谷胱甘肽过氧化物酶的综述

谷胱甘肽过氧化物酶的综述
谷胱甘肽过氧化物酶的综述

谷胱甘肽过氧化物酶的综述

作者

摘要:谷胱甘肽过氧化物酶(GSH-Px)是机体内广泛存在的一种重要的过氧化物分解酶,与细胞损伤缺氧,中毒,衰老及多种疾病的发生有关。文章综述了GSH-Px的结构与分类,性质,作用及临床方面的应用。

关键词:谷胱甘肽过氧化物酶

谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)于1957年由Mills从牛红细胞中发现,分子结构中含硒,故又名硒谷胱甘肽过氧化物酶(Se-GSH-Px),是体内清除H2O2和许多有机氢过氧化物的重要酶。

1.结构与分类

谷胱甘肽过氧化物酶(GSH-Px)分子质量为76 ku~95 ku,为水溶性四聚体蛋白,4个亚基相同或极为类似,每个亚基有1个硒原子。GSH-Px的活性中心是硒半胱氨酸,其活力大小可以反映机体硒水平。GSH-Px是机体内广泛存在的一种重要的过氧化物分解酶。GSH-Px酶系主要包括4种不同的GSH-Px,分别为:胞浆GSH-Px、血浆GSH-Px、磷脂氢过氧化物GSH-Px及胃肠道专属性GSH-Px。第一种:胞浆GSH-Px 由4个相同的分子量大小为22kDa的亚基构成四聚体,每个亚基含有1个分子硒半胱氨酸,广泛存在于机体内各个组织,以肝脏红细胞为最多。它的生理功能主要是催化GSH参与过氧化反应,清除在细胞呼吸代谢过程中产生的过氧化物和羟自由基,从而减轻细胞膜多不饱和脂肪酸的过氧化作用。第二种:血浆GSH-Px的构成与胞浆GSH-Px相同,主要分布于血浆中,其功能目前还不是很清楚,但已经证实与清除细胞外的过氧化氢和参与GSH的运输有关。第三种:磷脂过氧化氢GSH-Px是分子量为20kDa的单体,含有1个分子硒半胱氨酸。最初从猪的心脏和肝脏中分离得到,主要存在于睾丸中,其它组织中也有少量分布。其生物学功能是可抑制膜磷脂过氧化。第四种:胃肠道专属性GSH-Px是由4个分子量为22kDa的亚基构成的四聚体,只存在于啮齿类动物的胃肠道中,其功能是保护动物免受摄入脂质过氧化物的损害。2. 化学性质

谷胱甘肽过氧化物酶(GSH-Px)能催化GSH变为GSSG,使有毒的过氧化物还原成无毒的羟基化合物,同时促进H2O2的分解,从而保护细胞膜的结构及功能不受过氧化物的干扰及损害。几乎所有的有机氢过氧化物(ROOH)都可以在GSH-Px的作用下还原为ROH。大概反应如下:2GSH +H2O2→GSSH+2H2O,2GSH +ROOH→GSSH +2ROH。

GSH-Px虽然可以催化许多巯基化合物氧化,但催化效率相对很低,在所有的巯基化合物中以γ-谷胱甘肽的催化效率最高。GSH-Px愈纯,其性质愈不稳定,纯酶置冰箱中贮存,活力会降低。GSH-Px的最适pH为8~9,在pH 6及其以下,GSH-Px无活性。氰化物与叠氮化物都不能抑制GSH-Px的活性。GSH-Px的吸收光谱在400 nm~420 nm范围内。

测定牛乳中GSH-Px的活性及热稳定性,发现温度升至75 ℃加热15 s,GSH-Px活力大致降到原有的20%;95 ℃煮沸1 min后活性全部丧失。热稳定性较低。

3. 作用机制

GSH-Px催化还原型谷胱甘肽氧化(GSH)与过氧化氢(H2O2)还原反应,从而阻断超氧化阴离子细胞类脂过氧化而损害组织细胞;还能阻断由脂氢过氧化物(LOOH) 引发自由基的二级反应,从而减少LOOH对生物体的损害。而自由基是机体生化反应中产生的性质活泼、具有极强氧化能力的物质。体内抗自由基体系主要包括酶类(超氧化物歧化酶、GSH-Px、过氧化氢酶等)阻止自由基形成和通过非酶促抗氧化剂(还原型谷胱甘肽、维生素E等)捕获

不成对的电子使自由基失活。过氧化脂质(LPO) 是自由基对不饱和脂肪酸引发的脂质过氧化作用的最终产物,其含量的多少反映组织细胞的脂质过氧化速率或强度。机体存在阻止过氧化作用的防御体系,GSH-Px是细胞内抗脂质过氧化作用的酶性保护系统的主要成分,可催化LPO分解生成相应的醇,防止LPO均裂和引发脂质过氧化作用的链式支链反应,减少LPO的生成以保护机体免受损害。

而无论是ROOH还是H2O2都是与GSH-Px中的活性中心硒半胱氨酸作用:

E-CysSe-+H++ROOH(H2O2)→E-CysSeOH +ROH (H2O)

E-CysSeOH +GSH→E-CysSe-SG +H2O

E-Cys-Se-SG +GSH→E-CysSe-+GSSG +H+

这是一个可逆性氧化还原反应过程,在循环过程中GSH-Px可恢复催化活性,但GSH 却变成GSSG。

5.谷胱甘肽过氧化物酶的临床应用

动物实验证明,老龄鼠肝和心肌中GSH-Px的活力显著高于幼龄鼠。大鼠缺氧时脑内GSH-Px显著下降,而脂类过氧化物的代表MDA(丙二醛)显著升高,表明缺氧时脑内抗氧化能力减弱。另外,GSH-Px降低可能与脑智力发育障碍,大脑缺血、缺氧损伤,神经变性及重金属中毒有关;脑内GSH-Px可能防止脑细胞受到氧化损伤。在人、牛、山羊和鼠乳汁中均可检出GSH-Px,说明此酶存在于乳腺。早产儿母乳GSH-Px和LCP均高于足月儿,GSH-Px 的抗氧化作用可以保护乳脂肪球膜的结构,可能对乳腺内脂肪酸分泌和婴儿营养起辅助作用,对新生儿的发育起一定保护作用。GSH-Px与心血管系统疾病关系也很密切,与动脉粥样硬化、原发性高血压,心肌炎等均有关。在严重动脉粥样硬化患者体内,GSH-Px活性降低,这可能是动脉粥样硬化发生的独立危险因素,提示该酶与此类疾病有重要联系。6.结语

GSH-Px催化还原机体内H2O2和有机氢过氧化合物,参与调节前列腺素的合成。广泛存在于机体组织中,与细胞损伤、缺氧、中毒、衰老、多种疾病的发生有关;检测GSH-Px 活性是衡量机体抗氧化力的重要指标,也与机体硒水平密切相关。

参考文件

1. 赵玉珍,栗坤,玉光岩,等. 川芎秦对老龄小鼠心、肝组织中谷胱甘肽过氧化物酶活化的影响.黑龙江医药科学,1988

2. 周玫.谷胱甘肽过氧化物酶. 生物化学与生物物理进展,1985

3. 陈瑗,周玫,主编.自由基医学. 北京:人民军医出版社,1991

4. 方允中,李文杰,主编. 自由基与基础理论及其在生物学和医学中的应用.北京:科学出版社,1989

5. 马森. 谷胱甘肽过氧化物酶和谷胱甘肽转硫酶研究进展. 乳谷胱甘肽过氧化物酶的研究,

2008

6. 郭玲等. 含硒的谷胱甘肽过氧化物酶与人类健康的关系.微量元素与健康研究,2002

多酚氧化酶活性测定及控制[文献综述]

毕业论文文献综述 生物工程 多酚氧化酶活性测定及控制 1 前言 多酚氧化酶(PPO)广泛存在于自然界,在果实和蔬菜收获后,PPO所引起的反应常常会使果肉发生褐变、产生异味和损失营养。本文总结了多酚氧化酶的活性测定方法以及对其活性的控制,主要研究了抑制剂对其活性的影响,为果蔬贮藏和加工中酶促褐变的防治提供思路。 多酚氧化酶(PPO)作为一种植物酶类,是引起果蔬褐变的主要因素。鲜切果蔬因组织被切分使PPO与酚类底物的接触机会增加,酚类物质被氧化成棕褐色的醌,导致产品褐变。抑制PPO活性取决于抑制剂的性质和浓度、底物的可利用性、pH值和温度。一些还原剂、酶类、螯合剂和蜂蜜等均已被用于防止果蔬酶褐变。本文主要总结了抑制剂对于控制果蔬PPO活性的研究。 2 主题部分 2.1 从果蔬中提取PPO(以莲藕为例) 2.1.1 丙酮法(丙酮法提取所得酶液比活力最高。适合需大量制样时使用) 将莲藕洗净,去皮,切碎,加4倍量预冷至.18。C的丙酮(w/v为1:4)捣碎,搅拌3min,抽滤,冷风吹干残渣后,混匀,得丙酮粉。称取丙酮粉O.5 g,加入0.2 mol/L,pH为5.4的预冷磷酸二氢钠.柠檬酸缓冲液20ml,搅拌3min,8 000r/min离心10min,所得上层清液即为粗酶液。【1】 2.1.2 匀浆法(匀浆法提取的酶液没有活性) 将莲藕洗净,去皮,切碎,加入0.05mol/L,pH5.4的预冷磷酸氢二钠.柠檬酸缓冲溶液(含5%的PVPP),料液比为1:2.2,捣碎,搅拌,抽滤。向滤渣中加入0.05mol/L,pH5.4磷酸氢二钠一柠檬酸缓冲溶液(W/V为1:1)再次搅拌,抽滤,两次滤液合并,8 000r/min离心10rain,所得上清液即为粗酶液。【2】 2.2.3 匀浆浸提法(匀浆浸提法提取所得粗酶液活性最高,操作简便,提取所得粗酶液活性

谷胱甘肽 S-转移酶(glutathione S-transferase,GST)试剂盒说明书

货号: MS1204 规格:100管/96样 谷胱甘肽S-转移酶 (glutathione S-transferase,GST)试剂盒说明书 微量法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 测定意义: GST 是一种具有多种生理功能的蛋白质家族,主要存在于细胞质内。GST 是体内解毒酶系统的重要组成部分,主要催化各种化学物质及其代谢产物与 GSH 的巯基共价结合,使亲电化合物变为亲水物质,易于从胆汁或尿液中排泄,达到将体内各种潜在或具备毒性的物质降解并排出体外的目的。因此,GST 在保护细胞免受亲电子化合物的损伤中发挥着重要的生物学功能。此外,因为 GST 具有 GSH-Px 活性,亦称为 non-Se GSH-Px,具有修复氧化破坏的大分子如DNA、蛋白质等的功能。注意,GST 催化的反应减少 GSH 含量,但是不增加GSSG 含量。 测定原理: GST催化GSH与CDNB结合,其结合产物的光吸收峰波长为340nm;通过测定340nm 波长处吸光度上升速率,即可计算出GST活性。 自备仪器和用品: 低温离心机、水浴锅、可调节移液器、紫外分光光度计/酶标仪、微量石英比色皿/96 孔板、和蒸馏水。 试剂组成和配置: 试剂一:液体×1 瓶,4℃保存。 试剂二:液体×1 瓶,4℃保存。 试剂三:粉剂×1 瓶,4℃保存。临用前加2 mL蒸馏水溶解。 粗酶液提取: 1. 组织:按照组织质量(g):试剂一体积(mL)为 1:5~10 的比例(建议称取约0.1g组织, 加入1mL试剂一)进行冰浴匀浆。8000g,4℃离心 10min,取上清置冰上待测。 2. 细菌、真菌:按照细胞数量(104个):试剂一体积(mL为500~1000:1的比例(建议500 万细胞加入1mL试剂一),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min);然后8000g,4℃,离心10min,取上清置于冰上待测。 3. 血清等液体:直接测定。 测定: 1. 分光光度计/酶标仪预热30min,调节波长到340nm,用蒸馏水调零。 2. 试剂三放在 25℃(一般物种)或者37℃(哺乳动物)保温。 3. 空白管:取微量石英比色皿或96孔板,加入20μL试剂一,180μL试剂二和20μL试剂三, 迅速混匀后于340nm 测定吸光度变化,记录10s和310s吸光度为 A1 和 A2。 4. 测定管:取微量石英比色皿或96孔板,加入20μL上清液,180μL试剂二和20μL试剂三, 迅速混匀后于340nm 测定吸光度变化,记录10s和310s吸光度为A3和 A4。 注意:空白管只需测定一次。 第1页,共3页

谷胱甘肽 S-转移酶(glutathione S-transferase ,GST)活性测定试剂盒使用说明

谷胱甘肽S-转移酶(glutathione S-transferase,GST)活性测定试剂盒使用说明货号:SN101 规格:50管/48样 产品简介: 谷胱甘肽S-转硫酶(GST)是一种具有多种生理功能的蛋白质家族,主要存在于细胞质内。GST是体内解毒酶系统的重要组成部分,主要催化各种化学物质及其代谢产物与谷胱甘肽巯基的共价结合,使亲电化合物变为亲水物质,易于从胆汁或尿液中排泄,达到将体内各种潜在或具备毒性的物质降解并排出体外的目的。因此,GST在保护细胞免受亲电子化合物的损伤中发挥着重要的生物学功能。此外,因为GST具有GSH-Px活性,亦称为non-SeGSH-Px,具有修复氧化破坏的大分子如DNA、蛋白质等的功能。 GST催化GSH与CDNB结合,其结合产物的光吸收峰波长为340nm,通过测定340nm波长处吸光度上升速率,即可计算出GST活性。 试验中所需的仪器和试剂: 紫外-可见分光光度计、低温离心机、水浴锅、可调节移液器、1ml石英比色皿、双蒸水 产品内容: 试剂一:试剂一×1支,用前充分溶解于100ml双蒸水中,4℃保存3个月 试剂二:粉剂二×1支;稀释液二×1管,用前将稀释液二加入粉剂二中充分溶解后加双蒸水至 5.0ml,4℃保存3个月 试剂三:粉剂三×1支,4℃保存3个月,临用前加试剂一 5.0ml充分溶解,临用前配制。

操作步骤: 一、样品测定的准备: 称约0.1g组织,加入1ml试剂一,冰上充分研磨,10000rpm4℃离心10min,取上清(如上清不清澈,再离心3min)。 二、GST测定操作 1、混合试剂配制:将试剂二与试剂一按1:8混合 2、试剂三放在25℃预温 3、分光光度计调到340nm处,设定时间为5min,用双蒸水调零 4、取0.1ml样品与0.9ml混合液混合,于25℃预温5min,再加入试剂三0.1ml,迅速混匀,于340nm处测定5min内吸光值的变化,第0s的吸光值记为A1,第300s的吸光值记为A2 5、空白管测定为操作4中以0.1ml试剂一代替0.1ml样品液 酶活计算: 一、血液GST活性计算 1、GST活力单位定义:在25℃下,每ml血液每分钟催化1μmol/L CDNB与GSH结合的GST酶量为U。 2、计算公式: GST(U/ml)=ΔA340/min×〔106/(ε·d)〕×(V总/V样)=ΔA/min×106/(9.6×103×1)〕×1.1/0.1=ΔA340/min×1145.83

髓过氧化物酶

髓过氧化物酶(myeloperoxidase,MPO)又称过氧化物酶,是一种重要的含 铁溶酶体,存在于髓系细胞(主要是中性粒细胞和单核细胞)的嗜苯胺蓝颗 粒中,是髓细胞的特异性标志,随着对 MPO 研究的深入,人们发现 MPO 基 因多态性导致个体对一些疾病易感性的差异,与人类多种疾病的发生、发 展密切相关,因此越来越受到国内外学者的重视。 髓过氧化物酶 MPO 研究 1.MPO 的结构髓过氧化物酶(MPO)是由中性粒细胞、单核细胞和某些组 织的巨噬细胞分泌的含血红素辅基的血红素蛋白酶,是血红素过氧化物酶 超家族成员之一。MPO 是 I 相代谢酶。每个酶分子有两个铁素基团,顺磁共 振波谱表明血红素中的铁是在甲酰基血红素部分。 MPO 的合成是粒细胞进入 循环之前在骨髓内合成并贮存于嗜天青颗粒内,外界刺激可导致中性粒细 胞聚集,释放髓过氧化物酶(MPO)。在成熟的粒细胞中,MPO 是含量最丰富 的糖蛋白,约占外周血多形核中性粒细胞(PMNs)内总蛋白质含量的 5%,血 液中 95%的 MPO 来源于 PMNs。MPO 的相对分子质量为 150×103,是由 2 个 亚单位聚合而成的二聚体,每个亚单位又由一条重链(α 链,相对分子质量 约 60×103)和一条轻链(β 链,相对分子质量约 15×103)所构成。2 个亚单 位在 α 链处由 1 个二硫键相连。重链具有亚铁卟啉基团,说明 MPO 是铁依 赖性的。MPO 以 3 种亚形存在于髓系细胞中,分别为 MPOⅠ、Ⅱ、Ⅲ。3 种 亚型主要是重链有差异,轻链的差异较小,导致它们在相对分子质量及疏 水性等方面不同,3 种亚型在功能上的差异还不明确,有待进一步研究。 2.MPO 基因及其多态性人髓过氧化物酶基因位于染色体 17q23?q24,含 有 12 个外显子和 11 个内含子,长约 14 638 bp,调控其基因表达的是生长 因子。MPO 的 mRNA 在早幼粒细胞的表达水平最高,其次是原始粒细胞、幼 稚和原始单核细胞;当细胞分化到成熟时期,MPO 基因表达水平迅速下降。 现已知 MPO 基因首先表达的是一条相对分子质量为 89×103 的前体蛋白 (precursor protein),经过翻译后加工,切割成 α 和 β 两种亚基,再聚 合为成熟的 MPO 分子,加上糖链,最后形成有功能的 MPO。MPO 在基因表达 过程中存在的缺陷,造成 MPO 基因 DNA 序列发生改变,影响其活力。MPO 基 因的多态性影响其基因的转录和表达,对机体的疾病易感性有一定的影响。 Chevrier 等发现了外显子 11 处和启动子区域的 V53F、A332V、I642L 和 IVS11? 2A→C4 个新的基因多态性位点, 它们的作用与功能需要进一步研究。 Piedrafita 等研究发现与疾病有关的位点有 5 个:463G/A,R569W,Y173C, M251T 和外显子 9 的碱基缺失。目前研究最多的是 MPO 基因启动子区第 463 位核苷酸 G/A 的突变,该位点位于 SP1 转录因子识别结合的顺式作用元件 中,内含 4 个 Alu 重复序列。G/A 的突变导致位于 Alu 反应元件的 SP1 转录 因子结合位点消失,从而使 MPO 转录水平显著下降。也有报道发现外显子 10 的密码子 569 存在 C 被 T 替代,使 CGG→TGG,导致遗传性 MPO 缺陷性疾

谷胱甘肽S-转移酶(GST)活性检测试剂盒说明书 紫外分光光度法

谷胱甘肽S-转移酶(GST)活性检测试剂盒说明书紫外分光光度法 注意:正式测定前务必取2-3个预期差异较大的样本做预测定 货号:BC0350 规格:50T/48S 产品内容: 试剂一:液体50mL×1瓶,4℃保存。 试剂二:液体45mL×1瓶,4℃保存。 试剂三:粉剂×1瓶,4℃保存。临用前加5mL蒸馏水溶解。 产品说明: 谷胱甘肽S-转移酶(glutathione S-transferase,GST)是一种具有多种生理功能的蛋白质家族,主要存在于细胞质内。GST是体内解毒酶系统的重要组成部分,主要催化各种化学物质及其代谢产物与GSH的巯基共价结合,使亲电化合物变为亲水物质,易于从胆汁或尿液中排泄,达到将体内各种潜在或具备毒性的物质降解并排出体外的目的。因此,GST在保护细胞免受亲电子化合物的损伤中发挥着重要的生物学功能。此外,因为GST具有GSH-Px活性,亦称为non-Se GSH-Px,具有修复氧化破坏的大分子如DNA、蛋白质等的功能。注意,GST催化的反应减少GSH含量,但是不增加GSSG含量。 GST催化GSH与CDNB结合,其结合产物的光吸收峰波长为340nm;通过测定340nm波长处吸光度上升速率,即可计算出GST活性。 自备仪器和用品: 紫外-可见分光光度计、低温离心机、水浴锅、可调节移液器、1mL石英比色皿和蒸馏水。 操作步骤: 一、粗酶液提取: 1.组织:按照组织质量(g):试剂一体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL试剂 一)进行冰浴匀浆。8000g,4℃离心10min,取上清置冰上待测。 第1页,共3页

2.细菌、真菌:按照细胞数量(104个):试剂一体积(mL)为500~1000:1的比例(建议500万细胞加入 1mL试剂一),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min);然后8000g,4℃,离心10min,取上清置于冰上待测。 3.血清等液体:直接测定。 二、测定: 1.分光光度计预热30min以上,调节波长到340nm,用蒸馏水调零。 2.试剂二、试剂三放在25℃(一般物种)或者37℃(哺乳动物)保温。 3.空白管:取1mL石英比色皿,加入100μL试剂一,900μL试剂二和100μL试剂三,迅速混匀后于340nm 测定10s吸光度记A1,37℃水浴5min后,快速取出测定吸光度记A2。 4.测定管:取1mL石英比色皿,加入100μL上清液,900μL试剂二和100μL试剂三,迅速混匀后于340nm 测定10s吸光度记A3,37℃水浴5min后,快速取出测定吸光度记A4。 三、GST活性计算: (1)按蛋白浓度计算 活性单位定义:在25℃或者37℃中,每毫克蛋白每分钟催化1μmol CDNB与GSH结合为一个酶活性单位。 GST(U/mg prot)=[(A4-A3)-(A2-A1)]÷(ε×d)×106×V反总÷(Cpr×V样)÷T =0.23×[(A4-A3)-(A2-A1)]÷Cpr (2)按样本鲜重计算 活性单位定义:在25℃或者37℃中,每克样品每分钟催化1μmol CDNB与GSH结合为一个酶活性单位。 GST(U/g鲜重)=[(A4-A3)-(A2-A1)]÷(ε×d)×106×V反总÷(V样÷V样总×W)÷T =0.23×[(A4-A3)-(A2-A1)]÷W (3)按细胞数量计算 活性单位定义:在25℃或者37℃中,每104个细胞每分钟催化1μmol CDNB与GSH结合为一个酶活单位。 第2页,共3页

小鼠髓过氧化物酶(MPO)酶联免疫试剂盒(ELISA试剂盒)

仅供科研使用,不得用于临床检验。 小鼠髓过氧化物酶(MPO)酶联免疫试剂盒(ELISA试剂盒)说明书 黄石市艾恩斯生物科技有限公司 【产品名称】 通用名称:小鼠髓过氧化物酶(MPO)酶联免疫试剂盒(ELISA试剂盒) 英文名称:Mouse Myeloperoxidase(MPO)ELISA KIT 【包装规格】 48人份/盒,96人份/盒 【预期用途】 仅供科研使用,定量检测血清、血浆、细胞培养上清液中小鼠髓过氧化物酶(MPO)的浓度。【检验原理】 本试剂盒采用双抗体夹心酶联免疫吸附试验(ELISA)。在预包被抗小鼠髓过氧化物酶(MPO)抗体(固相抗体)的微孔酶标板中,加入小鼠髓过氧化物酶(MPO)校准品和待测样本,再加入另一株HRP标记的抗小鼠髓过氧化物酶(MPO)抗体(酶标抗体),经过温育与充分洗涤,去除未结合的组分,在微孔板固相表面形成固相抗体-抗原-酶标抗体的夹心复合物。加底物A和B,底物在HRP催化下,产生蓝色产物,在终止液(2M 硫酸)作用下,最终转化为黄色,在酶标仪上测定吸光度(OD值),吸光度(OD值)与待测样品中小鼠髓过氧化物酶(MPO)的浓度正相关。拟合校准品曲线,可以计算出样本中小鼠髓过氧化物酶(MPO)的浓度。 【主要组成成分】 主要成分

校准品检测范围:0.156-10ng/ml。校准品已经通过测试,结果表明HBs抗原阴性,HIV1、HIV2和HCV抗体阴性,由于不存在一种试验方法能够完全保证没有这些物质,本品必须按照具有潜在的感染性进行处理,处理过程应当遵循通用的安全措施。 需要但未提供的材料及耗材 1、酶标仪 2、精密移液器及一次性吸头 3、蒸馏水 4、洗瓶或者自动洗板机 5、37℃水浴锅或恒温箱 6、500ml量筒 7、无粉一次性乳胶手套 【储存条件及有效期】 1、2-8℃保存,切勿冷冻,有效期6个月。 2、开封使用后,包被微孔板放入带有干燥剂的自封袋中,密闭自封袋,并将全部试剂放回2-8℃冰箱。 3、开封后,按照建议的条件保存,校准品、包被微孔板和HRP标记抗体,有效期为14天,其他成分在标签标明的有效期内是稳定的。 【适用仪器】 半自动的酶标仪,如Thermo MK3,或者国产酶标仪。 【样本要求】 样本类型和采集 以下只是列出样品采集的一般指南。所有样本采集过程中,不得使用叠氮钠做为防腐剂。 1、细胞培养上清:4000rpm条件下离心20min,去除细胞颗粒和聚合物,上清液保存在- 20℃以下,避免反复冻融。 2、血清:使用不含热原和内毒素的试管,操作过程中避免任何细胞刺激,4000rpm条件下离心20min,小心地分离出血清,保存在- 20℃以下,避免反复冻融。 3、血浆:肝素,EDTA,或柠檬酸钠作为抗凝剂。在4000rpm条件下,离心20分钟取上清,血浆保存在-20℃以下,避免反复冻融。

谷胱甘肽转移酶抑制剂筛选方法一

谷胱甘肽转移酶(GST) 还原型谷胱甘肽占绝大多数。 谷胱甘肽转移酶 (GST) 是广泛分布于哺乳动物、植物、鸟类、昆虫、寄生虫及微生物体内的一组多功能同工酶。GST是由23-29KDa的不同亚基构成的同源二聚体,每一类GST同工酶中组成的亚基种类有多种,因此编码GST同工酶的基因是一个巨大的超基因家族。 GST主要功能是催化某些内源性或外来有害物质(过氧化物、α, β2不饱和醛酮、烷基或芳香基化合物)的亲电子基团与还原型谷胱甘肽的巯基偶联,增加其疏水性使其易于穿越细胞膜,分解后排出体外,从而达到解毒的目的,有抑制细胞癌变的功能。 通常认为,谷胱甘肽转移酶的作用是催化谷胱甘肽与外来的或内在的有害物质亲电结合排出体外而起到解毒的作用,但是对于治疗癌症药物的研究主要是针对能够抑制谷胱甘肽转移酶(GST)活性的酶抑制剂,而不是GST催化解毒作用。 研究表明,GST的酶活性水平与肿瘤的耐药性密切相关心。因此,GST可能是治疗耐药肿瘤的潜在药物作用靶点。 与GSTs相关疾病有:人类癌症包括胃癌,结肠癌,胰腺癌和肺癌动脉粥样硬化和冠心病。 近年来对GST抑制剂的研究越来越多,研究报道的GST抑制剂主要有:依他尼酸(EA)及其类似物、TLK199及其类似物、黄酮类化合物、双功能基化合物,还有其他一些抗虐药物如乙嘧啶和奎尼丁等等。 抗肿瘤药物与GSH作用模式图:

图中GST-∏是人体内一种Ⅱ相代谢酶,其对肿瘤的耐药作用主要由其解毒功能引起, 其作用机制:①催化谷胱苷肽(GSH)与亲电子药物如各种烷化剂结合,增加其水溶性,加速其排泄而使药效减低;②清除葸环类药物等产生的自由基,减轻药物自由基对细胞的损伤; ③通过直接与药物结合的形式降低药物活性等。 机理解释:图中是一个肿瘤细胞,当治疗肿瘤的药物顺铂进入细胞时,GST就会催化谷胱甘肽GSH与顺铂结合而将其排出体外,所以为了加强药效,就需要使GST的功能受到抑制,GST 抑制剂占据GST酶活性位点,使GST无法催化GSH与顺铂结合,这样就会降低抗肿瘤药物的耐药性。 筛选方法: 方法一:比色法 在该酶的抑制剂筛选中,采用比色法直接测定底物浓度,主要依据产物有紫外或可见光的特征吸收,通过测定反应体系的OD值变化,测定酶和抑制剂的活性。 实验原理:1-氯-2,4-二硝基苯(CDNB)与谷胱甘肽(GSH)在谷胱甘肽转移酶(GST)的作用下生成复合物CDNB-SG,该化合物在340nm 下呈现最大的光吸收值,根据加入样品前后酶活性的变化情况测定样品对GST的抑制活性。 实验材料: 试剂:还原型谷胱甘肽;1-氯-2,4-二硝基苯(CDNB);次氯酸钠溶液;待筛选样品。 仪器:SpectraMax M5 型连续光谱酶标测试仪;Costar 384孔微板。

谷胱甘肽过氧化物酶

本科生毕业论文(设计)
题 姓 学 专 班 学
目: 名: 院: 业: 级: 号:
谷胱甘肽过氧化物酶(GPX)对灵芝生长发育中 的活性氧物质(ROS)的改变及理化性的质影响 于南 生命科学学院 生物科学 生物科学 101 班 13210101 师亮 职称: 讲师
指导教师:
2013 年 5 月 20 日 南京农业大学教务处制
1

目录
摘要 .......................................................................................................... 错误!未定义书签。 关键词 ...................................................................................................... 错误!未定义书签。 Abstract ................................................................................................... 错误!未定义书签。 Key words ................................................................................................ 错误!未定义书签。 引言 .......................................................................................................... 错误!未定义书签。 1 材料与方法 ........................................................................................ 错误!未定义书签。 1.1 材料 ....................................................................................... 错误!未定义书签。 1.1.1 菌种 .......................................................................... 错误!未定义书签。 1.1.2 CYM 培养基 ............................................................ 错误!未定义书签。 1.1.3 PDA 固体培养基 ..................................................... 错误!未定义书签。 1.1.4 试剂 .......................................................................... 错误!未定义书签。 1.1.5 主要仪器设备 .......................................................... 错误!未定义书签。 1.2 实验方法 ............................................................................... 错误!未定义书签。 1.2.1 ROS 的测定 ............................................................. 错误!未定义书签。 1.2.2 NBT 测定 ................................................................. 错误!未定义书签。 1.2.3 DAB 染色 ................................................................. 错误!未定义书签。 1.2.4 菌株对氧化物耐受性的检测 .................................. 错误!未定义书签。 1.2.5 胞内 Ca2+的荧光检测 .............................................. 错误!未定义书签。 1.2.6 三萜的测定 .............................................................. 错误!未定义书签。 1.2.7 菌丝分叉检测 .......................................................... 错误!未定义书签。 2 结果与分析 ........................................................................................ 错误!未定义书签。 2.1 GPX 沉默转化子胞内 ROS 含量上升 ......................... 错误!未定义书签。 2.2 NBT 染色显示 GPX 沉默转化子胞内超氧根离子含量上升错误!未定义书签。 2.3 DAB 染色显示 GPX 沉默转化子胞内 H2O2 含量下降...... 错误!未定义书签。 2.4 GPX 沉默转化子的菌株对氧化性物质的耐受力下降 ...... 错误!未定义书签。 2.5 GPX 沉默转化子胞内 Ca2+的含量下降 .............................. 错误!未定义书签。 2.6 GPX 沉默转化子菌株的三萜含量下降: .......................... 错误!未定义书签。 2.7 GPX 沉默转化子菌丝的分叉数减少 .................................. 错误!未定义书签。 3 讨论 .................................................................................................... 错误!未定义书签。 致谢 .......................................................................................................... 错误!未定义书签。 参考文献 .................................................................................................. 错误!未定义书签。
2

谷胱甘肽S-转移酶(GST)活性检测试剂盒说明书 微量法

谷胱甘肽S-转移酶(GST)活性检测试剂盒说明书微量法 注意:正式测定前务必取2-3个预期差异较大的样本做预测定。 货号:BC0355 规格:100T/96S 产品内容: 试剂一:液体100mL×1瓶,4℃保存。 试剂二:液体22mL×1瓶,4℃保存。 试剂三:粉剂×1瓶,4℃保存。临用前加2mL蒸馏水溶解。 产品说明: GST是一种具有多种生理功能的蛋白质家族,主要存在于细胞质内。GST是体内解毒酶系统的重要组成部分,主要催化各种化学物质及其代谢产物与GSH的巯基共价结合,使亲电化合物变为亲水物质,易于从胆汁或尿液中排泄,达到将体内各种潜在或具备毒性的物质降解并排出体外的目的。因此,GST在保护细胞免受亲电子化合物的损伤中发挥着重要的生物学功能。此外,因为GST具有GSH-Px活性,亦称为non-Se GSH-Px,具有修复氧化破坏的大分子如DNA、蛋白质等的功能。注意,GST催化的反应减少GSH含量,但是不增加GSSG含量。 GST催化GSH与CDNB结合,其结合产物的光吸收峰波长为340nm;通过测定340nm波长处吸光度上升速率,即可计算出GST活性。 自备仪器和用品: 低温离心机、水浴锅、可调节移液器、紫外-可见分光光度计/酶标仪、微量石英比色皿/96孔UV板和蒸馏水。 操作步骤: 一、粗酶液提取: 1.组织:按照组织质量(g):试剂一体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL试剂 一)进行冰浴匀浆。8000g,4℃离心10min,取上清置冰上待测。

2.细菌、真菌:按照细胞数量(104个):试剂一体积(mL)为500~1000:1的比例(建议500万细胞加入 1mL试剂一),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min);然后8000g,4℃,离心10min,取上清置于冰上待测。 3.血清等液体:直接测定。 二、测定: 1.分光光度计/酶标仪预热30min以上,调节波长到340nm,用蒸馏水调零。 2.试剂二放在25℃(一般物种)或者37℃(哺乳动物)保温。 3.空白管:取微量石英比色皿,加入20μL试剂一,180μL试剂二和20μL试剂三,迅速混匀后于340nm 测定10s吸光度记A1,37℃水浴5min后,快速取出测定吸光度记A2。 4.测定管:取微量石英比色皿,加入20μL上清液,180μL试剂二和20μL试剂三,迅速混匀后于340nm 测定10s吸光度记A3,37℃水浴5min后,快速取出测定吸光度记A4。 三、GST活性计算: a.使用微量石英比色皿测定的计算公式如下 (1)按蛋白浓度计算 活性单位定义:在25℃或者37℃中,每毫克蛋白每分钟催化1μmol CDNB与GSH结合为一个酶活性单位。GST(U/mg prot)=[(A4-A3)-(A2-A1)]÷(ε×d)×106×V反总÷(Cpr×V样)÷T =0.23×[(A4-A3)-(A2-A1)]÷Cpr (2)按样本鲜重计算 活性单位定义:在25℃或者37℃中,每克样品每分钟催化1μmol CDNB与GSH结合为一个酶活性单位。GST(U/g鲜重)=[(A4-A3)-(A2-A1)]÷(ε×d)×106×V反总÷(V样÷V样总×W)÷T =0.23×[(A4-A3)-(A2-A1)]÷W (3)按细胞数量计算 活性单位定义:在25℃或者37℃中,每104个细胞每分钟催化1μmol CDNB与GSH结合为一个酶活单位。GST(U/104cell)=[(A4-A3)-(A2-A1)]÷(ε×d)×106×V反总÷(500×V样÷V样总)÷T =0.23×[(A4-A3)-(A2-A1)]÷500

谷胱甘肽

谷胱甘肽(glutathione) 谷胱甘肽(glfftathione)是由Hopkins发现并命名,1929年Hopkins及Kendall等各自独立的发现其为含有甘氨酸的三肽。谷胱甘肽化学名为:N-(N-L-r-Glutamyl-L-cysteninyl)glycine,即N(N-L-r-谷氨酰-L-半胱氨酰)甘氨酸。谷胱甘肽可分为还原型谷胱甘肽(reduced glutathione,GSH)和氧化型谷胱甘肽(oxidizided glutathione,GSSG)。通常所说的谷胱甘肽是指还原型谷胱甘肽,是由r一谷氨酸、半胱氨酸、甘氨酸组成的三肽。谷胱甘肽是机体内的重要活性物质,它具有清除自由基、解毒、促进铁质吸收及维持红细胞膜的完整性、维持DNA的生物合成、细胞的正常生长及细胞免疫等多种生理功能。 1 GSH的理化特性 谷胱甘肽分子量为307.33,熔点189~193℃(分解),晶体是无色透明细长柱状(板状),等电点(PI)为5.93,成品见光易分解,易氧化,谷胱甘肽分子中有一特殊的6-肽键,即由谷氨酸的6-COOH与半胱氨酸的a-NH:缩合而成,这样的肽键与蛋白质分子中的一个氨基酸中Q-COOH和另一个氨基酸中α-NH2失水缩合而成的肽键显然不同。由于谷胱甘肽中含有一个活泼的巯基极易被氧化,2分子还原型谷胱甘肽(简称GSH),脱氢以二硫键-S-S-)相连便成为氧化型的谷胱甘肽(简称GSSG),所以谷胱甘肽可分为氧化型和还原型两大类,在生物体中起重要功能作用的是还原型谷胱甘肽。 2 GSH在自然界中的分布 谷胱甘肽广泛分布于自然界的生物体中(Wierzbicka等,1989),主要存在于酵母、动物肝脏、肌肉、血液中,许多植物,如蔬菜、豆类、谷物、薯类、菇类及细菌中也含有一定量的谷胱甘肽。在动物细胞中还原型谷胱甘肽水平达5mmol/L,而氧化型仅为0.1mmol/L,细胞内高水平的GSH对动物机体维持正常机能是十分重要的。据测定,谷胱甘肽在未加工的肉中含量是50~200mg/kg,在新鲜水果和蔬菜中的含量是50~150mg/kg,干燥酵母中含有约.15%的谷胱甘肽,在乳制品、谷物和熟食品中含量较低。 3 GSH的代谢过程 谷胱甘肽在体内的代谢过程现已基本清楚。进入血液循环的GSH可被一些组织直接吸收入细胞,也可被组织细胞膜上的r-谷氨酰转肽酶(rGT)降解为r-谷氨酰氨基酸(氨基酸来自细胞外液中的游离氨基酸)和半胱氨酰甘氨酸,而后被二肽酶降解为半胱氨酸和甘氨酸或以二肽的形式转运到细胞内后再被降解为半胱氨酸和甘氨酸。大多数哺乳动物的肾、肝脏、小肠、肺组织中有较高的r-GT和二肽酶活性,它们是清除循环系统中GSH的主要器官。在细胞内,GSH的组成氨基酸在r-谷氨酰环化转移酶、r-谷氨酰半胱氨酸合成酶、谷胱甘肽合成酶催化下生成谷胱甘肽。GSH的合成通过其自身对r-谷氨酰半胱氨酸合成酶的反馈抑制来调控。肝脏是体内合成GSH的主要场所。细胞内的谷胱甘肽在谷胱甘肽硫转移酶(GST)的催化下,可与细胞内外产生的活性亲电子基、有机氢过氧化物(x)结合成GSH-S-复合物,经一系列反应生成N-乙酰-Cys-(x)后运出细胞而排出体外。GSH清除细胞内自由基、过氧化物、ROOH的同时,2分子的GSH转变为GSSG,GSSG在谷胱甘肽还原酶(GR)作用下由NADPH供氢还原为GSH。上述反应形成r-谷氨酰循环。由于猪肾脏中的r-GT与肝脏中的r_GT活力比较低,因此对于猪,肝脏和胆管分支在GSH周转中起重要作用。 4 GSH的生物学功能 谷胱甘肽的生理功能十分广泛,其主要功能有:(1)清除自由基、过氧化物、重金属及黄曲霉毒素等毒物;(2)参与氨基酸(谷氨酰氨、半胱氨酸及其它中性氨基酸)的转运;(3)利于铁的吸收、硒的吸收、钙的吸收,谷胱甘肽还可以使饲料中的过氧化脂肪酸在吸收时或吸收后恢复为正常的脂肪;(4)保护胃肠道黏膜上皮,防止因炎症、局部缺血、氧化物质等对肠黏膜的损伤;(5)贮存并提供其组成氨基酸(1尤其是半胱氧酸);(6)参与蛋白质和DNA的合成;(7)作为还原物质,利于维生素E、维生素c的还原,维持巯基酶活性,并可作为甘油醛磷酸脱

低温生物学课程综述

低温生物学课程综述 低温生物学是研究低温(包括深低温)对生物的影响及其应用的生物学分支学科。通常所谓低温是指0℃左右,深低温一般指-80℃以下。总所周知,离体细胞、组织和器官在常温环境下不能长期保存,为了长期保持这些离体的生命材料的生物功能,必须采用低温保存的方式对这些材料加以处理。低温生物学是近几十年随着生物学、医学和低温制冷技术的发展而逐渐形成的一门边缘学科,是研究在自然和人工低温条件下生命体、组织、细胞不同层次的活动规律及其应用的学科。具体而言,低温医学是研究低温对人体的影响、冷冻损伤的防治以及利用低温技术实现或达到医疗目的的一门学科。本文简要讨论细胞低温损伤机制以及低温保存的原理和应用。 1、细胞的低温保存 目前,低温保存是最常见的长期保存方法。细胞在低温下可以长期保存的机制在于低温下细胞的新陈代谢急速减慢,保存温度越低,新陈代谢越慢,保存时间也就越长。在低温冰箱(-80℃)中细胞可以保存半年,而在液氮(-196℃)中,细胞则可以保存更久,可以达到两到三年。低温保存的主要优点是:便于库存大量的细胞和组织,以为科学研究提供更长的研究时间;便于各研究单位之间实验材料的调配和研究机构之间的合作;在进行组织或器官移植之前,能够有足够的时间检测和消灭其中的病菌。 但是在实验中发现,低温保存过程中,本身也会对细胞和组织造成损害,低温保存是有条件的,细胞是生物体结构上、功能上、发生上的基本单位,所以低温损伤或低温保存都是以细胞变化为基础的。低温保存的目的是将损伤减到最小,使保存后的细胞结构、遗传性能和功能不改变。细胞及组织的这些损伤源于上面保存过程中的一个步骤或者它们的综合作用。低温生物学的一个极其重要的研究内容就是揭示与细胞及组织低温损伤相关的物理学和生物学规律,尤其是那些与细胞内外水结冰相关的损伤。理解这些原理有助于建立生物物理-数学模型,以描述低温保存过程中细胞对环境变化的反应,从而为长期低温保存细胞和防止低温损伤研制最佳的降温程序及设备。冷冻损伤主要发生在降温过程中冰晶形成的增长,相变时冰晶形成的影响以及解冻过程中冰晶的再行成。观察胚胎细胞的冻存过程发现,0℃-30℃是发生冷冻损伤的关键温区,溶液自发结晶的相变点与多

谷胱甘肽过氧化物酶活性检测试剂盒说明书 可见分光光度法

谷胱甘肽过氧化物酶(GSH-Px/GPX)活性检测试剂盒说明书可见分光光度法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。货号:BC1190规格:50T/24S 产品简介: 谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px/GPX)是机体内广泛存在的一种重要的过氧化物分解酶。GPX 能够催化还原型谷胱甘肽(GSH)生成氧化型谷胱甘肽(GSSG),使有毒的过氧化氢还原成无毒的羟基化合物。 GPX 催化H 2O 2氧化GSH,产生GSSG,GSH 能与DTNB 生成在412nm 处有特征吸收峰的化合物,412nm 下吸光度的下降即可反应GPX 的活性。试验中所需的仪器和试剂: 可见分光光度计、天平、台式离心机、1mL 玻璃比色皿、可调式移液枪、研钵/匀浆器、EP 管。产品内容: 提取液:液体40mL×1瓶,4℃保存; 试剂一:粉剂×1瓶,4℃保存;临用前加入5.5mL 蒸馏水溶解;试剂二:粉剂×1瓶,4℃保存;临用前加入6.6mL 蒸馏水溶解备用; 试剂三:液体20μL×1支,临用前按1μL 试剂三:499μL 蒸馏水的比例稀释试剂三,4℃保存。现用现配; 试剂四:液体60mL×1瓶,4℃保存;瓶底若有结晶可50℃水浴溶解,此溶液为饱和溶液,若底部最终还有结晶,吸取上清使用即可; 试剂五:液体15mL×1瓶,4℃保存; 试剂六:粉剂×1瓶,4℃保存;临用前加入15mL 蒸馏水溶解备用; 标准品:粉剂×1支,10mg 还原型谷胱甘肽,4℃保存。临用前加入1.62mL 蒸馏水溶解为20μmol/mL 的标准溶液备用。操作步骤:

一、粗酶液的提取: 1、组织:按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取0.05g组织,加入1mL提取液)进行冰浴匀浆。10000rpm,4℃离心10min,取上清置冰上待测(如上清不清澈,再离心3min)。 2、细菌、真菌:按照细胞数量104个:提取液体积(mL)500~1000:1的比例,建议500万细胞加入1mL提取液),冰浴超声波破碎细胞(率300w,超声3s,间隔7s,总时间3min)然后10000rpm,4℃,离心10min,取上清置冰上待测(如上清不清澈,再离心3min)。 3、血清(浆)等液体:直接测定。 二、测定步骤: 1、分光光度计预热30min以上,调节波长至412nm,蒸馏水调零。 2、将20μmol/mL标准液用提取液稀释为0.25μmol/mL的标准溶液。再吸取100μL标准溶液与400μL试 剂四混匀待用,此标准液混合物的浓度为0.05μmol/mL。标准液混合物现用现配。 3、将150μL样本与150μL试剂一混合后室温放置5min。 4、操作表:(在1.5mL离心管中依次加入下列试剂) 测定管对照管样品混合物(μL)100- 试剂二(μL)100100 37℃下预热5min 试剂三(μL)100100 37℃下反应5min 试剂四(mL)11 样品混合物(μL)-100 4000rpm常温离心5min,取上清。 试剂名称(μL)测定管对照管标准管空白管上清液500500--标准液混合物--500-试剂四---500 试剂五200200200200 试剂六200200200200 蒸馏水100100100100

髓过氧化物酶MPO的临床应用

髓过氧化物酶指数在57例急性冠状动脉综合征患者的临床应用 髓过氧化物酶(MPO)是由中性粒细胞、单核细胞和某些组织的巨噬细胞分泌的含血红素辅基的血红素蛋白酶,是血红素过氧化物酶超家族成员之一。分子量为150KDa。MPO基因位于人第17号染色体,其编码蛋白翻译修饰后形成2条轻链和2条重链,构成四聚体糖基化蛋白。在早期由北京协和洛克和美国克利夫兰医院共同研究发现出来,它具有早期预警和提前筛查心脑血管疾病一个标记物。另一方面血液中95%的MPO来源于多形核白细胞。尽早明确急性冠状动脉综合征(acute coronary syndrome,ACS)的诊断、危险分层及正确地评估个体近期发生ACS的危险性,对尽早干预治疗ACS至关重要。有研究表明,血浆髓过氧化物酶(myeloperoxidase,MP0)是早期诊断ACS的重要指标,与心肌肌钙蛋白I(cardiac troponin I,cTnI)联合应用更能增加ACS诊断的灵敏度[1]。尤其是当cTnI正常时,血浆MPO升高可预测心脏事件的发生[2]。但血浆MPO检测方法繁琐,目前无法自动化,临床应用受到限制。Unionluck全自动血细胞分析仪是一种基于流式细胞分析原理的仪器,现在广泛应用于大中型医院实验室,在计数全血细胞的同时可根据细胞内MPO染色的情况得出中性粒细胞过氧化物酶活性指数(myeloperoxidase index,MPXI),用于评价炎症状况和白血病[3-4]。现将本院分析MPXI在57例ACS患者的临床应用报道如下。

1资料与方法 1.1一股资料选择2011年5~8月本院收治的ACS患者57例。其中,不稳定型心绞痛(UAP)20例为UAP组,其中,男12例,女8例,年龄(70.00±10.10)岁。非ST段抬高心肌梗死(NSTEMI)20例为NSTEMI组,其中,男12例,女8例,年龄(67.00±18.10)岁。ST段抬高型心肌梗死(STEMI)17例为STEMI组,其中,男8例,女9例,年龄(69.90±15.20)岁。选取同期本院体检中心健康体检者20例为对照组,其中,男10例,女10例,年龄(63.3±3.0)岁。根据病史和辅助检查,ACS的临床诊断标准参照美国心脏病学会(美国心脏病协会)制订的标准[5]。排除标准:(1)近期罹患感染性疾病或慢性炎症疾病;(2)严重血液性疾病;(3)骨髓移植术;(4)结缔组织病和风湿病;(5)应用炎症抑制药物如非固醇类消炎镇痛药、类固醇类药物等;(6)创伤、肿瘤;(7)严重肝肾功能不全。4组年龄、性别等方面比较差异无统计学意义,具有可比性。 1.2方法 1.2.1标本采集人院后立即采集肘静脉血2管,一管为EDTA-K 抗凝标本查血 2 常规,一管为不抗凝标本查cTnI、肌红蛋白(MYO)、肌酸激酶(CK),对照组的生化指标检测采用空腹抽静脉血不抗凝标本。 1.2.2血常规检查使用全自动血细胞分析仪及其配套试剂,检测白细胞(WBC)、中性粒细胞计数(NEUT)、中性粒细胞百分率(NEUT%)、MPⅪ。 1.2.3血糖、糖化血红蛋白、血脂、肌酸激酶检查血清葡萄糖、血液糖化血红蛋白、血清高密度脂蛋白胆固醇(HDL-C)、CK检测使用协和洛克的试剂盒,总胆固醇(TC)、三酰甘油(TG)使用北京协和洛克剂盒,在用全自动生化分析仪检测。

相关文档
最新文档