.1 影响线计算 桥梁结构必须承受桥面上行驶车辆时的移动荷载的作用,结构的内力也随作用点结构上的变化而变化。所以需要研究并确定其变化范围和变化规律和内力的最大值此过程中作为设计标准。因此,需要确定的是荷载最不利位置和最大值。首先要确定在移动荷载作用下,结构内力的变化规律,将多种类型的移动荷载抽象成单位移动荷载P=1的最简单基本形式。只要经过清楚地分析内力变化规律,其他类型的荷载就可以根据单位移动荷载作用下的结构内力变化规律叠加原理求出。影响线是内力(或支座反力)在移动单位荷载的作用下的引起的变化规律的图形。所以,影响线是研究车辆荷载等移动荷载作用下桥梁结构内力最大值的基本工具。初步选定对周围环境的影响的工程规模及结构类型、使用要求、材料情况、施工条件、造价等因素,根据路基地质条件,几种可供考虑的路基处理方案。勘察工作提供的资料一般仅作一般性的对软土描述,土的物理力学组成状况性质指标没有提供。结构力学中认为影响线是一个指向不变的单位集中荷载沿结构移动时某一量值变化规律图形。实际上,影响线是以荷载位置为变量的某量值的函数。 有限元法目前被公认是求解工程中所遇到的各种问题的有效通用方法,实际上,其应用范围还要广泛得多。桥梁结构影响线一般采取此种方法。 2.2 横向分布系数计算 上个世纪三十年代开始“荷载横向分布”概念得到应用,桥梁空间结构的计算理论被大量的试验验证和研究,于是用平面问题可以来处理空间计算问题,合理地简化为空间问题提供了实用理论的计算方法。该方法计算原理是用一个近似的影响面去代替精确的影响面。荷载横向分布的原理可以归纳如下:(1)建立在用

桥梁移动荷载分析

13. 移动荷载分析 概述 在3跨连续梁施加移动荷载 (标准车辆荷载) 时,根据影响线估算出各截面的最大截面力, 查看产生最大截面力的移动荷载的位置。 材料 混凝土设计标准抗压强度 : 270 kgf/cm2 截面 形状 : 实腹长方形截面 形状 : B x H = 3000 x 1000mm 荷载 1. 标准移动荷载 : QC-20 2.支座沉降:1.0cm 图 13.1 分析模型(单位m)

设定基本环境 打开新文件以‘活荷载.mgb’为名保存。单位体系为设置为‘m’和‘tonf’。 文件/ 新文件 文件/ 保存( 活荷载 ) 工具 /单位体系 长度 > m ; 力 > tonf 图 13.2 设定单位体系

设定结构类型为X-Z平面。 模型 / 结构类型 结构类型 > X-Z 平面? 定义材料以及截面 连续梁的材料选择混凝土 (设计标准抗压强度 270 kgf/cm2),输入截面数据。 模型 / 特性 / 材料 材料号( 1 ) ; 类型 >混凝土 规范 > GB-Civil(RC) ; 数据库 >30? 模型 / 特性 / 截面 数据/用户 截面号( 1 ) ; 名称( 长方形 ) 截面形状> 实腹长方形截面 ; 用户 H ( 1 ) ; B ( 3 ) ? 图 13.3 定义材料图 13.4 定义截面

建立单元 首先输入节点, 然后用扩展单元功能建立连续梁。 正面, 捕捉点 (关) 捕捉轴线 (关) 捕捉节点 (开) 捕捉单元 (开) 自动对齐(开) 节点号 (开) 模型 / 节点 / 建立节点 坐标( 0, 0, 0 ) ? 模型 / 单元 / 扩展单元 全选 扩展类型 > 节点 线单元 单元属性 > 单元类型 >梁单元 材料 > 1:30 ; 截面 > 1:长方形 ; Beta 角( 0 ) 一般类型 > 复制和移动 ; 移动和复制> 等间距 dx, dy, dz ( 35/14, 0, 0 ) ; 复制次数( 14 )? 图 13.5 建立连续梁

midas gts n 三维移动列车荷载案例

Basic Tutorials Chapter 10. 3D Moving Train Load Time History Chapter 10. 3D Moving Train Load Time History | 1 三维移动列车荷载案例 1.1学习目的 列车振动是周期加载现象,这是由于火车车轮间隔性地与铁轨发生震动。振动周期与铁轨间隔及列车速度有关。 列车振动的特点受到各种因素的影响,如车辆、轨道、支撑结构、地面、地下结构等。这些因素是交互作用,激发和传播的,是比较复杂的振动现象。 在本教程中,会涉及以下概念: ?从二维网格拓展生成三维网格。 ?特征值分析。 ?生成移动列车荷载。 ?分析结果——周围的振动效应和垂直地面沉降。 ?分析结果——建立随时间变化曲线 Section 1 学习目的及概要 ?列车动力荷载

Chapter 10. 3D Moving Train Load Time History Basic Tutorials 2 | Chapter 10. 3D Moving Train Load Time History 1.2模型和分析总概述 本教程进行动力分析,分析了列车移动荷载通过路堤的时候的振动荷载周围结构的影响和地表响应 ,火车上行为移动载荷应用于堤防。 分别建立底层、顶层、分层的加固层的路基,最后在最上层加上路面。

Basic Tutorials Chapter 10. 3D Moving Train Load Time History Chapter 10. 3D Moving Train Load Time History | 3 [打开附加开始文件(10 _train_start)] *:分析> 分析工况>设置 ?设置模型类型,重力方向,初始参数和单元系统。单位系统可以在建模过程中随时改变甚至在执行分析之后。输入的参数会自动转换为当下单位系统对应的值。 ?本教程是一个三维模型,重力方向是Z 向,使用SI 单位制(kN,m,sec)。 Section 2 设置分析条件 ?分析设置

midasCivil在桥梁承载能力检算和荷载试验中的应用(以Civil_V2012为例)

目录 1桥梁承载能力检算评定 (2) 1.1检算总述 (2) 1.2作用及抗力效应计算 (2) 2桥梁荷载试验 (7) 2.1静载试验 (7) 2.1.1确定试验荷载 (7) 2.1.2试验荷载理论计算 (10) 2.1.3试验及数据分析 (13) 2.1.4试验结果评定 (16) 2.2动载试验 (17) 2.2.1自振特性试验 (17) 2.2.2行车动力响应试验 (19) 2.2.2.1移动荷载时程分析 (19) 2.2.2.2动力荷载效率 (31) 2.2.3试验数据分析及结构动力性能评价 (32) 参考文献 (33)

结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。另外如果作用效应与抗力效应的比值在1.0——1.2之间时,尚需根据规范规定进行荷载试验评定承载能力。下面将对midas Civil在桥梁承载能力检算评定及荷载试验中的应用详细叙述。 1桥梁承载能力检算评定 1.1检算总述 进行桥梁承载能力检测评定时需要进行(1)桥梁缺损状况检查评定(2)桥梁材质与状态参数检测评定(3)桥梁承载能力检算评定。通过(1)、(2)及实际运营荷载状况调查,确定分项检算系数,根据得到的分项检算系数,对桥梁承载能力极限状态的抗力及正常使用极限状态的容许值进行修正,然后将计算作用效应值与修正抗力或容许值作对比,判断检算结果是否满足要求。一般来说承载能力检算主要包括抗弯、正斜截面抗剪承载力检算、裂缝宽度检算、挠度检算、稳定性验算等。 1.2作用及抗力效应计算 为得到检测桥梁在荷载作用下的计算效应值,可以通过midas Civil进行计算分析得到。对于预应力混凝土及钢筋混凝土等配筋混凝土桥梁,为得到结构抗力效应值,可以结合PSC设计、RC设计验算得到相应抗力值。前处理当中需要考虑自重、二期及其他恒载、预应力荷载、成桥时候的温度作用(整体升降温+梯度升降温)、移动荷载、支座沉降(根据实测得到的变位定义)等荷载作用;定义

移动荷载作用下主梁绝对大弯矩的计算结构力学

移动荷载作用下主梁绝对大弯矩的计算结构力学

————————————————————————————————作者:————————————————————————————————日期:

移动荷载作用下主梁绝对最大弯矩的计算 摘要:在设计起重机梁等承受移动荷载的结构时,利用内力包络图可以求的在横荷载和移动活荷载共同作用下各杆件、各截面可能出现的最大内力、最小内力。其中弯矩包络图表示各截面的最大弯矩值,其中弯矩最大者称为绝对最大弯矩。我们已经学习了简支梁绝对最大弯矩的求法,那么主梁在移动荷载作用下绝对最大弯矩的求法是怎样的呢?本文根据简支梁绝对最大弯矩的求法,给出了一组平行荷载直接沿着纵梁移动时,主梁承受结点荷载作用下绝对最大弯矩的计算方法。 关键词:结点荷载,绝对最大弯矩,主梁,影响线 桥梁或房屋建筑中的某些主梁,是通过一些次梁(纵梁和横梁)将荷载传递到主梁上的。主梁这些荷载的传递点称为主梁的结点。从移动荷载来说,不论是荷载作用在次梁的哪些位置,其作用都是通过这些固定的结点传递到主梁上。如下图所示: 本文研究的主要问题是一组平行荷载直接沿着纵梁移动时怎样判断主梁绝对最大弯矩的发生的截面位置和计算主梁的绝对最大弯矩(假定相邻两横梁间的距离、节间距是相等的)。 1.主梁绝对最大弯矩的发生截面位置

回想我们学过的简支梁,有两种计算方法。一种是近似计算,划分30个以上等分截面,画出梁的弯矩包络图,采取电算的方法。另一种是精确计算,也是最常用的方法。它的求法是:由于荷载在任一位置时,梁的弯矩图顶点永远发生在集中荷载下。因此可以断定,绝对最大弯矩必定发生在某一集中何在的作用点。 取一集中荷载Fpcr ,它的弯矩为: FR 为梁上实际荷载的合力,Mcr 为FPcr 以左梁上实际荷载对FPcr 作用点的力矩,a 为FR 与 FPcr 作用线之间的距离。经分析可得,Fpcr 作用点弯矩最大时,梁的中线正好平分Fpcr 与FR 之间的距离。如下图所示: 比较各个荷载作用点的最大弯矩,选择其中最大的一个,就是绝对最大弯矩。 与简支梁类似,当一组平行荷载直接沿着纵梁移动时,主梁在任意时刻的弯矩图总是呈折线图形,弯矩图的顶点永远位于集中荷载作用点,也就是各结点截面。因此,主梁绝对最大弯矩将发生在某结点截面,发生绝对最大弯矩的移动荷载位置就是该结点截面弯矩最大值对应的最不利荷载位置。 简支梁的绝对最大弯矩通常发生在梁的跨中截面附近,因此设计计算中可以用跨中截面的最大弯矩近似代替绝对最大弯矩,一般误差在 5℅ 以内。所以可以用以下方法快速判别绝对最大弯矩发生截面位置:当荷载数目较多时(多于4个),首先判别跨中截面发生最大弯矩时的荷载位置,然后稍稍移动该荷载位置, cr R cr yA M x L a x L F M x F M ---=-=

MIDAS中关于移动荷载车道的定义MIDAS中关于移动荷载车道的定义很多人

MIDAS中关于移动荷载车道的定义 MIDAS中关于移动荷载车道的定义很多人都不是很清楚原理,MIDAS自己也讲的不是很清楚,事实上很多累死软件对横向荷载的分布处理也不是很完善,下面我就我个人理解,参考其他前辈的理解,说说我的看法,希望大家积极跟帖,多多讨论,把这个问题搞清楚。 定义一般车道时,应该就是选择距离设计车道中心线最近的一根纵梁作为车道单元,然后定义偏心来按规范规定的等效车道荷载加载。 偏心距离是车道中心距离就近梁单元中心的距离。结构尺寸确定后,车道中心和每个纵梁的中心(如果是单梁那就是结构的中心)都是已知的,这时就很容易确定车道的偏心距离了。横向联系梁车道定义时和一般车道定义方法是一样的,要选择就近的一根纵梁作为车道单元,定义偏心、定义跨度、定义车道分配单元,唯一不同的就是横向联系梁要选择横向联系梁结构组而已。 MIDAS官方的说法是:车道单元是定义车道位置的参考单元,civil中目前横向车道位置需由用户定义。车道偏心量为车辆中心线距参考单元距离。 我理解的具体加载情况是:一根单梁,车道中心布置,如果定义车道时不考虑车辆宽度,则荷载加载在梁单元中心线上;而如果定义车道时考虑车辆宽度(貌似2006版才有了这个功能)1.8m,则荷载为偏心梁单元荷载,分别加载在梁单元中心两侧0.9m的位置上,因此换算成梁单元荷载就是集中载和换算扭矩。对于单梁分析,是否考虑车辆宽度对结构没有影响,但如果是梁格模型,是否考虑车辆宽度对结果的影响还是很大的。 规范规定的等效车道荷载是没有考虑车辆宽度的(但是,我在邵旭东的《桥梁工程》中看到了一句大实话:车道荷载的单向布载宽度为3.0m,这个才更接近实际情况)。 具体的,根据规范进行双车道中载和偏载加载时,一个是把车道荷载分别加载在两个车道设计中心线上,一个就是以最小间距3m来在一侧布置2个车道加载。如具体偏载情况: 第一个车道中心位置: 人行道边缘+0.5+0.9 第二个车道中心位置: 人行道边缘+0.5+0.9+3.1 ,用梁中心线计算出偏心距离输入即可。 希望能抛砖引玉,大家多多发言和讨论来一起把这个问题弄清楚。更深一层的也希望能以此为开始给我们板块注入新的活力和增添新的风气,希望除了资料和图纸的分享以外能更多一些经验和技术的交流,多一些答疑和解惑,也多一些朋友和老师,在使得板块更有活力也更人性化的同时也能让大家工作和学习更进一步,有道是“它山之石,可以攻玉,如切如磋,如琢如磨”啊! 谢谢大家!

Midas civil荷载组合详解

主要根据公路桥涵设计通用规范(JTG D60-2004)编制。在结果>荷载组合对话框中选择“自动生成”功能。 a. 在荷载>移动荷载分析数据中定义移动荷载时,下面组合中的符号L 用ML 代替。b. 反应谱荷载工况的简称为ESP c. 在荷载>移动荷载分析数据中,将人群荷载按移动荷载定义,并在移动荷载工况中将其与其它汽车荷载子荷载工况进行组合时(在移动荷载工况中选择“组合”),在定义人群荷载子荷载工况时,系数应取0.8(根据通用规范 4.1.6 条第 1 项)。为了考虑人群荷载单独作用的情况(系数1.0 的情况),需要另外单独定义一个人群荷载移动工况。 d. 下面组合中考虑了可变荷载作用的不同时组合(JTG D60-2004 中表4.1.5) e. 不考虑汽车荷载的恒荷载+其他可变荷载的组合及组合值系数需用户另外添加(规范无规定)。 f. 永久荷载中既有对结构承载能力不利,又有对结构的承载能力有利的永久荷载时,需要用户另外添加组合或修改“永久荷载对结构的承载能力有利组合”中的系数。g. 在荷载组合自动生成对话框中选择“考虑弯桥制动力”时,当汽车制动力与离心力同时出现在荷载组合中时,制动力荷载的组合系数自动乘以0.7 的系数。 h. 程序会自动生成各状态组合的包络组合。i. 钢结构的组合依然沿用旧规范。j. 当有移动荷载作用时,在设计中实际采用的组合会更多(对每个荷载组合都会对弯矩最大时、剪力最大时、轴力最大时的情况进行验算)。k. 在荷载>静

力荷载工况中定义荷载名称,但没有具体定义荷载值时,荷载组合的自动生成功能将不包含该荷载工况名称。l. 预应力混凝土设计荷载组合在荷载组合的“混凝土”中定义。a) 永久荷载对结构的承载能力不利(120 个) 恒荷载组合(1 个): 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL 永久荷载+1 个可变作用(8 个): 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*(L+IL+CF) 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*LS 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*CRL 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.1*W 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*SF 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*IP 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*(T+TPG) 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0.

相关文档
最新文档