光学综合应用实验

光学综合应用实验
光学综合应用实验

微波光学实验 实验报告

近代物理实验报告 指导教师:得分: 实验时间:2009 年11 月23 日,第十三周,周一,第5-8 节 实验者:班级材料0705 学号200767025 姓名童凌炜 同组者:班级材料0705 学号200767007 姓名车宏龙 实验地点:综合楼503 实验条件:室内温度℃,相对湿度%,室内气压 实验题目:微波光学实验 实验仪器:(注明规格和型号) 微波分光仪,反射用金属板,玻璃板,单缝衍射板 实验目的: 1.了解微波分光仪的结构,学会调整并进行试验. 2.验证反射规律 3.利用迈克尔孙干涉仪方法测量微波的波长 4.测量并验证单缝衍射的规律 5.利用模拟晶体考察微波的布拉格衍射并测量晶格数 实验原理简述: 1.反射实验 电磁波在传播过程中如果遇到反射板,必定要发生反射.本实验室以一块金属板作为反射板,来研究当电磁波以某一入射角投射到此金属板上时所遵循的反射规律。 2.迈克尔孙干涉实验 在平面波前进的方向上放置一块45°的半透半反射版,在此板的作 用下,将入射波分成两束,一束向A传播,另一束向B传播.由于A,B 两板的全反射作用,两束波将再次回到半透半反板并达到接收装置 处,于是接收装置收到两束频率和振动方向相同而相位不同的相干 波,若两束波相位差为2π的整数倍,则干涉加强;若相位差为π的奇 数倍,则干涉减弱。 3.单缝衍射实验 如图,在狭缝后面出现的颜射波强度并不均匀,中央最强,同时也最 宽,在中央的两侧颜射波强度迅速减小,直至出现颜射波强度的最小 值,即一级极小值,此时衍射角为φ=arcsin(λ/a).然后随着衍射角的增

大衍射波强度也逐渐增大,直至出现一级衍射极大值,此时衍射角为 Φ=arcsin(3/2*λ/a ),随着衍射角度的不断增大会出现第二级衍射极小值,第二级衍射极大值,以此类推。 4. 微波布拉格衍射实验 当X 射线投射到晶体时,将发生晶体表面平面点阵散射和晶体内部平面点阵的散射,散射线相互干涉产生衍射条纹,对于同一层散射线,当满足散射线与晶面见尖叫等于掠射角θ时,在这个方向上的散射线,其光程差为0,于是相干结果产生极大,对于不同层散射线,当他们的光程差等于波长的整数倍时,则在这个方向上的散射线相互加强形成极大,设相邻晶面间距为d,则由他们散射出来的X 射线之间的光程差为CD+BD=2dsin θ,当满足 2dsin θ=K λ,K=1,2,3…时,就产生干涉极大.这就是布拉格公式,其中θ称为掠射角,λ为X 射线波长.利用此公式,可在d 已测时,测定晶面间距;也可在d 已知时,测量波长λ,由公式还可知,只有在 <2d 时,才会产生极大衍射 实验步骤简述: 1. 反射实验 1.1 将微波分光仪发射臂调在主分度盘180°位置,接收臂调为0°位置. 1.2 开启三厘米固态信号发射器电源,这时微安表上将有指示,调节衰减器使微安表指示满刻度. 1.3 将金属板放在分度小平台上,小分度盘调至0°位置,此时金属板法线应与发射臂在同一直线上, 1.4 转动分度小平台,每转动一个角度后,再转动接收臂,使接收臂和发射臂处于金属板的同义词,并使接收指示最大,记下此时接收臂的角度. 1.5 由此,确定反射角,验证反射定律,实验中入射角在允许范围内任取8个数值,测量微波的反射角并记录. 2. 迈克尔孙干涉实验 2.1 将发射臂和接收臂分别置于90°位置,玻璃反射板置于分度小平台上并调在45°位置,将两块金属板分别作为可动反射镜和固定反射镜. 2.2两金属板法线分别在与发射臂接收臂一致,实验时,将可动金属板B 移动到导轨左端,从这里开始使金属板缓慢向右移动,依次记录微安表出现的的极大值时金属板在标尺上的位置. 2.3 若金属板移动距离为L,极大值出现的次数为n+1则,L )2 ( λn ,λ=2L/n 这便是微波的波长,再令金属板反向移动,重复上面操作,最后求出两次所得微波波长的平均值. 3. 单缝衍射实验 3.1 预先调整好单缝衍射板的宽度(70mm),该板固定在支座上,并一起放到分度小平台上,单缝衍射板要和发射喇叭保持垂直, 3.2 然后从衍射角0°开始,在单缝的两侧使衍射角每改变1°,读一次表头读数,并记录.

基础光学实验实验报告

基 础 光 学 实 验 姓名:许达学号:2120903018 应物21班

一.实验仪器 基础光学轨道系统,基础光学组合狭缝及偏振片,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,DataStudio软件系统 二.实验目的 1.通过该实验让学生了解并会运用实验器材,同时学会用计算机分析和处理实验数据。 2.通过该实验让学生了解基本的光学现象,并掌握其物理机制。三.实验原理 单缝衍射:当光通过单缝发生衍射,光强极小(暗点)的衍射图案由下式给出asinθ=mλ(m=1,2,3……),其中a是狭缝宽度,θ为衍射角度,λ是光波波长。 双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大值的角度由下式给出dsinθ=mλ(m=1,2,3……),其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光波波长,m为级数。 光的偏振:通过第一偏振器后偏振电场为E0,以一定的角度β穿过第二偏振器,则场强变化为E0cosβ,由于光强正比于场强的平方,则,第二偏振器透过的光强为I=I0cos2β. 四.实验内容及过程

单缝衍射 单缝衍射光强分布图 如果设单缝与接收屏的距离为s,中央极强到光强极小点的距离为c,且sinθ≈tanθ=c/s,那么可以推得a=smλ/c.又在此次实验中,s=750mm,λ=6.5E(-4)mm,那么推得a=0.4875m/c,又由图可知:当m=1时,c=(88-82)/2=3mm,推得a=0.1625mm; 当m=2时,c=(91-79)/2=6mm,推得a=0.1625mm; 当m=3时,c=(94-76)/2=9mm,推得a=0.1625mm; 当m=4时,c=(96-74)/2=11mm,推得a=0.1773mm; 得到a的平均值0.1662mm,误差E=3.9%。 双缝干涉

初中光学综合测试题含答案

初中物理光学综合测试卷 一、选择题:(共24分,每小题2分,1、2题为双选,其余为单选) 1、下列叙述中用到了与图1所示物理规律相同的是( ) A.“海市蜃楼” B.“杯弓蛇影” C.“凿壁偷光” D.“立竿见影” 2、关于以下四种光学仪器的成像情况说法正确的是( ) A.放大镜成正立放大的实像 B.照相机成倒立缩小的实像 C.潜望镜成正立等大的虚像 D.幻灯机成正立放大的实像 3、晚上,在桌面上铺一张白纸,把一小块平面镜放在纸上,让 手电筒的光正对着平面镜照射,如图2所示,则从侧面看去:()图1 A.镜子比较亮,它发生了镜面反射 B.镜子比较暗,它发生了镜面反射 C.白纸比较亮,它发生了镜面反射 D.白纸比较暗,它发生了漫反射 4、夜晚,人经过高挂的路灯下,其影长变化是() A.变长 B.变短 C.先短后长 D.先长后短图2 6、光从空气斜射向水面发生折射时,图3所示的光路图中正确的是( ) 图3 7、潜水员在水中看见岸上的“景物”实质是( ) A. 景物的虚像,像在景物的上方 B. 景物的实像,像在景物的下方 C. 景物的实像,像在景物的上方 D.景物的虚像,像在最物的下方 8、如图4所示,小明家的小猫在平面镜前欣赏自己的全身像,此时它所看到的全身像应是图中的() 图4 图5 9、如右上图5所示有束光线射入杯底形成光斑,逐渐往杯中加水,光斑将() A、向右移动 B、向左移动 C、不动 D、无法确定 11、图6所示的四种现象中,由于光的折射形成的是( ) 图6

二、填空题(共30分,每空1分) 13、都说景德镇瑶里风光很美“鱼在天上飞,鸟在水里游”,这美景奇观中的“鱼”是由于 光的形成的像;“鸟”是由于光的形成的像。 14、1997年3月9日,在我国漠河地区出 现了“日全食”现象,图7中表示日 全食对太阳、地球、月球的位置,则 图中的A是,B是。 这是由于形成的。图7 15、太阳发出的光到达地球需要500s,地球与太阳间的距离约为km。 16、如图8所示,将一块厚玻璃放在一支铅笔上,看上去铅笔似乎被分 成了三段,这是光的现象。 17、一条光线垂直射向平面镜,反射光线与入射光线 的夹角是度,若保持光的传播方向不变, 而将平面镜沿逆时针方向转动20°角,则反射光线 又与入射光线的夹角是度。图8 19、丹丹同学身高1.5m,站在平面镜前3m处,她的像到镜面的距离为_______m,像高是 m;若将一块和平面镜一般大的木板放在镜子后1m处如图10所示,这时她_______(填“能”或“不能”)在镜中看到自己的像。若她以0.5m/s的速度向平面镜靠近,则像相对于人的速度为m/s,像的大小(填变大、变小或不变)。 图10 图11 20、图11为光从玻璃斜射人空气的光路图,由图可知,反射角是度,折射角是 度。 三、作图或简答题(共18分,每小题2分) 23、平面镜反射光的方向如图14所示,请你在图上作出入射光线并标明入射角的 大小。 24、根据平面镜成像的特点画出图15中物体AB在平面镜MN中所成的像。 25、如图16所示,AB是由点光源S发出的一条入射光线,CD是由S发出的另一条入射光 线的反射光线,请在图中画出点光源S的位置。 图14 图15 图16 26、如图17所示,太阳光与水平面成60度角,要利用平面镜使太阳光沿竖直方向照亮井底,

应用光学实验报告

(操作性实验) 课程名称:应用光学 实验题目:薄透镜焦距测量和光学系统基点测量 指导教师: 班级:学号:学生姓名: 一、实验目的 1.学会调节光学系统共轴。 2.掌握薄透镜焦距的常用测定方法。 3.研究透镜成像的规律。 4.学习测定光具组基点和焦距的方法 二、仪器用具 1、光源(包括LED,毛玻璃等) 2、干板架 3、目标板 4、待测透镜(Φ50.0,f75.0mm) 5、反射镜 6、二维调节透镜/反射镜支架 7、白屏 8、节点器(含两Φ40透镜,f 200和f 350) 三、基本原理

1.自准直法测焦距 如下图所示,若物体AB 正好处在透镜L 的前焦面处,那么物体上各点发出的光经过透镜后,变成不同方向的平行光,经透镜后方的反射镜M 把平行光反射回来,反射光经过透镜后,成一倒立的与原物大小相同的实象B A '',像B A ''位于原物平面处。即成像于该透镜的前焦面上。此时物与透镜之间的距离就是透镜的焦距f ,它的大小可用刻度尺直接测量出来。 图1.2 自准直法测会聚透镜焦距原理图 2. 二次成像法测焦距 由透镜两次成像求焦距方法如下: 图1.3 透镜两次成像原理图 当物体与白屏的距离f l 4>时,保持其相对位置不变,则会聚透镜置于物体与白屏之间,可以找到两个位置,在白屏上都能看到清晰的像.如上图所示,透镜两位置之间的距离的绝对值为d ,运用物像的共扼对称性质,容易证明: l d l f 42 2-=' 上式表明:只要测出d 和l ,就可以算出f '.由于是通过透镜两次成像而求得的f ',这种方法称为二次成像法或贝塞尔法.这种方法中不须考虑透镜本身的厚度,因此用这种方法测出的焦距一般较为准确. 3.主面和主点 若将物体垂直于系统的光轴,放置在第一主点H 处,则必成一个与物体同样 L M

光电综合实验

光电综合实验

课程名称及性质:光电技术综合实验必修课 英文名称:Comprehensive Optical Experiment 课程编号:110129 课程类别:实践教学环节 课程总学时:56 实验学时:56 开设学期:5、6、7 面向专业:电子科学与技术 一、课程的目的与任务 按照专业教学计划,本课程是在大学物理实验的基础上,按循序渐近的原则,学习并掌握光电技术实验的原理,基础仪器设备(包括基本光学仪器、光电子学仪器、光电转换仪器等)组成,它们的调整技术及使用方法,通过实验对光电技术基本的常用元器件(包括各种形式光源、光电探测器件、光学调制解调器件等)的特性及使用规范有初步的了解。选择一些设计性和工程应用性较强的(电路设计、纤维光学)实验,培养学生在光电技术方面的科学实验能力,提高学生的动手能力和科学研究能力。 二、实验教学的基本要求 第一阶段:要求了解掌握典型光学基础实验,重点掌握基本光学(物理光学、近代光学等)仪器的使用,(实验序号1-4),共16学时。 第二阶段:实验重点在光电探测技术与光电探测器性能测量实验方面,(实验序号5-15)选择24学时。 第三阶段:为提高学生的独立实验技能和解决实际问题的能力,选择一些有一定应用背景的光电类设计性实验(实验序号16-31)选择16学时。 三、实验项目、内容及学时分配 序实验项目提要学时分实验实验

号配类型地点 1 绪论及单色仪实验实验注意事项、安排与要求;通过 实验了解单色仪原理,利用单色仪 测量汞灯光源各个谱线的波长 4 验证 光电技术 综合实验 室 2 Michelson干涉的调节与 使用利用Michelson干涉仪测汞灯光 源绿光波长,了解双光束干涉的 特点 4 验证 光电技术 综合实验 室 3 声光效应实验调节并观察声光衍射实验曲线, 利用声光效应测定声光介质中超 声波速度。 4 验证 4 F—P干涉实验用F—P干涉仪测汞灯绿光波长, 观察钠灯双线F—P干涉花样,了 解多光束干涉的特点。 4 验证 5 可见光分光光度计实验分光光度计测液体的吸收特性 4 验证 6 电光效应电光调制 4 验证7 光电倍增管静态和时间 特性的测试 测试光电倍增管静态和时间特性 4 验证8 发光管(LED)的发射光谱 测量 测量发光二极管的发射光谱 4 验证 9 光导管光谱响应测量光导管光谱响应测量 4 验证 10 半导体泵浦激光实验半导体泵浦激光原理 4 验证 11 黑体测量实验黑体辐射测量 4 综合 12 单光子计数实验单光子计数测量实验 4 验证 13 多功能激光椭园偏振仪 实验 激光椭园偏振测量 4 验证 14 自动数显旋光仪实验旋光度测量 4 验证 15 硅光电池光谱特性测量硅光电池相对光谱响应的测量 4 验证 16 温度传感器及测量电路 设计 温度传感器元件应用8 设计

光学仪器实验报告

常用光电仪器原理及使用 实验报告 班级:11级光信息1班 姓名:姜萌萌 学号:110104060016 指导老师:李炳新

数字存储示波器 一、实验目的 1、熟悉数字存储示波器的使用方法; 2、测量数字存储示波器产生方波的上升时间; 二、实验仪器 数字存储示波器 三、实验步骤 1、产生方波波形 ⑴、打开示波器电源阅读探头警告,然后按下OK。按下“DEFAULT SETUP”按钮,默认的电压探头衰减选项是10X。 ⑵、在P2200探头上将开关设定到10X并将探头连接到示波器的通道1上,然后向右转动将探头锁定到位,将探头端部和基线导线连接到“PROBE COMP”终端上。 ⑶、按下“AUTOSET”按钮,在数秒钟内,看到频率为1KHz 电压为5V峰峰值得方波。按两次CH1BNC按钮删除通道1,

按下CH2BNC按钮显示通道2,重复第二步和第三步。 2、自动测量 ⑴、按下“MUASURE”按钮,查看测量菜单。 ⑵、按下顶部的选项按钮,显示“测量1菜单”。 ⑶、按下“类型”“频率”“值”读书将显示测量结果级更新信息。 ⑷、按下“后退”选项按钮。 ⑸、按下顶部第二个选项按钮;显示“测量2菜单”。 ⑹、按下“类型”“周期”“值”读数将显示测量结果与更新信息。 ⑺、按下“后退”选项按钮。 ⑻、按下中间选项按钮;显示“测量3菜单”。 ⑼、按下“类型”“峰-峰值”“值”读数将显示测量结果与更新信息。 ⑽、按下“后退”选项按钮。 ⑾、按下底部倒数第二个按钮;显示“测量4菜单”。⑿、按下“类型”“上升时间”“值”读数将显示测量结果与更新信息。

LCR测试仪 一、实验目的 1、熟悉LCR测试仪的使用方法; 2、了解LCR测试仪的工作原理; 3、精确测量一些电阻,电感,电容的值; 二、实验仪器 LCR测试仪,电阻,电容,电感等元件 三、LCR测试原理 根据待测元器件实际使用的条件和组合上的差别,LCR 测量仪有两种检测模式,串联模式和并联模式。串联模式以检测元器件Z为基础,并联模式以检测元器件的导纳Y为基础,当用户将测出流过待测元件的电流I,数字电压表将测出待测元件两端的电压V,数字鉴相器将测出电压V和电流I 之间的相位角 。检测结果被储存在仪器内部微型计算机的

典型光学系统试验

\ 本科实验报告 课程名称:应用光学实验姓名:韩希 学部:信息学部系:信息工程专业:光电 学号:3110104741 指导教师:蒋凌颖 实验报告

课程名称: 应用光学实验 指导老师 成绩:__________________ 实验名称:典型光学系统实验 实验类型: 同组学生姓名: 蒋宇超、陈晓斌 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 深入理解显微镜系统、望远镜系统光学特性及基本公式; 掌握显微镜系统、望远镜系统光学特性的测量原理和方法。 二、实验内容和原理 (1)望远镜特性的测定 测定望远镜的入瞳直径D 、出瞳直径D ’和出瞳距错误!未找到引用源。;测定望远镜的视觉放大率Γ;测定望远镜的物方视场角错误!未找到引用源。,像方视场角错误!未找到引用源。;测定望远镜的最小分辨角φ。 对于望远镜系统来说,任意位置物体的放大率是常数,此值由物镜焦距错误!未找到引用源。和目镜焦距错误!未找到引用源。确定,其视觉放大率可表示为 (2) 显微镜视场及显微物镜放大率的测定 显微物镜的放大率是指横向放大率 式中 y ——标准玻璃刻尺上一对刻线的距离(物)(格值0.01mm ); y ′——由测微目镜所刻得的像高。 (3)显微物镜数值孔径的测定 显微物镜的数值孔径为错误!未找到引用源。,其中n 为物方介质的折射率,u 为物方半孔径角。若在空气中n=1,则错误!未找到引用源。。 数值孔径通常用数值孔径计来测定,数值孔径计的结构如图5示,其主要元件是一块不太厚的玻璃半圆柱体,沿直径方向的侧面是与上表面成45度角的斜面,从侧面入射的光线在斜面上全反射,上表面上有两组刻度沿圆周排列。其外圈刻度为数值孔径(即角度的正弦值), 专业: 光电信息工程 姓名: 韩希 学号: 3110104741 日期:2013年6月15日 地点:紫金港东四605

傅里叶光学实验报告

实验原理:(略) 实验仪器: 光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜 实验内容与数据分析 1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM ) 光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏 操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。 112.1913.2011.67 12.3533 f cm ++= = 0.7780cm σ= = 1.320.5929 p A p t t cm μ=== 0.68P = 0.0210.00673 B p B p t k cm C μ?==?= 0.68P = 0.59cm μ== 0.68P = 1(12.350.59)f cm =± 0.68P =

2.利用弗朗和费衍射测光栅的的光栅常数 光路:激光器→光栅→屏(此光路满足远场近似) 在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据sin d k θλ=测出光栅常数d (1)利用夫琅和费衍射测一维光栅常数; 衍射图样见原始数据; 数据列表: sin || i k Lk d x λλ θ= ≈ 取第一组数据进行分析: 2105 13 43.0910******* 4.00106.810d m ----????==?? 210 523 43.0910******* 3.871014.110d m ----????==?? 2105 33 43.0910******* 3.95106.910d m ----????==?? 210 543 43.0910******* 4.191013.010 d m ----????==?? 554.00 3.87 3.95 4.19 10 4.0025104 d m m --+++= ?=? 61.3610d m σ-=? 忽略b 类不确定度:

光学基础学习报告

光学基础学习报告 一、教学内容: 光电镜头是用来作为光电接收器(CCD,CMOS )的光学传感器元件。 光学特性参数: 1、 焦距EFL (学名f ’) 是指主面到相应焦点的距离(如图1.1) 图1.1 每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。相应的也有两个焦点-前焦和后焦。 凸透镜:双凸;平凸;正弯月(如图1.1) 图1.2 凹透镜:双凹;平凹;负弯月 图 1.3

折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。 薄透镜:)]1()1[()1('12 1R R n f -?-== Φ Φ—透镜光焦距; f ’—焦距; n —折射率; R 1,R 2-两球面曲率半径 厚透镜:2 1221)1()]1()1[()1('1R nR d n R R n f -+ -?-==Φ d -中心厚度 干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。 A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低, 像高就要降低 B 、 EFL 与某些象差相关 C 、 EFL 上升将使F/NO 增大 D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系 tanFOV ?=EFL IMA -铁三角关系 EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。 2、 BFL 后焦距(学名后截距) 图2.1 3、 F 数(F/NO ) D f NO F '/= f ’-FEL D 入-入瞳直径 入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降 C 、 与象差相关,F/NO ↑,则象差↓,反之增加 D 、 与光通量相关,F/NO ↑,则光通量↓,反之增加 对于光电镜头,F/NO 最大在2.8~3.5之间(经验值)允许有±5%的误差,在物方有照

应用光学实验报告

应 用 光 学 实 验 报 告 姓名:xxx 班级:xxx 学号:xx

1.了解学习使用zemax软件,并用zemax完成透镜实验。 2.了解学习使用tfcalc软件,并用tfcalc完成光学薄膜设计和分析实验。 实验内容 1.应用zemax设计一个F/4的镜片,焦距为100mm,在轴上可见光谱范围内,使用BK7玻璃。生成光学特性曲线,光程差曲线,点列图,并进行简单优化。 2.应用tfcalc设计一个光学薄膜,并进行分析。 实验过程 任务一 1.根据教程学习了解zemax。 2.首先,运行ZEMAX。为系统输入波长,在第一个“波长”行中输入486, 在第二行的波长列中输入587,最后在第三行输入656。 3.设置权重为1.0。 4.定义孔径。由于需要一个F/4镜头,所以需要一个25mm的孔径。 5.增加第四个表面。物体所在面为第0面,然后才是第1(STO是光阑面),第 2和第3面(标作IMA)。 6.选用玻璃BK7。并输入镜片厚度是4mm。 7.确定曲率半径,前面和后面的半径分别是100和-100,并输入一个100的值, 作为第2面的厚度。 8.应用光线特性曲线图进行判断。 9.优化设计。 10.应用点列图及OPD图衡量光学性能。 任务二 1.根据教程学习了解tfcalc。 2.运行tfcalc。 3.设置光薄膜层数。 4.设置每层所用的物质(如TIO2,SIO2等)。 5.运行获得分析曲线图。

任务一 图一光线特性曲线图 图二光线特性曲线图(纠正离焦后)

图三像差图 图四OPD图

图五多色光焦点漂移图 图六点列图

任务二 图七(选用6层薄膜,材料如图所示) 说明:采用六层薄膜,介质分别为SIO2,TIO2,SIO2,TIO2,SIO2,TIO2。 图八(设置“反射”所得) 说明:波长在400—700nm之间薄膜适合透射,在700—1200nm之间适合反射。

几何光学综合实验(终审稿)

几何光学综合实验公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

几何光学综合实验实验报告 一、实验目的与实验仪器 实验目的: 1、了解透镜的成像规律。 2、学习调节光学系统共轴。 3、掌握利用焦距仪测量薄透镜焦距的方法。 实验仪器: JGX-1型几何光学实验装置,含光源、平面镜、透镜、目镜、测微目镜、透镜架、节点架、通用底座、物屏、像屏、微尺、毫米尺、标尺、幻灯片等。 二、实验原理 1)贝塞尔法测凸透镜焦距:贝塞尔发是一种通过两次成像能够比较精确地测定凸透镜焦距的方法,物屏和像屏距离为l(l>4f),凸透镜在 O1、O2两个位置分别在像屏上成放大和缩小的像,成放大的像时,有 1/u+1/v=1/f,成缩小的像时,有1/(u+d)+1/(v-d)=1/f,又由于u+v=l,可得f=(l2-d2)/4l。 2)自准法测凸透镜焦距:物体AB置于凸透镜L焦平面上,物体各点发出的光线经透镜折射后成为平行光束(包括不同方向的平行光),有平面镜M反射回去仍为平行光束,镜头经汇聚必成一个倒立放大的实像

A’B’于原焦平面上,能比较迅速直接测得焦距的数值。子准发也是光学仪器调节中常用的重要方法。 3)物距-像距法测凹透镜焦距:将凹透镜与凸透镜组成透镜组,用凸透镜L1使物AB成缩小到里的实像A’B’,然后将待测凹透镜L2置于凸透镜L1与像A’B’之间,如果O’B’<|f2|(凹透镜焦距),则通过L1的光束经过L2折射后,仍能成一实像A’’B’’。对凹透镜来 讲,A’B’为虚物,物距u=O’B’,像距v=O’B’’,代入成像公式可计算出凹透镜焦距。 三、实验步骤 1.光学元件共轴等高的调节 (1)粗调将光源透镜物屏像屏靠近,调节高度使其中心线处于一条直线上。 (2)细调主要依靠仪器和光学成像规律来鉴别和调节。可以利用多次成像的方法,即只有当物的中心位于光轴上时,多次成像的中心才会重合。 2.透镜焦距的测定 1)自准法测薄透镜焦距 (1)按光源、物屏、透镜、平面镜从左到右摆放仪器,调至共轴。 (2)靠紧尺子移动L直至物屏上获得镂空图案倒立实像。 (3)调平面镜与凸透镜,使像最清晰且与物等大,充满同一圆面积。

傅立叶光学实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目: 傅里叶光学实验 实验目的: 加深对傅里叶光学中的一些基本概念与理论的理解,验证阿贝成像理论,理解透镜成像过程,掌握光学信息处理的实质,进一步了解透镜孔径对分辨率的影响。 实验原理: 1、傅里叶光学变换 二维傅里叶变换为:??+-=?=dxdy vy ux i y x f v u F )](2exp[),()}y ,x (f {),(π ( 1 ) 1()[(,)]x y g x F a f f -=, ''x y x f f y f f λλ??=????????=???? 复杂的二维傅里叶变换可以用透镜来实现,叫光学傅里叶变换。 2、阿贝成像原理 由于物面与透镜的前焦平面不重合,根据傅立叶光 学的理论可以知换(频谱),不过只有一个位相因子 的差别,对于一般情况的滤波处理可以不考虑。这个光路的优道在透镜的后焦平面上得到的不就是物函数的严格的傅立叶变点就是光路简单,就是显微镜物镜成像的情况—可以得到很大的象以便于观察,这正就是阿贝当时要改进显微镜的分辨本领时所用的光路。

3、空间滤波 根据以上讨论:透镜的成像过程可瞧作就是两次傅里叶变换,即从空间函数(,)g x y 变为频谱函数(,)x y a f f ,再变回到空间函数(,)g x y ,如果在频谱面上放一不同结构的光阑,以提取某些频段的信息,则必然使像上发生相应的变化,这样的图像处理称空间滤波。 实验内容: 1、测小透镜的焦距f1 (付里叶透镜f2=45、0CM)、 光路:直角三棱镜→望远镜(倒置)(出射应就是平行光)→小透镜→屏。(思考:如何测焦距?) 夫琅与费衍射: 光路:直角三棱镜→光栅→墙上布屏(此光路满足远场近似) (1)利用夫琅与费衍射测一维光栅常数; 光栅方程:dsin θ=k λ 其中,k=0,±1, ±2, ±3,… 请自己选择待测量的量与求光栅常数的方法。(卷尺可向老师索要) 记录一维光栅的衍射图样、可瞧到哪些级?记录 0级、±1级、±2级光斑的位置; (2)记录二维光栅的衍射图样、 3、观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征; 光路:直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏 思考:空间频谱面在距小透镜多远处?图样应就是何样? (1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根

光学实验报告 (一步彩虹全息)

光学设计性实验报告(一步彩虹全息) 姓名: 学号: 学院:物理学院

一步彩虹全息 摘要彩虹全息是用激光记录全息图, 是用白光再现单色或彩色像的一种全息技术。彩虹全息术的关键之处是在成像光路( 即记录光路) 中加入一狭缝, 这样在干板上也会留下狭缝的像。本文研究了一步彩虹全息图的记录和再现景象的基本原理、一步彩虹全息图与普通全息图的区别和联系、一步彩虹全息的实验光路图,探讨了拍摄一步彩虹全息图的技术要求和注意事项,指出了一步彩虹全息图的制作要点, 得出了影响拍摄效果的佳狭缝宽度、最佳狭缝位置及曝光时间对彩虹全息图再现像的影响。 关键词:一步彩虹全息;狭缝;再现 1 光学实验必须要严密,尽可能地减少实验所产生的误差; 2 实验仪器 防震全息台激光器分束镜成像透镜狭缝干板架光学元件架若干干板备件盒洗像设备一套线绳辅助棒扩束镜2个反射镜2个 3 实验原理 3.1 像面全息图 像面全息图的拍摄是用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。 像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。 3.2 彩虹全息的本质 彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。若观察者的眼睛在狭缝像附近沿垂直于狭缝的方向移动,将看到颜色按波长顺序变化的再现像。若观察者的眼睛位于狭缝像后方适当位置, 由于狭缝对视场的限制, 通过某一波长所对应的狭缝只能看到再现像的某一条带, 其色彩与该波长对应, 并且狭缝像在空间是连

应用光学实验

实验一光学实验主要仪器、光路调整与技巧 一. 引言 不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成,因此掌握一些常用的光学元器件的结构和性能,特点和使用方法,对安排试验光路系统时正确的选择光学元器件,正确的使用光学元器件有重要的作用 二.实验目的 掌握光学专业基本元件的功能;调整光路,主要包括共轴调节、调平行光和针孔滤波。 三.基本原理 (一)、光学实验仪器概述: 主要含: 激光光源,光学元件,观察屏或信息记录介质 1. 激光光源; 激光器即Laser(Light Amplification by stimulated emission of radiation),原意是利用受激辐射实现光的放大.然而实际上的激光器,一般不是放大器,而是振荡器,即利用受激辐射实现光的振荡,或产生相干光。 . 960年,梅曼制成了世界上第一台红宝石激光器.现在被广泛用于各个行业 激光的特性:(1)高度的相干性(2)光束按高斯分布 激光器的分类: (1)气体激光器——He-Ne激光器,Ar离子激光器 (2)液体激光器——染料激光器 (3)固体激光器———半导体激光器,红宝石激光器 本套实验方案的选择的激光器是气体型He-Ne内腔式激光器,波长为632.8nm的红光,功率2mW。个别实验中还会用到白光点光源。 2、用于光学实验的元件一般包括: 防震平台、分束镜、扩束镜、准直镜、反射镜、成像透镜、傅立叶变换透镜、多自由度微调器、可变光栏、观察屏等部件。如果是全息实验还需要快门、干版架、自动曝光和显定影定时器、记录干版等。

(本实验方案中,扩束镜采用针孔空间滤波器,准直镜、成像透镜、傅立叶变换透镜均采用双凸透镜) ⑴防震平台 光学实验需要一个稳定的工作平台。特别是对于全息图制作实验,由于是参考波和物光波干涉条纹的记录,如果在曝光过程中因为振动导致两光波有变化,就要影响干涉条纹的调制度。通常要求该光波的振动变化小于十分之一波长。影响稳定性的因素有震动、空气流和热变化等。震动的主要影响来自地基的震动,如果记录系统部件的机构有松动就会把震动放大,所以必须对工作台采取减震措施。专用全息气浮工作台是最好的减震台。简单的减震方法可用砂箱、微塑料、气垫(用汽车、飞机轮子的内胎)和重1000~2000kg的铸铁或花岗岩,并应安装一个隔离罩。如果不用隔离罩,记录全息图时室内不要通风,工作人员不要大声讲话和距工作台远一些。 ⑵光学元件 ①分束镜: 分束镜是光学实验系统的一个重要元件,它的作用是将激光束分为两束,在干涉仪系统组装的实验中可产生两束有一定夹角的相干波,在全息制作实验中可产生参考光和物体的物光光波。分束镜一般是在玻璃板上镀干涉膜。干涉膜有两种:多层介质膜和金属膜。分光比可以连续变化或分段变化。 ②扩束器(扩束镜): 因激光束的发散角很小,需要用一个扩束镜以加大光束的发散角。通常可用20倍、40倍的显微物镜或焦距很短的单片正透镜或负透镜。本实验方案中,扩束镜采用针孔空间滤波器。 ③双凸透镜: 准直镜、成像透镜、傅立叶变换透镜之功能均可使用不同内径和焦距的双凸透镜来实现。为了提高光的透射率,透镜面要镀增透膜。在选用透镜时,要选用没有缺陷和污脏的透镜.(因为它们会使观察或记录图像产生噪声) ④反射镜: 当光入射到普通反射镜的玻璃基版上时,要先经过折射再反射,反射光的损失很大。同时玻璃片基的两面会因多次反射引入杂散光。所以光学实验需用表面平整度高和涂有多层反射膜的高反射率反射镜。 ⑤其它: 还有一些辅助元件:如多自由度微调器,可三维控制镜架或者滤波器的位置和方向;可变光阑包括可调的狭缝和圆孔光阑、观察屏可用白纸或白屏;电子计时器用来控制曝光时间等。 3、光学信息的记录介质 主要用在全息类实验中。包括两大类,一类银盐感光材料,另一类非银盐感光材料,其中非银盐感光材料又包括,重铬酸盐明胶、光致聚合物等材料。银盐感光材料灵敏度高,但是衍射效率低。非银盐感光材料响应速度快,能及时的记录和显示,材料分辨率高,有些材料能多次反复使用,不用贵金银,免除了暗室的显影定影操作,加工过程简便快速,但灵敏度低。它们各有优缺点,而且不同的非银盐感光材料的性能也是不一样的。 (二)、共轴调节: 光学实验中经常要遇到用一个或多个透镜成像,为了获得较好的像,必须使各个透镜的主光轴重合(即共轴),并使物体位于透镜的主光轴附近。另外,为

光学综合实验报告要点

光学综合实验报告 班级: 姓名: 学号: 日期: 序号实验项目课时实验仪器(台套数)房间指导教师 1 焦距测量 (分别在焦距仪和光学平台上测 量)4 焦距仪(3-4)、 光学平台及配件(1-2) 西北付辉、樊宏 2 典型成像系统的组建和分析 (在光学平台上搭建显微镜、望远 镜、投影仪) 4 光学平台及配件(1-2)东南付辉、樊宏 3 典型成像系统的使用 (使用商用典型成像系统)4 显微镜(3)、望远镜(3)、 水准仪(2) 东南付辉、樊宏 4 分光计的使用 (含调整、测量角度和声速)4 分光计(3-4)、超声光栅 (2) 东南付辉、樊宏 5 棱镜耦合法测波导参数 4 棱镜波导实验仪(2)西南郎贤礼、李建全 6 半导体激光器的光学特性测试 4 半导体激光器实验仪(2)西南郎贤礼、李建全 7 电光调制 4 电光调制仪(2)西南郎贤礼、李建全 8 法拉第效应测试 4 法拉第效应测试仪(2)东北郎贤礼、李建全 9 声光调制 4 声光调制仪(2)西南郎贤礼、李建全

目录 1、焦距测量--------------------------------------4 2、典型成像系统的组建和分析----------------------7 3、典型成像系统的使用----------------------------10 4、分光计的使用----------------------------------10 5、棱镜耦合法测波导参数--------------------------14 6、半导体激光器的光学特性测试--------------------22 7、电光调制--------------------------------------29 8、法拉第效应测试--------------------------------38 9、声光调制--------------------------------------46 10、干涉、衍射和频谱分析--------------------------47 11、迈克尔逊干涉仪--------------------------------58 12、氦氖激光器综合实验----------------------------63

光学实验报告

建筑物理 ——光学实验报告 实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测 实验小组成员: 指导老师: 日星期二3月12年2013日期: 实验一、材料的光反射比和光透射比测量

一、实验目的与要求 室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光材料的过透射比进行实测。 通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法 光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。下面是间接测量法。 1.实验原理 (1)用照度计测量: P是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,根据光反射比的定义:光反射比即: φφP=P/因为测量时将使用同一照度计,其受光面积相等, 且,所以对于定向反射的表面,我们可以用上述代入式,整理后得: P=EE P/对于均匀扩散材料也可以近似的用上述式。 可知只要测出材料表面入射光照度E和材料反射光照度Ep,即可计算出其反射比。 (2)用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度E和亮度L后按下式计算 πL/EP= 2;被测表面的亮度,cd/m式中:L---E—被测表面的照度,lx 。 2.测量内容 要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(POWER)开关拨至“ON”,检查电池,如果仪器显示窗出现“BATT”字样,则需要换电池; ②将光接收器盖取下,将其光敏表面放在待测处,再将量程(RANGE)开关拨至适当位置,例如,拨在×1挡,测量的仪器显示值乘以量程因子即为测量结果。另有一种自动量程照度计,数字显示中的小数点随照度的大小不同而自动移位,只需将所显示的数字乘以量程因子即为测量结果(单位:lx)。有的照度计为自动量程,直接读取照度计数字即为测量结果。 ③在稳定光源下,将光接收器背面紧贴被测表面,测其入射照度E;然后将光接收器感光面对准被测表面的同一位置,逐渐平移光接收器平行离开测点,照度值逐渐增大并趋于稳定(约300mm左右),读;ρ,即可计算出光反射比Ep取反射照度值 ④测量时尽量缩短入射照度和反光照度间的时间间隔,并尽可能的保持周围光环境的一致性。

光学全息照相实验报告

光学全息照相实验报告

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的

了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He —Ne 激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄 全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为a 、频率为υ、波长为λ 的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相 干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1)

应用光学各章知识点归纳

第一章 几何光学基本定律与成像概念 波面:某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。光的传播即为光波波阵面的传播,与波面对应的法线束就是光束。 波前:某一瞬间波动所到达的位置。 光线的四个传播定律: 1)直线传播定律:在各向同性的均匀透明介质中,光沿直线传播,相关自然现象有:日月食,小孔成像等。 2)独立传播定律:从不同的光源发出的互相独立的光线以不同方向相交于空间介质中的某点时彼此不影响,各光线独立传播。 3)反射定律:入射光线、法线和反射光线在同一平面内,入射光线和反射光线在法线的两侧,反射角等于入射角。 4)折射定律:入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧,入射角和折射角正弦之比等于折射光线所在的介质与入射光线所在的介质的折射率之比,即 n n I I ' 'sin sin = 光路可逆:光沿着原来的反射(折射)光线的方向射到媒质表面,必定会逆着原来的入射方向反射(折射)出媒质的性质。 光程:光在介质中传播的几何路程S 和介质折射率n 的乘积。 各向同性介质:光学介质的光学性质不随方向而改变。 各向异性介质:单晶体(双折射现象) 马吕斯定律:光束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。 费马原理:光总是沿光程为极小,极大,或常量的路径传播。 全反射临界角:1 2 arcsin n n C = 全反射条件: 1)光线从光密介质向光疏介质入射。 2)入射角大于临界角。 共轴光学系统:光学系统中各个光学元件表面曲率中心在一条直线上。 物点/像点:物/像光束的交点。 实物/实像点:实际光线的汇聚点。 虚物/虚像点:由光线延长线构成的成像点。 共轭:物经过光学系统后与像的对应关系。(A ,A ’的对称性) 完善成像:任何一个物点发出的全部光线,通过光学系统后,仍然聚交于同一点。每一个物点都对应唯一的像点。 理想成像条件:物点和像点之间所有光线为等光程。

相关文档
最新文档