光学信息技术原理及应用

光学信息技术原理及应用
光学信息技术原理及应用

面向二十一世纪课程教材

光学信息技术原理及应用

陈家璧苏显渝主编

2001年4月

面向二十一世纪课程教材

光学信息技术原理及应用

陈家璧苏显渝朱伟利孫雨南陶世荃吴建宏编

2001年4月

内容简介

本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材。本书是上海理工大学、四川大学、中央民族大学、北京理工大学、北京工业大学、苏州大学、南开大学等校教授依据多年的教学和科研经验,并参考国内、外优秀教材编写而成。本书分为两部分。前五章介绍光学信息技术的基本理论,包括二维线性系统理论、光的标量衍射理论、光学系统频谱分析、部分相干理论和光全息术。后六章介绍它的主要实际应用,有光学信息存储、光学信息处理、图象的全息显示、光学三维传感和全息散斑干涉计量。本书的特点一是用线性系统的傅里叶分析方法光学问题,把光学看做信息科学技术的一个重要组成部分进行研究,二是密切联系实际,讨论了光学信息技术的各种已经实现和正在发展的应用。三是配有许多独具匠心的习题,附有大量期发表在国内外科技刊物及学术会议的有关文献,可以引导读者自学,启发读者思维,培养学生的创新能力。

本书可以作为高等学校“光信息科学与技术”及其他有关光学和光学工程专业的专业课教材,也可以供社会读者阅读。

前言

作为自然现象,光是最重要的信息载体。据统计,人类感官接收的客观世界总的信息量的90%以上要通过眼睛。早在三千年前人类就开始研究光学,但是光学发展最快的时期还是20世纪,尤其是20世纪下半叶。近代光学对信息时代的到来起了十分重要的作用。20世纪40年代末提出的全息术、50年代产生的光学传递函数、60年代发明的激光器、70年代发展起来的光纤通信、80年代成为微机标准外设的光驱、航天航空事业中应用的空间光学等近代光学技术对信息产业的高速成长发挥了不可替代的作用。与此同时,近代光学也成为电子信息科学的最重要基础之一。因此在高等院校电子信息学科的有关专业开设光信息处理技术理论与应用的课程是很有必要的。

光信息处理的理论基础是将信息科学中的线性系统理论引入光学中形成的。光学成像系统实际上是一种二维的图像信号的传输和处理系统。传统的光学仅在空域中研究光学现象,信息光学将研究方法扩展到空间频域,对光学成像系统进行空间频谱分析,并由此发展出全息术与光信息处理的各种方法。这些方法使光学系统的单一成像功能扩展到信息处理的许多方面,有二维信号(图像)的各种运算方法,有图象处理与识别技术,有高密度信息存储的光学方法,有三维面形测量及全息散斑干涉技术,等等。本书的重点是介绍光学信息处理的理论基础以及近年来发展很快的相关应用和方法。

本书的前五章是理论基础部分。第1章的主要内容是二维线性系统分析,以及为之服务的二维傅里叶变换和信息科学的另一基础——抽样定理。对于学过“信号与系统”课程的读者,复习一下并推广到二维情况也是不无补益的。与以往同类的教科书不同,这一章不再详细介绍有关数学预备知识。这是由于近二十年来几乎所有开办本专业的高等院校都开设含积分变换的数学课程,再从基础讲起已无必要。第2章关于标量衍射理论的讨论不讲述物理光学或工程光学中已经讲过的惠更斯原理及基尔霍夫衍射公式的推导,而是由波动方程的平面波解及平面上复振幅分布的傅里叶分析与综合导出近场及远场衍射公式。在介绍分数傅里叶变换基础上,讨论菲涅尔衍射的分数傅里叶变换表示,从而将衍射现象完全与傅里叶变换联系在一起。第3章关于光学系统的频谱分析与以往多数教材不同,对透镜的傅里叶变换性质给出一个统一的表达方式,并得出不同情况下的结果。由此出发进一步分析相干与非相干成像系统,给出成像系统的相干传递函数与光学传递函数。第4章综合各种教材对光的相干性理论的阐述,由时间相干性、空间相干性到准单色光的相干性,全面介绍了光的相干性的概念,以此为基础讨论了部分相干光的传播及其光学系统的频谱分析的影响,为近代光学将许

多光的传播过程当作随机过程来研究打下基础。第5章研究的全息学是本书讲述的重点应用技术——全息存储、全息显示、全息干涉计量的基础,讨论了全息学原理,介绍了全息的实用技术及各种全息方法的具体分析。

本书后半部的第6章集中介绍各种光电调制器和接收器,是建立光信息处理系统的基础。第7章重点介绍各种光存储技术,包括已经广泛应用的光盘存储技术和正在发展的各种三维、四维及其它海量光学存储技术,讨论了目前光学存储技术的主要发展趋势。第8章讲述光信息处理的一般方法,包括二维图象信号的各种运算、非线性处理的光学实现、光计算及光信息处理的某些最成功的应用,如综合孔径雷达信号的光学信息处理方法和用黑白胶片作彩色摄影及存储彩色图像的方法。第9章的内容是全息显示技术,主要是彩虹全息,模压技术及象素全息,这些技术已经并且正在应用到日常生活之中。第10章是三维面形测量技术,作为一种非接触测量方法它不仅改变了传统的三坐标测量思想,而且已经有大量的实际应用,并与正在快速发展的计算机虚拟现实技术密切相关。最后一章的全息散斑计量是全息术的最早应用之一,是研究宏观世界与微观世界之间的所谓介观世界的有力武器。这一章从理论上改变了传统的光程差分析方法,把统计光学及随机过程的概念引入光学系统的分析之中,而且在此基础上介绍了诸如光外差技术、相移干涉技术、时间平均方法、光学的逐点与全场滤波、数字散斑方法等等近代光学信息处理的最新方法。

作为理论基础部分,本书的第1、2、3、5章是本科生必读的部分,其他章节可根据具体情况选读。

改革开放以来我国高等学校开设了许多有关光信息处理的课程,出版发行了许多教材和专著,其中包括国外经典优秀教材的中译本。而国内外发表的光信息处理方面的科技论文更是浩如烟海。本书最后附以主要参考书籍和及引用文献的目录,总计达二百篇左右。其中绝大多数是80年代以来的资料,一半以上是90年代以后发表的。希望这些文献能够帮助读者了解本学科发展的历史过程,帮助读者了解各种新发展产生的背景与研究问题的思路,及因为本书篇幅限制无法充分阐明的问题。另外在每章的后面都附有帮助读者学习的习题,最后还给出部分习题的参考答案。

本书第1、2、4、11章由陈家璧编写,第3、10章由苏显渝编写,第5、8章由朱伟利编写,第6章由孫雨南编写,第7章由陶世荃编写,第9章由吴建宏编写。这些编者都长期从事光信息处理有关教学和科学研究,对撰写的章节有关的内容和最新发展十分熟悉。撰写的内容也包括了他们自己的研究成果。

本书在编写过程中得到了中国科学院院士、中国光学学会理事长、南开大学母国光教授

的指导。母先生不仅对本书的内容和结构提出了指导性的意见,并且还对本书进行仔细审阅,使作者得益匪浅。著名老科学家、光学界泰斗两院院士王大珩先生对现代光学的教育非常重视,特地为本书作序,使我们倍受鼓舞。在此对他们一并表示衷心感谢。

编者 2000年月日

目录

第1章二维线性系统分析

1.1线性系统

1.1.1线性系统的定义

1.1.2脉冲响应和叠加积分

1.2 二维傅里叶变换

1.2.1二维傅里叶变换定义及存在条件

1.2.2极坐标下的二维傅里叶变换和傅里叶—贝塞尔变换1.2.3虚、实、奇、偶函数傅里叶变换的性质

1.2.4二维傅里叶变换定理

1.2.5常用二维傅里叶变换举例

1.3 二维不变线性系统

1.3.1二维不变线性系统的定义

1.3.2二维不变线性系统的传递函数

1.3.3不变线性系统的本征函数

1.3.4级联系统

1.4抽样定理

1.4.1 函数的抽样

1.4.2原函数的复原

1.4.3空间带宽积

习题

第2章标量衍射的角谱理论

2.1 光波的数学描述

2.1.1 光振动的复振幅和亥姆霍兹方程

2.1.2球面波的复振幅表示

2.1.3平面波的复振幅表示

2.1.4 平面波的空间频率

2.2 复振幅分布的角谱及角谱的传播

2.2.1复振幅分布的角谱

2.2.2 平面波角谱的传播

2.2.3衍射孔径对角谱的作用

2.3标量衍射的角谱理论

2.3.1 惠更斯—菲涅尔—基尔霍夫标量衍射理论的简要回顾2.3.2 平面波角谱的衍射理论

2.3.3菲涅耳衍射公式

2.4夫琅和费衍射与傅里叶变换

2.5 菲涅耳衍射和分数傅里叶变换

2.5.1分数傅里叶变换的定义

2.5.2 分数傅里叶变换的几个基本性质

2.5.3用分数傅里叶变换表示菲涅耳衍射

习题:

第3章光学成像系统的频率特性

3.1 透镜的位相变换作用

3.2 透镜的傅里叶变换性质

3.2.1物在透镜之前

3.2.2物在透镜后方

3.2.3透镜的孔径效应

3.3 透镜的一般变换特性

3.4相干照明衍射受限系统的成像分析

3.4.1透镜的点扩散函数

3.4.2衍射受限系统的点扩散函数

3.4.3相干照明下衍射受限系统的成像规律

3.5 衍射受限系统的相干传递函数

3.6 衍射受限系统的非相干传递函数

3.6.1非相干成像系统的光学传递函数(OTF)

3.6.2OTF与CTF的关系

3.6.3衍射受限的OTF

3.7有像差系统的传递函数

3.8相干与非相干成像系统的比较

3.8.1截止频率

3.8.2像强度的频谱

3.8.3两点分辨

习题

第4章部分相干理论

4.1实多色场的复值表示

4.2 时间相干性、自相干函数与复自相干度4.2.1 非单色光的分振幅干涉及其数学描述4.2.2 自相干函数与复自相干度

4.2.3复自相干度与光功率谱密度的关系4.2.4相干时间和相干长度

4.3空间相干性、互相干函数和复相干度

4.3.1 分波面干涉及其数学描述

4.3.2 互相干函数和复相干度

4.3.3 互相干函数和互相干度的测量

4.4准单色条件、互强度和复相干因子

4.4.1准单色条件

4.4.2互强度和复相干因子

4.4.3相干面积

4.5准单色光的传播和衍射

4.5.1 自由空间中准单色场互相干性的传播4.5.2薄透明物体对互强度的影响

4.5.3部分相干光的衍射

4.6范西特-泽尼克定理

4.6.1范西特-泽尼克定理

4.6.2均匀圆形光源

4.6.3迈克尔逊测星干涉仪

4.7部分相干场中透镜的傅里叶变换性质

4.8部分相干光成像

4.8.1准单色光照明光学系统的物像关系

4.8.2准单色光照明下光学系统的频率响应

第5章光全息术

5.1 引言

5.2 全息术原理——波前记录与再现5.2.1 波前记录

5.2.2 波前再现

5.2.3 全息实验装置

5.3 基元全息图分析

5.4 平面全息图及其衍射效率

5.4.1 菲涅耳全息图

5.4.2 傅里叶变换全息图

5.4.3 无透镜傅里叶变换全息图

5.4.4 傅里叶变换全息图的两个特例5.4.5象全息图

5.4.6位相全息图

5.4.7 平面全息图的衍射效率

5.5 体积全息图

5.5.1 体积全息图的记录与再现

5.5.2 透射体全息和反射体全息5.5.3 体积全息图的衍射效率

5.6 计算全息术及其应用

5.6.1 计算全息图

5.6.2 计算全息术的应用

5.7全息记录介质

5.7.1卤化银乳胶

5.7.2重铬酸盐明胶

5.7.3光致抗蚀剂

5.7.4 光导热塑

5.7.5 光致聚合物

5.7.6光折变晶体

第6章空间光调制器

6.1概述

6.1.1空间光调制器的基本结构与分类6.1.2空间光调制器的功能

6.1.3空间光调制器的基本性能参数

6.2液晶光阀

6.2.1液晶的光电特性

6.2.2光学寻址液晶光阀

6.2.3电学寻址液晶光阀

6.3 电光效应器件

6.3.1 晶体的电光效应及其电光调制原理6.3.2 普克尔斯读出光调制器

6.3.3微通道板空间光调制器

6.3.4 Si-PLZT空间光调制器

6.4磁光空间光调制器(MOSLM)

6.4.1磁性材料的磁化特性与磁光效应6.4.2 器件结构

6.4.3工作原理

6.4.4器件性能

6.5表面形变空间光调制器

6.5.1 G-E表面形变空间光调制器

6.5.2数字微反射空间光调制器

6.6 自电光效应器件空间光调制器

习题

第7章光信息存储技术

7.1 引言

7.2 二维光学存储:光盘存储

7.3 三维光学存储:体全息存储

7.3.1 体全息的基本原理

7.3.1.1 体光栅与布拉格衍射

7.3.1.2 耦合波理论

7.3.1.3体光栅的衍射效率和选择性

7.3.2 光折变材料的全息存储机理与特性7.3.2.1 折射率光栅的建立

7.3.2.2 光折变材料的全息存储特性7.3.3全息存储器的数据传输速率

7.3.4 全息存储的应用举例

7.4 四维光学存储

习题

第8章光信息处理技术

8.1引言

8.2光学频谱分析系统和空间滤波

8.2.1阿贝(Abbe)成像理论

8.2.2阿贝—波特(Abbe—Porter)实验8.2.3空间频率滤波系统

8.2.4空间滤波的傅里叶分析

8.2.5滤波器的种类及应用举例

8.3相干光学信息处理

8.3.1相干光学信息处理系统

8.3.2多重像的产生

8.3.3图像的相加和相减

8.3.4光学微分—像边缘增强

8.3.5光学图像识别

8.3.6图像消模糊

8.3.7综合孔径雷达

8.4非相干光学信息处理

8.4.1图像的相乘和积分

8.4.2图像的相关和卷积

8.5白光信息处理

8.5.1 θ调制

8.5.2用黑白胶片保存彩色像

8.5.3黑白图像的白光密度假彩色编码8.5.4多重像的产生

8.6 光计算

8.6.1 引言

8.6.2光学矩阵运算

8.6.3光学互连8.6.4光学神经网络习题

第9章图像的全息显示

9.1 引言

9.2 彩虹全息图

9.2.1线全息图消色模糊原理

9.2.2彩虹全息图的记录

9.2.3彩虹全息图的像质

9.3合成全息技术

9.3.1二维图片的记录

9.3.2平面多路合成全息

9.3.3 360?合成全息

9.4彩色全息术

9.4.1彩色全息的激光器和记录材料9.4.2彩色彩虹全息

9.4.3反射体积彩色全息

9.5全息图的复制

9.5.1全息图的光学复制

9.5.2全息图的模压复制

9.5.3全息图的注塑复制

9.6数字像素全息技术

9.6.1数字全息图的制作方法

9.6.2数字全息图的设计

9.7其他全息显示技术

9.7.1全息电影

9.7.2边缘照明全息

9.7.3虚拟全息三维显示

习题

第十章光学三维传感

10.1主动三维传感的基本概念

10.1.1主动照明的三维传感方法

10.1.2三种基本的结构照明方式

10.1.3三维传感系统的基本组成

10.2 采用单光束的三维传感

10.2.1 基本原理与计算公式

10.2.2 散斑对激光三角法精度的影响10.2.3 测量实例(鞋楦三维面形测量)10.2.4基于激光同步扫描的三维面形测量10.3 采用激光片光的三维传感

10.3.1激光片光的产生

10.3.2测量原理

10.3.3测量实例

10.4 位相测量剖面术

10.4.1 位相测量剖面术的原理

10.4.2 产生结构照明的方法

10.4.3位相测量剖面术应用举例

10.5 傅里叶变换剖面术

10.5.1 基本原理

10.5.2 FTP方法的测量范围

10.5.3 一种改进的方法

10.6 调制度测量轮廓术

10.6.1基本原理

10.6.2 信息处理方法

10.6.3测量实例

10.7 其他光学三维轮廓测量方法

10.7.1采用激光扫描的三维共焦成象

10.7.2 飞行时间法

习题

第11章全息散斑干涉计量

11.1光学粗糙表面散射光场的统计特性

11.1.1物面系综上物表面散射光场的统计特性

11.1.2散射光场的一阶统计特性

11.1.3散射光场的强度自相关函数

11.2 全息干涉的统计光学描述

11.2.1 全息干涉的基本原理

11.2.2二次曝光全息干涉术的干涉场

11.2.3表面变形特性与散射光场特性的关系

11.2.4二次曝光全息干涉场的统计光学描述

11.3时间平均全息干涉术

11.4 外差与准外差全息干涉术

11.4.1外差全息干涉技术

11.4.2准外差全息干涉技术

11.5散斑干涉术

11.5.1参考束型散斑干涉测量方法

11.5.2剪切散斑干涉测量方法

11.6电子散斑干涉测量技术

11.6.1电子散斑干涉仪的典型光路和原理

11.6.2电子散斑干涉相减技术的统计分析

11.7散斑照相测量术

11.7.1像面二次曝光激光散斑图的记录及其透过率函数11.7.2二次曝光散斑图的逐点滤波

11.7.3二次曝光散斑图的全场滤波

11.7.4白光散斑照相测量术11.8数字散斑照相测量术11.8.1数字全场滤波技术11.8.2数字逐点滤波技术

习题

陈家璧版光学信息技术原理及应用习题解答(7-8章)

陈家璧版光学信息技术原理及应用习题解答(7-8章) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第七章 习题解答 1. 某种光盘的记录范围为内径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 内、外径均指直径) 解: 记录轨道数为 25000002.0280180=?-=N 单面记录容量按位计算为 ∑=?≈?+=N n n M 110107.10006.0)002.040(2π bits = 17 Gb. 按字节数计算的存储容量为 2.1GB. 2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。 证明: 将体光栅读出满足布拉格条件时的照明光波长(介质内) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距. 对于任意波长λa (空气中) 和入射角θr (介质内), 由(7-17)式, 位相失配 δ 定义为: 24)cos(n K K a r πλθφδ--= 其中n 0为介质的平均折射率, K = 2π/Λ为光栅矢量K 的大小,φ为光栅矢量倾斜角,其值为 22π θθφ++=s r ,θr 为再现光束与系统光轴夹角 (参见图7-9). 当 δ = 0 时,有 2422cos n K K a r s r πλθπθθ=??? ??-++ 即: Λ=Λ=??? ??-2422sin 0 λππλθθn s r

信息光学重点解答题

(1)()?? ? ? ?-=?? ? ??-?? ? ? ?-=?? ? ??--2 5.22 121*232121*32x rect x rect x x rect x δδ (2)()()1*=x rect x comb (3)??? ??+21x rect *?? ? ??-21x rect 设卷积为()x g ,当0≤x 时,()x g =220+=?+x d x α,当0>x 时,()x g =x d x -=?22α ()?????>-<+=0,2 10 ,212x x x x x g 即 ()?? ? ??Λ=22x x g (4)已知()2 ex p x π-的傅里叶变换为()2 ex p πξ-,求 (){}()222 ex p ex p ξππ-=-x (){}() 2 2222 2ex p 22/ex p ξσππσ-=-x (5)单位振幅的单色平面波垂直入射到一半径为a 的圆形孔径上,试求菲涅耳衍射图样在轴上的强度分布 解:孔径平面撒谎能够的透射场为()??? ? ??+=a y x circ y x U 2020000,由菲涅耳公式,当0==y x 时,得到轴上点的复振幅分布为 ()()0020 202 020 2exp exp ;0,0dy dx z y x jk a y x circ z j jkz z U ??? ? ??+??? ? ? ?+=??∞∞-λ ()rdr z r jk d z j jkz a ?????? ??=02202exp exp π θλ()??? ? ?????? ??-=z a z a jk jkz j λπ2sin 4exp exp 222 ()??? ? ??=z a z I λπ2sin 4;0,022 (6)焦距 mm f 500=,直径mm D 50=的透镜将波长nm 8.632=λ的激光束聚焦,激光束的截面mm D 201=。试求透镜焦点处的光强是激 光束光强的多少倍? 解:设入射激光束的复振幅为0A ,强度为200A I =,通过透镜后的出射光场为,将此式代入菲涅耳衍射公式,并令0==y x 得焦点处的复振幅 和光强为 ()()()4exp 2/exp ;0,02100012 020 0D z j jkz A dy dx D y x circ z j jkz A f U πλλ=??? ? ? ?+=??∞∞- ()6 02120 104;0,0?≈??? ? ??=I f D A f I λπ (14)彩虹全息照相系统中使用狭缝的作用是什么?为什么彩虹全息图的色模糊主要发生在狭缝垂直的方向上? 在彩虹全息照相中使用狭缝的目的是为了能在白光照明下再现准单色像。在普通全息照相中,若用白光照明全息图再现时,不同波长的光同时进入人眼,我们将同时观察到相互错位的不同颜色的再现像,造成再现像的模糊,即色模糊。在彩虹全息照相中,由于狭缝起了分色作用,再现过程中不同波长的光对应不同的水平狭缝位置,通过某一狭缝位置只能看到某一准单色的像,从而避免了色模糊。 在彩虹全息照相中,为了便于双眼观察,参考平面波的选择总是使全息图的光栅结构主要沿水平方向,因而色散沿竖直方向。狭缝沿水平方向放置,这样色散方向与狭缝垂直,即色模糊主要发生在与狭缝垂直的方向上,这样做的结果便于人眼上下移动选择不同颜色的准单色像

光学信息技术原理与应用

面向二十一世纪课程教材 光学信息技术原理及应用 陈家璧苏显渝主编 2001年4月

面向二十一世纪课程教材 光学信息技术原理及应用 陈家璧苏显渝朱伟利孫雨南陶世荃吴建宏编 2001年4月

内容简介 本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是面向21世纪课程教材。本书是上海理工大学、四川大学、中央民族大学、北京理工大学、北京工业大学、苏州大学、南开大学等校教授依据多年的教学和科研经验,并参考国内、外优秀教材编写而成。本书分为两部分。前五章介绍光学信息技术的基本理论,包括二维线性系统理论、光的标量衍射理论、光学系统频谱分析、部分相干理论和光全息术。后六章介绍它的主要实际应用,有光学信息存储、光学信息处理、图象的全息显示、光学三维传感和全息散斑干涉计量。本书的特点一是用线性系统的傅里叶分析方法光学问题,把光学看做信息科学技术的一个重要组成部分进行研究,二是密切联系实际,讨论了光学信息技术的各种已经实现和正在发展的应用。三是配有许多独具匠心的习题,附有大量期发表在国内外科技刊物及学术会议的有关文献,可以引导读者自学,启发读者思维,培养学生的创新能力。 本书可以作为高等学校“光信息科学与技术”及其他有关光学和光学工程专业的专业课教材,也可以供社会读者阅读。

前言 作为自然现象,光是最重要的信息载体。据统计,人类感官接收的客观世界总的信息量的90%以上要通过眼睛。早在三千年前人类就开始研究光学,但是光学发展最快的时期还是20世纪,尤其是20世纪下半叶。近代光学对信息时代的到来起了十分重要的作用。20世纪40年代末提出的全息术、50年代产生的光学传递函数、60年代发明的激光器、70年代发展起来的光纤通信、80年代成为微机标准外设的光驱、航天航空事业中应用的空间光学等近代光学技术对信息产业的高速成长发挥了不可替代的作用。与此同时,近代光学也成为电子信息科学的最重要基础之一。因此在高等院校电子信息学科的有关专业开设光信息处理技术理论与应用的课程是很有必要的。 光信息处理的理论基础是将信息科学中的线性系统理论引入光学中形成的。光学成像系统实际上是一种二维的图像信号的传输和处理系统。传统的光学仅在空域中研究光学现象,信息光学将研究方法扩展到空间频域,对光学成像系统进行空间频谱分析,并由此发展出全息术与光信息处理的各种方法。这些方法使光学系统的单一成像功能扩展到信息处理的许多方面,有二维信号(图像)的各种运算方法,有图象处理与识别技术,有高密度信息存储的光学方法,有三维面形测量及全息散斑干涉技术,等等。本书的重点是介绍光学信息处理的理论基础以及近年来发展很快的相关应用和方法。 本书的前五章是理论基础部分。第1章的主要内容是二维线性系统分析,以及为之服务的二维傅里叶变换和信息科学的另一基础——抽样定理。对于学过“信号与系统”课程的读者,复习一下并推广到二维情况也是不无补益的。与以往同类的教科书不同,这一章不再详细介绍有关数学预备知识。这是由于近二十年来几乎所有开办本专业的高等院校都开设含积分变换的数学课程,再从基础讲起已无必要。第2章关于标量衍射理论的讨论不讲述物理光学或工程光学中已经讲过的惠更斯原理及基尔霍夫衍射公式的推导,而是由波动方程的平面波解及平面上复振幅分布的傅里叶分析与综合导出近场及远场衍射公式。在介绍分数傅里叶变换基础上,讨论菲涅尔衍射的分数傅里叶变换表示,从而将衍射现象完全与傅里叶变换联系在一起。第3章关于光学系统的频谱分析与以往多数教材不同,对透镜的傅里叶变换性质给出一个统一的表达方式,并得出不同情况下的结果。由此出发进一步分析相干与非相干成像系统,给出成像系统的相干传递函数与光学传递函数。第4章综合各种教材对光的相干性理论的阐述,由时间相干性、空间相干性到准单色光的相干性,全面介绍了光的相干性的概念,以此为基础讨论了部分相干光的传播及其光学系统的频谱分析的影响,为近代光学将许

光学原理及应用

光学的基本原理及应用 人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所著的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学著作。 现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。 按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。 一、光学现象原理 光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。 光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为

c=299 792 458 m/s 在通常的计算中可取 c=3.00×108m/s 玻璃、水、空气等各种物质中的光速都比真空中的光速小. (一)直线传播 光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的. 由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。物理学中常常用光线表示光的传播方向。有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太线也可以看做平行光线.

陈家璧版 光学信息技术原理及应用习题解答(1-2章)

第一章习题 1.1 已知不变线性系统的输入为 ()()x x g comb = 系统的传递函数?? ? ??b f Λ。若b 取(1)50=.b (2)51=.b ,求系统的输出()x g ' 。并画出输出函数及其频谱的图形。 答:(1)()(){ }1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ23 2+1=? ??? ??1+3 1+1-31+=F 图形从略。 1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1< ,W b 1<,试证明 ()()y x f y x f b x a x ab ,,sinc sinc =*?? ? ????? ??1 证明: (){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f W f L f rect y x f y x,f y x y x y x *?? ? ????? ??1==∴=???? ??=,,F F ,,F ,,F F 1- (2)如果L a 1> , W b 1 >,还能得出以上结论吗? 答:不能。因为这时(){}(){}()y x y x bf af rect y x f W f L f rect y x f ,,F ,,F ≠??? ? ??。 1.3 对一个空间不变线性系统,脉冲响应为

()()()y x y x h δ77=sinc , 试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。(必要时,可取合理近似) (1)()x y x f π4=1cos , 答: ()(){}(){}{}{}()(){}{} {}{}{}x cos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=??? ? ????? ??74=74==1-1 -1-11-1F F F F F F F ,F ,F F , (2)()()?? ? ??75??? ??754=2y rect x rect x cos y x f π, 答: ()(){}(){}{}()()(){}{}()()()()? ?? ??75??? ??754?? ???????? ??77575?75*4=? ? ????7????????? ??75??? ??754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]?? ? ??758+1=3x rect x cos y x f π, 答: ()()[]()(){}(){}()()()()()()()()()()()(){}? ?? ??75=75???? ? ????? ??775??? ??????? ??7??? ??75*??? ? ?4+81+4-81+=?? ? ? ????? ??775*8+1=? ? ? ???7????????? ??758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F , (4)()()()()()y rect x rect x comb y x f 22*=4, 答:

信息光学参考答案

名词解释 单色平面波 波函数E 取余弦或正弦形式,对应的光波等相面为平面,且等相面上个点的扰动大小时刻相等的光波称为单色平面波。 光学全息 利用光的干涉原理将物体发出的特定光波以干涉条纹形式记录下来,使物光波前的全部信息都贮存在记录介质中形成全息图,当用适当光波照射全息图时,由于光的衍射原理能重现原始物光波,从而形成与原物相同的三维像的过程称为光学全息。 色模糊 由于波长不同而产生的像的扩展的现象叫做像的色模糊。 范西泰特—策尼克定理 指研究一种由准单色(空间)非相干光源照明而产生的光场的互强度,特别指研究干涉条纹可冗度。 11222(,) exp()2(,;,)(,)exp ()()j J x y x y I j x y d d z z ψπαβαβαβλλ+∞-∞?? = -?+??????? 其中 22 2222221121[()()]()x y x y z z ππψρρλλ= +--=- 12ρρ分别是点11(,)x y 和点22(,)x y 离光轴的距离 基元全息图 指单一物点发出的光波与参考光波干涉所形成的全息图。 彩虹全息 只利用纪录时在光路的适当位置加一个夹缝,使再现的同时再现狭缝像,观察再现像将受到狭缝再现像的调制,当用白光照明再现时,对不同颜色的光波,狭缝和物体的再现像位于不同颜色的像,犹如彩虹一样的全息图。 判断 1.衍射受限系统是一个低通滤波器。 2.物 000(,)x y μ通过衍射受限系统后的像分布(,)i i i x y μ是000(,)x y μ的理想像和点扩散 (,)i i h x y 的卷积。 3.我们把(,)H ξη称为衍射受限系统的想干传递函数。 4.定义:()()f x h x 为一维函数,则无穷积分 ()()()()() g x f h x d f x h x ααα+∞ -∞ =-=*? 5.二维卷积 (,) (,)(,)(,)(,)(,) g x y f h x y d d f x y h x y αβαβαβ+∞-∞= --=*?? 6.1,()()() ,x x x x x a rect rect a a a a a o ?-≤?*==Λ???其他 7.透镜作用 成像;傅里叶变换;相位因子。

光学原理及应用优选稿

光学原理及应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

光学的基本原理及应用 人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所着的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学着作。 现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。 按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。 一、光学现象原理 光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。 光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为 c=299 792 458 m/s 在通常的计算中可取

c=3.00×108m/s 玻璃、水、空气等各种物质中的光速都比真空中的光速小. (一)直线传播 光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的.由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。物理学中常常用光线表示光的传播方向。有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太阳光线也可以看做平行光线. (二)反射与折射 阳光能够照亮水中的鱼和水草,同时我们也能通过水面看到烈日的倒影;这说明光从空气射到水面时,一部分光射进水中,另一部分光被反射,回到空气中.一般说来,光从一种介质射到它和另一种介质的分界面时,一部分光又回到这种介质中的现象叫做光的反射;而斜着射向界面的光进入第二种介质的现象,叫做光的折射。 光的反射定律实验表明,光的反射遵循以下规律(图18-8):

信息光学试题--答案

信息光学试题 1. 解释概念 光谱:复色光经过色散系统(如棱镜、光栅)分光后,按波长(或频率)的大小依次排列的图案。 干涉图:在一定光程差下,探测器接收到的信号强度的变化,叫干涉图。 2. 傅里叶光谱学的基本原理是干涉图与光谱图之间的关系,是分别用复数形式 和实数表示之。 复数形式方程: 实数形式方程: 3. 何谓Jacquinot 优点?干涉光谱仪的通量理论上约为光栅光谱仪通量的多少 倍? Jacquinot 优点是:高通量。 对相同面积、相同准直镜焦距、相同分辨率,干涉仪与光栅光谱仪通量之比 为 对好的光栅光谱仪来说,由于 则 即干涉仪的通量为最好光栅干涉仪的190倍。 4. 何谓Fellgett 优点?证明干涉光谱仪与色散型光谱仪的信噪比之比为 2/1)/()/(M N S N S G I =,M 为光谱元数。 Fellgett 优点:多重性。 设在一扩展的光谱带1σ —2σ间,其光谱分辨率为δσ,则光谱元数为 δσσδσσσ?=-=21M 2()() (0)1[]2i R R B I I e d πσδσδδ∞ --∞=-?()0()(0)1(tan ){[]cos(2)}2R R B cons t I I d σδπσδδ∞=-? '2() M G E f l E π≈'30f l ≥

对光栅或棱镜色散型光谱仪,设T 为从1σ —2σ的扫描总时间,则每一小节观测时间为T/M ,如果噪音是随机的、不依赖于信号水平,则信噪比正比于 21)(M T 即21 )()(M T N S G ∝。 对干涉仪,它在所有时间内探测在 1σ —2σ间所有分辨率为δσ的小带,所 以探测每一个小带的时间正比于T ,即21 )()(T N S I ∝ 因此21)()(M N S N S G I = 5. 单色光的干涉图和光谱表达式是什么?在实际仪器使用中,若最大光程差为 L ,试写出其光谱表达式——仪器线性函数(ILS )。 单色光干涉图表达式: )2cos(2)]0(2 1)([1δπσδ=-R R I I 其中1σ为单色光的波数,δ为 光程差。 光谱的表达式: })(2])(2sin[)(2])(2sin[{2)(1111L L L L L B σσπσσπσσπσσπσ--+++= 仪器线性函数:])(2[sin 2)(1L c L B σσπσ-= 6. 何谓切趾?试对上题ILS 进行三角切趾,并说明其结果的重要意义。 切趾: 函数])(2[sin 1L c σσπ-是我们对单色光源所得到得一个近似,其次级极大或者说“脚“是伸到零值以下的22%处,它稍稍有点大。我们可以把一个有限宽度的中央峰值认为一个无限窄带宽的一个近似,但是这个”脚“会使在这些波长附近出现一个错误的来源。为了减小这个误差,我们通过截趾的方法来减小这个”脚“的大小,这就叫切趾。 三角切趾后的仪器函数: 21])([sin )(L c L B σσπσ-= 重要意义:

陈家璧版 光学信息技术原理及应用习题解答(7-8章)

第七章 习题解答 1. 某种光盘的记录围为径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 、外径均指直径) 解: 记录轨道数为 25000002 .0280 180=?-=N 单面记录容量按位计算为 ∑=?≈?+= N n n M 1 10107.10006.0) 002.040(2π bits = 17 Gb. 按字节数计算的存储容量为 2.1GB. 2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。 证明: 将体光栅读出满足布拉格条件时的照明光波长(介质) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距. 对于任意波长a (空气中) 和入射角θr (介质), 由(7-17)式, 位相失配 定义为: 24)cos(n K K a r πλθφδ- -= 其中n 0为介质的平均折射率, K = 2/为光栅矢量K 的大小,为光栅矢量倾斜角,其值为 2 2 π θθφ+ += s r , r 为再现光束与系统光轴夹角 (参见图7-9). 当 = 0 时,有 2 422cos n K K a r s r πλθπθθ= ??? ??-++ 即: Λ =Λ= ??? ??-2422sin 0λππλθθn s r 为介质中的波长. 由于角度 2 s r θθ-恰为照明光与峰值条纹面的夹角θ以上结果亦 即布拉格条件2 sin θ = . 当读出光偏离布拉格角θo 和布拉格波长 o 的偏移量分别为θ和时,有

信息光学结课论文

信息光学原理结课论文 学院:物理与电子工程学院 专业:电子科学与技术 学号:5411110101 xx 姓名:xxx

光学器件CCD发展及应用 【摘要】:CCD英文全称:Charge-coupled Device,中文全称:耦合元件。可以称为CCD,也叫图像控制器。CCD是一种,能够把影像转化为。上植入的微小光敏物质称作(Pixel)。一块CCD上包含的像素数越多,其提供的分辨率也就越高。CCD的作用就像胶片一样,但它是把光信号转换成电荷信号。CCD上有许多排列整齐的光电二极管,能感应光线,并将光信号转变成电信号,经外部采样放大及模数转换电路转换成数字图像信号。此外,CCD还是蜂群崩溃混乱症的简称。 【关键词】:CCD 光学器件电压检测应用 CCD广泛应用在数码摄影、天文学,尤其是光学遥测技术、光学与频谱望远镜和高速摄影技术,如Lucky imaging。CCD在摄像机、数码相机和扫描仪中应用广泛,只不过摄像机中使用的是点阵CCD,即包括x、y两个方向用于摄取平面图像,而扫描仪中使用的是线性CCD,它只有x一个方向,y方向扫描由扫描仪的机械装置来完成。 CCD是于1969年由美国贝尔实验室(Bell Labs)的维拉·波义耳(Willard S. Boyle)和乔治·史密斯(GeorgeE. Smith)所发明的。当时贝尔实验室正在发展影像电话和半导体气泡式内存。将这两种新技术结合起来后,波义耳和史密斯得出一种装置,他们命名为“电荷‘气泡’元件”(Charge "Bubble" Devices)。这种装置的特性就是它能沿着一片半导体的表面传递电荷,便尝试用来做为记忆装置,当时只能从暂存器用“注入”电荷的方式输入记忆。但随即发现光电效应能使此种元件表面产生电荷,而组成数位影像。到了70年代,贝尔实验室的研究员已经能用简单的线性装置捕捉影像,CCD就此诞生。有几家公司接续此一发明,着手进行进一步的研究,包括快捷半导体(Fairchild Semiconductor)、美国无线电公司(RCA)和德州仪器(Texas Instruments)。其中快捷半导体的产品领先上市,于1974年发表500单元的线性装置和100x100像素的平面装置。 以上为CCD发展历程: HAD(HOLE-ACCUMULATION DIODE)传感器[1] 是在N型基板,P型,N+2极体的表面上,加上正孔蓄积层,这是SONY独特的构造。由于设计了这层正孔蓄积

《光学原理与应用》之双折射原理及应用

双折射原理及应用 双折射(birefringence )是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。它们为振动方向互相垂直的线偏振光。当光射入各向异性晶体(如方解石晶体)后,可以观察到有两束折射光,这种现象称为光的双折射现象。两束折射线中的一束始终遵守折射定律这一束折射光称为寻常光,通常用o表示,简称o光;另一束折射光不遵守普通的折射定律这束光通常称为非常光,用e表示,简称e光。晶体内存在着一个特殊方向,光沿这个方向传播时不产生双折射,即o光和e光重合,在该方向o光和e光的折射率相等,光的传播速度相等。这个特殊的方向称为晶体的光轴。光轴”不是指一条直线,而是强调其“方向”。晶体中某条光线与晶体的光轴所组成的平面称为该光线的主平面。o光的主平面,e光的光振动在e光的主平面内。 如何解释双折射呢?惠更斯有这样的解释。1寻常光(o光) 和非常光(e光)一束光线进入方解石晶体(碳酸钙的天然晶体)后,分裂成两束光能,它们沿不同方向折射,这现象称为双折射,这是由晶体的各向异性造成的。除立方系晶体(例如岩盐)外,光线进入一般晶体时,都将产生双折射现象。显然,晶体愈厚,射出的光束分得愈开。当改变入射角i时,o光恒遵守通常的折射定律,e光不符合折射定律。2.光轴及主平面。改变入射光的方向时,我们将发现,在方解石这类晶体内部有一确定的方向,光沿这个方向传播时,寻常光和非常光不再分开,不产生双折现象,这一方向称为晶体的光轴。 天然的方解石晶体,是六面棱体,有八个顶点,其中有两个特殊的顶点A和D,相交于A D两点的棱边之间的夹角,各为102°的钝角.它的光轴方向可以这样来

陈家璧版光学信息技术原理及应用习题解答811章

习 题 8.1利用4f 系统做阿贝—波特实验,设物函数t (x 1,y 1)为一无限大正交光栅 ??????*????? ??*=)comb()rect()comb()rect(),(2121211111 1111b y a y b b x a x b y x t 其中a 1、a 2分别为x 、y 方向上缝的宽度,b 1、b 2则是相应的缝间隔。频谱面上得 到如图8-53(a )所示的频谱。分别用图8-53(b )(c )(d )所示的三种滤波器进行滤波,求输出面上的光强分布(图中阴影区表示不透明屏)。 图8.53(题8.1 图) 解答:根据傅里叶变换原理和性质,频谱函数为 T ( f x , f y ) = ? [ t ( x 1 , y 1 )] = { 11b ? [)rect(11a x ]·? [)comb(11b x ] } *{2 1 b ? [)rect(21a y ·? [comb(21b y ]} 将函数展开得 T ( f x , f y ) = {}???++++)δ(sinc()δ()sinc()sinc(1 11111111b 1 b 1-x x x f b a f b a f a b a * { }???++++δ()sinc()δ()sinc()sinc(2 22222222b 1 b 1-y y y f b a f b a f a b a (1) 用滤波器(b )时,其透过率函数可写为 1 f x = + 1/ b 1 f y = 0 F ( f x , f y ) = 0 f x 1/ b 1 f y = 任何值 滤波后的光振幅函数为 T ·F = [])δ()δ()sinc(1 11111b 1b 1-++x x f f b a b a 输出平面光振幅函数为 t ’(x 3,y 3)= ? -1[ T ·F ] = (exp[)](){exp [sinc(1 3131111b 2-b 2x j x j b a b a ππ+

信息光学复习笔记.doc

矩形函形 rect =??? ??-a x x 0?? ?? ? ≤-其他 , 021 0, 1a x x 函数以x0为中心,宽度为a (a >0)高度为1的矩形,当x0=0,a =1时,矩形函数形式变成rect (x),它是以x=0为对称轴的,高度和宽度均为1的矩形。当x0=0, a =1时,矩形函数形式变成rect (x),它是以x=0 为对称轴的,高度和宽度均为1的矩形,二维矩形函数可表为一维矩形函数的乘积?? ? ??-??? ??-b y y a x x rect 00, a ,b>0 c sin 函数 ()()a x x a x x a x x c /0/0sin 0sin --= ?? ? ??-ππ a >0,函数在x=x0处有最大值1。零点位于()Λ2,10=±=-n na x x .对于x0=0,a =1,函数图像 三角函数 ?? ??? -=??? ??Λ, 0, 1a x a x a >0 符号函数 ()?? ? ??<-=>=0,10,00,1sgn x x x x 阶跃函数 ()???<>=0,00 ,1x x x step 圆柱函数 在直角坐标系内圆柱函数定义式 ? ????<+=???? ??+其它 ,0,1222 2a y x a y x circ 极坐标内的定义式为 ???><=??? ??a r a r a r circ ,,01

卷积的定义 函数()x f 和函数()x h 的一维卷积,有含参变量的无穷积分定义,即 ()()()()()x h x f d x h x f x g *=-= ?∞ ∞ -αα 定义()x f 和()x h 的二维卷积:()()()()()y x h y x f d d y x h f y x g ,*,,,,=--=??∞ ∞ -βαβαβα 卷积的基本性质 线性性质 交换律 平移不变性 ()()()()() *21 2 1 21?∞ ∞ ---=---=--x x x g d x x h x f x x h x x f ααα 结合律 坐标缩放性质 ()()()ax g a ax h ax f 1 *= 函数()y x f ,与δ函数的卷积()()()()()? ?∞ ∞ -=--=y x f d d y x f y x y x f ,,,,*,βαβαδβαδ 即任意函数()y x f ,与δ函数的卷积,得出函数()y x f ,本身,而()()()0000,,*,y y x x f y y x x y x f --=--δ 互相关 两个函数()y x f ,和()y x g ,的无相关定义为含参变量的无穷积分,即 ()()()()()y x g y x f d d g y x f y x R fg ,,,,,*☆=--=?? ∞ ∞-βαβαβα 或 ()()()()()y x g y x f d d y x g y x f y x R fg ,,,,,* ☆=++=? ?∞ ∞ -βαβα 互相关卷积表达式:()()()()y x g y x f y x g y x f ,*,,,*--=☆ 性质:(1)()()y x R y x R fg gf ,,≠,即互相关不具有交换性,而有()()y x R y x R fg gf --=,,* (2)()()()0,00,0,2 gg ff fg R R y x R ≤ 自相关 当()()y x g y x f ,,=时,即得到函数f 的自相关定义式 ()()()()()y x f y x f d d f y x f y x R ff ,,,,,*☆=--=? ? ∞ ∞ -βαβαβα 和 ()()()y x f y x f y x R ff ,*,,*--= 性质:(1)自相关函数具有厄密对称性()()y x R y x R ff ff --=,,* 当()y x f ,是实函数时,()y x R ff ,是偶函数 (2)()()0,0,ff ff R y x R ≤

信息光学重点总结讲解学习

信息光学重点总结

1.什么是脉冲响应函数?其物理意义是什么? 脉冲响应函数(Impulse Response Function)也叫点扩散函数(Point-Spread Function),其表达式为:)},({),;,(1 12 2ηξδηξ--=y x y x F h ,表示在光学系统输 入平面式位于ηξ==y x 1 1,点的单位脉冲(点光源),通过系统以后在输出平 面上),(2 2y x 点得到的分布,它是输入输出平面上坐标的四元函数。脉冲响应 函数表征光学成像系统的成像质量好坏,对于一般的成像系统,由于其存在相差且通光孔径有限,输入平面上的一点(有δ函数表示)通过系统后,在输出平面上不是形成一个像点,而是扩散成一个弥散的斑,这也就是为什么把脉冲响应函数称为点扩散函数的原因。换句话说,如果没有相差且通光孔径无限大(没有信息散失,物空间的信息完全传递到像空间),则在像平面上即得到和物平面上完全一样的点。 2.什么是传递函数?其物理意义是什么? 在线性空间不变系统中,我们把系统的脉冲响应函数的傅里叶变换叫做该系统的传递函数,即:)},({), (y x h F H f f y x =,它表示系统在频域中对信号的传 递能力。传递函数和脉冲响应函数都是用来描述线性空间不变系统对输入信号的变换作用,两种方法是等效的。只不过脉冲响应函数是在空域中描述,而传递函数是在频域中对系统传递信号能力的描述。 3.什么是线性系统?什么是线性空间不变系统?有哪些性质? 若系统对一线性组合信号的响应等于单个响应的同样的线性组合,则该系统就是线性系统。用数学表达式表示如下:

)} ,({),()} ,({),(1 11 2 21 1 1 2 2 y x f a y x g a y x f y x g i n i i i n i i i i F F ∑∑====,其中 ),(1 1 y x f i 代表对系统的激励, ),(2 2 y x g i 代表系统相应的响应,a i 是任意复常数。 线性空间不变系统是线性系统的一个子类,它表示若输入信号在空间发生了平移,则输出信号也发生相应的位置平移。对于成像系统来说,若物函数分布不变,仅在物平面上发生一位移,则对应的像函数形式不变,也只是在像平面上有一个相应的位移。 线性空间不变系统的性质: (1)等晕性。),()},({),;,(2 21 12 2ηξηξδηξ--=--=y x y x y x h F h ,当点光源 在物场中移动时,其像斑只改变位置,而不改变其函数形式。 (2)脉冲响应函数h 即可完全描述线性空间不变系统的性质。 ),(),(),(2 22 22 2y x y x y x h f g *=,对于线性空间不变系统,输出函数可以表 示为输入函数与系统脉冲响应在输出平面上的一个二维卷积。 (3)傅里叶变换形式简单。对于线性空间不变系统,脉冲响应函数的傅里叶变换)},({), (y x h F H f f y x =可以用来描述系统在频域内对输入信号的变换作用, 我们称其为系统的传递函数,其对线性空间不变系统的理论和求解运算都有重要的意义。 4.透镜在傅里叶光学中的作用? 透镜是光学成像系统和光学信息处理系统中最基本的元件。透镜的作用有: (1)透镜起到位相调制作用。透镜对入射光的位相变换作用是由透镜本身的性质决定的,而与入射光的复振幅无关。

陈家璧版 光学信息技术原理及应用习题解答(3-4章)

第三章 习题 3.1 参看图3.5,在推导相干成像系统点扩散函数(3.35)式时,对于积分号前的相位因 子 ??? ? ??? ????? ??+≈??????+2220202002exp )(2exp M y x d k j y x d k j i i 试问 (1)物平面上半径多大时,相位因子 ?? ????+)(2exp 20200y x d k j 相对于它在原点之值正好改变π弧度? (2)设光瞳函数是一个半径为a 的圆,那么在物平面上相应h 的第一个零点的半径是多 少? (3)由这些结果,设观察是在透镜光轴附近进行,那么a ,λ和d o 之间存在什么关系时可 以弃去相位因子 ?? ????+)(2exp 20200y x d k j 3.2 一个余弦型振幅光栅,复振幅透过率为 00002cos 2 1 21),(x f y x t π+= 放在图3.5所示的成像系统的物面上,用单色平面波倾斜照明,平面波的传播方向在x 0z 平面内,与z 轴夹角为θ。透镜焦距为f ,孔径为D 。 (1)求物体透射光场的频谱; (2)使像平面出现条纹的最大θ角等于多少?求此时像面强度分布; (3) 若θ采用上述极大值,使像面上出现条纹的最大光栅频率是多少?与θ=0时的截止频率比较,结论如何? 3.3光学传递函数在f x = f y =0处都等于1,这是为什么?光学传递函数的值可能大于1吗?如果光学系统真的实现了点物成点像,这时的光学传递函数怎样? 3.4当非相干成像系统的点扩散函数h I (x i ,y i )成点对称时,则其光学传递函数是实函数。 3.5 非相干成像系统的出瞳是由大量随机分布的小圆孔组成。小圆孔的直径都为2a ,出瞳到像面的距离为d i ,光波长为λ,这种系统可用来实现非相干低通滤波。系统的截止频率近

信息光学习题

信息光学习题 问答题 1.傅里叶变换透镜和普通成像透镜的区别。 2.相干光光学处理和非相干光光学处理的优缺点。 3.菲涅耳衍射和夫琅和费衍射的区别与联系。 4.光学传递函数在0 = η = ξ处都等于1,这是为什么?光学传递函数的值可能大于1吗?如果光学系统真的实现了点物成像,这时光学传递函数怎样? 证明 1.如果() {()} g x Gξ = F,则()() 2 d g x j G dx πξξ ?? = ?? ?? F; 2.()()()()()() d d d f x g x f x g x f x g x dx dx dx ???? *=*=* ?? ?????? ???? 计算题 1.沿空间k方向传播的平面波可以表示为 试求出k方向的单位矢量。 2.有一矢量波其表达式如下: ]} ) 10 16 ( ) 4 3 2[ exp{ ) / 100 (1 8 1t s m z y x i m V E- -? - + + = ] 10 3 ) ( 10 [ 29t z y x j j i?- + + π

求 1)偏振方向,2)行进方向,3)波长,4)振幅 3. 如图所示的“余弦波的一段”这种波列可表示为 求E(z)的傅里叶变换,并画出它的频谱图。 4. “巴比涅原理是“开在挡板上的光瞳形成的衍射和与光瞳形状相同的不 透明物形成的衍射象之和,等于无任何挡板时的光分布”的原理。试利用基尔霍夫衍射公式证明此原理。 5. 在4F 系统中,输入物面的透过率为 x f t t t 0102cos π+= , 以单色平行光垂直照明, λ=0.63μm, f’=200mm, f 0 =400lp/mm, t 0=, t 1 =, 问频谱面上衍射图案的主要特征: 几个衍射斑? 衍射斑沿什么方向分布? 各级衍射斑对应的衍射角sin θ =? 各级衍射中心强度与零级衍射斑之比. (1)在不加滤波器的情况下,求输出图象光强分布. (2)如用黑纸作空间滤波器挡住零级斑,求输出图象光强分布. (3)如用黑纸挡掉+1级斑,求输出图象光强分布. 6. 在图示4F 系统中, λ=0.63μm <1>被处理物面最大尺寸和最高空间频率为多大?(设频谱面与物面同尺寸) <2>付里叶变换镜头的焦距和通光直径为多大? <3>欲将光栅常数0.1mm 的二维光栅处理成一维光栅。给出空间滤波器的形 状和尺寸。 ???><≤-=L z when L Z L when z k a z E 0cos )(0

光学信息技术原理及应用课后重点习题答案

第一章 习题解答 1.1 已知不变线性系统的输入为()()x x g com b = ,系统的传递函数?? ? ??b f Λ。 若b 取 (1)50=.b (2)51=.b ,求系统的输出()x g ' 。并画出输出函数及其频谱的图形。 答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ23 2+1=? ??? ?? 1+3 1+1-31+=F 图形从略。 1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1< ,W b 1<,试证明 ()()y x f y x f b x a x ab ,,sinc sinc =*?? ? ????? ??1 证明: (){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f W f L f rect y x f y x,f y x y x y x *?? ? ????? ??1==∴=???? ??=,,F F ,,F ,,F F 1-Θ (2)如果L a 1> , W b 1 >,还能得出以上结论吗? 答:不能。因为这时(){}(){}()y x y x bf af rect y x f W f L f rect y x f ,,F ,,F ≠??? ? ??。 1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc , 试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。(必要时,可取合理近似) (1)()x y x f π4=1cos , 答: ()(){}(){}{}{}()(){}{} {}{}{}x cos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=??? ? ????? ??74=74==1-1 -1-11-1F F F F F F F ,F ,F F , (2)()()?? ? ??75??? ??754=2y rect x rect x cos y x f π, 答:

相关文档
最新文档