高考物理电磁感应现象压轴题试卷附答案解析

高考物理电磁感应现象压轴题试卷附答案解析

一、高中物理解题方法:电磁感应现象的两类情况

1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别

垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。重力加速度为g 。求:

(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。 【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 7

2L

t g

= 【解析】 【详解】

(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有

2

1sin 302

mgL mv ︒=

, 则线框进入磁场时的速度

2sin30v g L gL =︒线框ab 边进入磁场时产生的电动势E =BLv 线框中电流

E I R

=

ab 边受到的安培力

22B L v

F BIL R

== 线框匀速进入磁场,则有

22sin 30B L v

mg R

︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv

线框所受的安培力变为

22422B L v

F BI L mg R

==''=

方向沿斜面向上

(2)设线框再次做匀速运动时速度为v ',则

224sin 30B L v mg R

︒=

'

解得

4v v =

'=根据能量守恒定律有

2211

sin 30222

mg L mv mv Q ︒'⨯+=+

解得4732

mgL

Q =

线框ab 边在上侧磁扬中运动的过程所用的时间1L t v

=

设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:

22sin302mg t BLIt mv mv ︒-='-

其中

()022BL L x I t R

-=

联立以上两式解得

()02432L x v t v

g

-=

-

线框ab 在下侧磁场匀速运动的过程中,有

00

34x x t v v

='=

所以线框穿过上侧磁场所用的总时间为

123t t t t =++=

2.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。电源电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。已知导体棒的质量为m ,磁感应强度为B ,导轨间距为L ,导体棒及导轨电阻均不计,电阻R 已知。闭合电键,导体棒在安培力的作用下开始运动,则: (1)导体棒的最终速度?

(2)在整个过程中电源释放了多少电能? (3)在导体棒运动过程中,电路中的电流是否等于

E

R

,试判断并分析说明原因。

【答案】(1)E v BL =;(2) 2

22

2mE B L

;(3)见解析 【解析】 【分析】 【详解】

(1) 闭合电键,导体棒在安培力的作用下开始运动做加速运动,导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,安培力减小,加速度减小,当加速度为0时,速度达到最大值,之后做匀速运动,此时感应电动势与电源电动势相等。设导体棒的最终速度v ,则有

E BLv =

解得

E

v BL

=

(2)在整个过程中电源释放的电能转化为导体棒的动能,导体棒获得的动能为

2

222

122k mE E mv B L

∆== 所以在整个过程中电源释放的电能为2

22

2mE B L

(3)在导体棒运动过程中,闭合电键瞬间,电路中的电流等于

E

R

,导体棒在安培力的作用下开始运动做加速运动。之后导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,当感应电动势与电源电动势相等时,电路中电流为0,因此在导体棒运动过程中,电路中的电流只有在闭合电键瞬间等于

E

R

,之后逐渐减小到0。

3.如图所示,凸字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一竖直平面内,ab 边长为l ,cd 边长为2l ,ab 与cd 平行,间距为2l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd 边到磁场上边界的距离为2l ,线框由静止释放,从cd 边进入磁场直到ef 、pq 边进入磁场前,线框做匀速运动.在ef 、pq 边离开磁场后,ab 边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q .线框在下落过程中始终处于原竖直平面内,且ab 、cd 边保持水平,重力加速度为g .求:

(1)线框ab 边将离开磁场时做匀速运动的速度大小是cd 边刚进入磁场时的几倍; (2)磁场上下边界间的距离H . 【答案】(1)4(2)28Q

H l mg

=+ 【解析】 【分析】 【详解】

设磁场的磁感应强度大小写为B ,cd 边刚进入磁场时,线框做匀速运动的速度为v 1,cd 边上的感应电动势为E 1,由法拉第电磁感应定律可得:

设线框总电阻为R ,此时线框中电流为I 1,由闭合电路欧姆定律可得:

设此时线械所受安培力为F 1,有:

由于线框做匀速运动,故受力平衡,所以有:

联立解得:

设ab 边离开磁场之前,线框做匀速运动的速度为v 2,同理可得:

故可知:

(2线框自释放直到cd 边进入磁场前,由机械能守恒定律可得:

线框完全穿过磁场的过程中,由能量守恒定律可得:

联立解得:

4.“801所”设计的磁聚焦式霍尔推进器可作为太空飞船的发动机,其原理如下:系统捕获宇宙中大量存在的等离子体(由电量相同的正、负离子组成)经系统处理后,从下方以恒定速率v 1向上射入有磁感应强度为B 1、垂直纸面向里的匀强磁场区域Ⅰ内.当栅极MN 、PQ 间形成稳定的电场后,自动关闭区域Ⅰ系统(关闭粒子进入通道、撤去磁场B 1).区域Ⅱ内有磁感应强度大小为B 2、垂直纸面向外的匀强磁场,磁场右边界是直径为D 、与上下极板相切的半圆(圆与下板相切于极板中央A ).放在A 处的放射源能够向各个方向均匀发射速度大小相等的氙原子核,氙原子核经过该区域后形成宽度为D 的平行氙粒子束,经过栅极MN 、PQ 之间的电场加速后从PQ 喷出,在加速氙原子核的过程中探测器获得反向推力(不计氙原子核、等离子体的重力,不计粒子之间相互作用于相对论效应).已知极板长RM =2D ,栅极MN 和PQ 间距为d ,氙原子核的质量为m 、电荷量为q ,求:

(1)氙原子核在A 处的速度大小v 2; (2)氙原子核从PQ 喷出时的速度大小v 3;

(3)因区域Ⅱ内磁场发生器故障,导致区域Ⅱ中磁感应强度减半并分布在整个区域Ⅱ中,求能进入区域Ⅰ的氙原子核占A 处发射粒子总数的百分比.

【答案】(1)

22B Dq m (2222

1122

84B v qdm B D q

m +(3)090FAN ∠= 13 【解析】 【分析】 【详解】

(1)离子在磁场中做匀速圆周运动时:2

2

22v B qv m r

=

根据题意,在A 处发射速度相等,方向不同的氙原子核后,形成宽度为D 的平行氙原子核束,即2

D r = 则:222B Dq

v m

=

(2)等离子体由下方进入区域I 后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q ' ,则11Eq B v q ='' 即11E B v =

氙原子核经过区域I 加速后,离开PQ 的速度大小为3v ,根据动能定理可知:

2232

1122

Uq

mv mv =

- 其中电压11U Ed B v d ==

联立可得222

11232

84B v qdm B D q

v m +=

(3)根据题意,当区域Ⅱ中的磁场变为2

B '之后,根据2

mv

r B q =''可知,2r r D '==

①根据示意图可知,沿着AF 方向射入的氙原子核,恰好能够从M 点沿着轨迹1进入区域I ,而沿着AF 左侧射入的粒子将被上极板RM 挡住而无法进入区域I .

该轨迹的圆心O 1,正好在N 点,11AO MO D ==,所以根据几何关系关系可知,此时

090FAN ∠=;

②根据示意图可知,沿着AG 方向射入的氙原子核,恰好从下极板N 点沿着轨迹2进入区域I ,而沿着AG 右侧射入的粒子将被下极板SN 挡住而无法进入区域I .

22AO AN NO D ===,所以此时入射角度030GAN ∠=.

根据上述分析可知,只有060FAG ∠=这个范围内射入的粒子还能进入区域I .该区域的

粒子占A 处总粒子束的比例为00601

==1803

η

5.磁场在xOy 平面内的分布如图所示,其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反,每个同向磁场区域的宽度均为L 0,整个磁场以速度v 沿x 轴正方向匀速运动。若在磁场所在区间内放置一由n 匝线圈组成的矩形线框abcd ,线框的bc =L B 、ab =L 、L B 略大于L 0,总电阻为R ,线框始终保持静止。求: (1)线框中产生的总电动势大小和导线中的电流大小; (2)线框所受安培力的大小和方向。

【答案】(1)2nB 0Lv ;02nB Lv R (2)22204n B L v

R

,方向沿x 轴正方向

【解析】 【详解】

(1)线框相对于磁场向左做切割磁感线的匀速运动,切割磁感线的速度大小为v ,任意时刻线框ab 边切割磁感线产生的感应电动势大小为

E 1=nB 0Lv ,

cd 边切割磁感线产生的感应电动势大小为

E 2=nB 0Lv ,

ab 边和cd 边所处的磁场方向总是相反的,故ab 边和cd 边中产生的感应电动势方向总是相同的,所以总的感应电动势大小

E =2nB 0Lv ,

由闭合电路欧姆定律得导线中的电流大小

02nB Lv

I R

=

(2)线框所受安培力的大小

2220042n B L v

F nB LI R

==

, 由左手定则判断,线框所受安培力的方向始终沿x 轴正方向。

6.如图所示,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为.磁场的磁感强度为B ,方向垂直纸面向

里.现有一段长度为

、电阻为

的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然

后沿ab 方向以恒定速度υ向b 端滑动,滑动中始终与ac 平行并与线框保持良好接触.当MN 滑过的距离为

时,导线ac 中的电流是多大?方向如何?

【答案】方向a →c

【解析】 【分析】 【详解】 试题分析:

MN 滑过的距离为L/3时,它与bc 的接触点为P ,如下图所示

由图可知MP 长度为L/3, MP 中的感应电动势为:1

E 3

BL V BLV 有== MP 段的电阻为:r=

3

R MacP 和MbP 两电路的并联电阻为

121212233r 129

33

r r R R r r 并⨯

==

=++ 由欧姆定律,PM 中的电流为:E

I r r =+并

由分流得ac 中的电流为:ac 2

3

I I =, 解得

考点:本题考查瞬时感应电动势,闭合电路欧姆定律

点评:电磁感应与电路的结合问题,关键是弄清电源和外电路的构造,然后根据电学知识进一步求解

7.如图甲所示。在同一水平面上,两条足够长的平行金属导轨MNPQ 间距为

0.15m L =,右端接有电阻0.2ΩR =,导轨EF 连线左侧光滑且绝缘.右侧导轨粗糙,EFGH

区域内有垂直导轨平面磁感应强度4T B =的矩形匀强磁场;一根轻质弹簧水平放置,左端固定在K 点,右端与质量为0.1kg m =的金属棒a 接触但不栓接,且与导轨间的动摩擦因数0.1μ=,弹簧自由伸长时a 棒刚好在EF 处,金属棒a 垂直导轨放置,现使金属棒a 在外力作用下缓慢地由EF 向左压缩至AB 处锁定,压缩量为00.04m x =。此时在EF 处放上垂直于导轨质量0.3kg M =电阻0.1Ωr =的静止金属棒b 。接着释放金属棒a ,两金属棒在EF 处碰撞,a 弹回并压缩弹簧至CD 处时速度刚好为零且被锁定,此时压缩量为

10.02m x =,b 棒向右运动,经过0.1s t =从右边界GH 离开磁场,金属棒b 在磁场运动

过程中流经电阻R 的电量0.2C q =。设棒的运动都垂直于导轨,棒的大小不计,已知弹簧的弹力与形变量的关系图像(如图乙)与x 轴所围面积为弹簧具有的弹性势能。求: (1)金属棒a 碰撞金属棒b 前瞬间的速度0v

(2)金属棒b 离开磁场时的速度2v (3)整个过程中电阻R 上产生的热量R Q

【答案】(1)2m/s (2)0.5m/s (3)0.055J 【解析】 【详解】

(1)如乙图所示,最初弹簧具有的弹性势能:

100.04

J 0.2J 2

p E ⨯=

= 根据机械能守恒得:

2012

p E mv =

可得 02m/s v =

(2)设a 棒反弹的速度为1v ,b 棒碰后速度为3v ,金属棒b 离开磁场时的速度2v 。

a 弹回至CD 处时弹簧具有的弹性势能为:

50.02

J 0.05J 2

p E ⨯'=

= 根据机械能守恒得:

211

2

p E mv '=

解得11m/s v =

对于碰撞过程,取向右为正方向,由动量守恒定律得:

013mv mv Mv =-+

可得31m/s v =

b 棒通过磁场的过程,根据动量定理得:

23()BILt ft M v v --=-

又:

0.2C q It ==

0.3N f Mg μ==

可得20.5m/s v = (3)根据:

Et BLvt BLx

q It R r R r R r

==

==+++ 可得0.1m x =

整个过程中回路产生的总热量:

()22

3212

Q M v v fx =--总

电阻R 上产生的热量:

R R

Q Q R r

=

+总 联立解得:0.055J R Q =

8.如图所示,水平面上有一个高为d 的木块,木块与水平面间的动摩擦因数为μ=0.1.由均匀金属材料制成的边长为2d 、有一定电阻的正方形单匝线框,竖直固定在木块上表面,它们的总质量为m .在木块右侧有两处相邻的边长均为2d 的正方形区域,正方形底边离水平面高度为2d .两区域各有一水平方向的匀强磁场穿过,其中一个方向垂直于纸面向里,另一个方向垂直于纸面向外,区域Ⅱ中的磁感应强度为区域Ⅰ中的3倍.木块在水平外力作用下匀速通过这两个磁场区域.已知当线框右边MN 刚进入Ⅰ区时,外力大小恰好为0320

F g m =

,此时M 点电势高于N 点,M 、N 两点电势差U MN =U .试求:

(1)区域Ⅰ中磁感应强度的方向怎样?

(2)线框右边MN 在Ⅰ区运动过程中通过线框任一横截面的电量q . (3)MN 刚到达Ⅱ区正中间时,拉力的大小F . (4)MN 在Ⅱ区运动过程中拉力做的功W .

【答案】(1)向外 (2)340mgd q U = (3)

4750mg (4)47

25

mgd 【解析】 【详解】

(1)因为线框从左向右匀速通过这两个磁场区域,所以拉力方向向右,安培力方向向左。 因为M 点电势高于N 点,由右手定制可判断区域Ⅰ中磁感应强度的方向向外。 (2)设线框的总电阻为R ,磁场Ⅰ区的磁感强度为B ,线框右边MN 在Ⅰ区运动过程中有一半长度切割磁感线产生感应电动势,有

Bdv I R

R

ε

=

=

,33

44U I R Bdv =⋅=

线框右边MN 在Ⅰ区运动过程中,木块与线框受力平衡,有

0A F F mg μ--=

解得

310.12020

A F BId mg mg mg ==-= 通过线框任一横截面的电量q 为q It =,其中2d t v =

联立以上各式,解得

340mgd q U

= (3)MN 刚到达Ⅱ区正中间时,流过线框的电流为

34'4Bdv Bdv Bdv I I R R

+=== 线框左、右两条边均受到向左的安培力作用,总的安培力大小为 4''3'165A A F BI d BI d F mg =+==

由于线框上边各有一半处在磁场Ⅰ区、Ⅱ区中,所以分别受到向上与向下的安培力作用,此时木块受到的支持力N 为

73''85

A N mg BI d BI d mg F mg =+-=+= 木块与线框组成的系统受力平衡,因此拉力F 为

4747'55050

A F F N mg mg mg μ=+=+= (4)随着MN 在磁场Ⅱ区的运动,木块受到的支持力N x 随发生的位移x 而变化,有

3''(2)2'4'x N mg BI x BI d x mg BI d BI x =+--=-+

由于N x 随位移x 线性变化,因此MN 在Ⅱ区运动过程中木块受到的平均支持力为

4'272'2'25

BI d N mg BI d mg BI d mg ⋅=-+

=+= 此过程中拉力做的功W 为 4747'222255025

A W F d N d mg d mg d mgd μ=⋅+⋅=⋅+⋅=

9.(1)如图1所示,固定于水平面上的金属框架abcd ,处在竖直向下的匀强磁场中.金属棒MN 沿框架以速度v 向右做匀速运动.框架的ab 与dc 平行,bc 与ab 、dc 垂直.MN 与bc 的长度均为l ,在运动过程中MN 始终与bc 平行,且与框架保持良好接触.磁场的磁感应强度为B .

a. 请根据法拉第电磁感应定律,推导金属棒MN中的感应电动势E;

b. 在上述情景中,金属棒MN相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN中的感应电动势E.

(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景:如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l的绝缘细管MN,沿纸面以速度v向右做匀速运动.在管的N端固定一个电量为q的带正电小球(可看做质点).某时刻将小球释放,小球将会沿管运动.已知磁感应强度大小为B,小球的重力可忽略.在小球沿管从N运动到M的过程中,求小球所受各力分别对小球做的功.

【答案】(1)见解析(2)洛伦兹力做功为0,管的支持力做功

【解析】

【分析】

【详解】

(1)如图1所示,在一小段时间Dt内,金属棒MN的位移

这个过程中线框的面积的变化量

穿过闭合电路的磁通量的变化量

根据法拉第电磁感应定律

解得

如图2所示,棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力

,f即非静电力

在f的作用下,电子从M移动到N的过程中,非静电力做功

根据电动势定义

解得

(2)小球随管向右运动的同时还沿管向上运动,其速度如图3所示.小球所受洛伦兹力f 如图4所示.将f合正交分解如图5所示.

小球除受到洛伦兹力f合外,还受到管对它向右的支持力F,如图6所示.

洛伦兹力f合不做功

沿管方向,洛伦兹力f做正功

垂直管方向,洛伦兹力是变力,做负功

由于小球在水平方向做匀速运动,则

因此,管的支持力F对小球做正功

10.如图所示,两根相距L1的平行粗糙金属导轨固定在水平面上,导轨上分布着n个宽度为d、间距为2d的匀强磁场区域,磁场方向垂直水平面向上.在导轨的左端连接一个阻值为R的电阻,导轨的左端距离第一个磁场区域L2的位置放有一根质量为m,长为L1,阻值为r的金属棒,导轨电阻及金属棒与导轨间的接触电阻均不计.某时刻起,金属棒在一水平向右的已知恒力F作用下由静止开始向右运动,已知金属棒与导轨间的动摩擦因数为μ,重力加速度为g.

(1)若金属棒能够匀速通过每个匀强磁场区域,求金属棒离开第2个匀强磁场区域时的速度v2的大小;

(2)在满足第(1)小题条件时,求第n个匀强磁场区域的磁感应强度B n的大小;

(3)现保持恒力F不变,使每个磁场区域的磁感应强度均相同,发现金属棒通过每个磁场区域时电路中的电流变化规律完全相同,求金属棒从开始运动到通过第n个磁场区域的整个过程中左端电阻R上产生的焦耳热Q.

【答案】(1)(2)(3)

【解析】

试题分析:(1)金属棒匀加速运动有

解得:

(2)金属棒匀加速运动的总位移为

金属棒进入第n个匀强磁场的速度满足

金属棒在第n个磁场中匀速运动有

解得:

(3)金属棒进入每个磁场时的速度v和离开每个磁场时的速度均相同,由题意可得

金属棒从开始运动到通过第n个磁场区域的过程中,有

解得:

考点:法拉第电磁感应定律;牛顿第二定律;能量守恒定律的应用

【名师点睛】本题分析受力是基础,关键从能量转化和守恒角度来求解,解题时要注意抓住使棒进入各磁场的速度都相同,以及通过每段磁场时电路中发热量均相同的条件.

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)及详细答案

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)及详细 答案 一、电磁感应现象的两类情况 1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒 ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的 过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求: (1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L v θ=2)sin sin t gvt v v CgR θθ=+ 【解析】 试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R = ,棒所受的安培力F BIL = 联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='= 此时电容器的带电量为 Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V 则电路中电流 Q C U CBL v i t t t ???===???,又v a t ?=?,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθ θ = =++

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)及详细答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)及详细答案 一、法拉第电磁感应定律 1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求: (1)拉力做功的功率P; (2)ab边产生的焦耳热Q. 【答案】(1)P= 222 B L v R (2)Q= 23 4 B L v R 【解析】 【详解】 (1)线圈中的感应电动势 E=BLv 感应电流 I=E R 拉力大小等于安培力大小 F=BIL 拉力的功率 P=Fv= 222 B L v R (2)线圈ab边电阻 R ab= 4 R 运动时间 t=L v ab边产生的焦耳热 Q=I2R ab t = 23 4 B L v R 2.如图所示,两根相距为L的光滑平行金属导轨CD、EF固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R的定值电阻,将质

量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷. (1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ; (2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E . (3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明. 【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】 (1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量?Φ ,再由法拉第电磁感应定律求得E 的表达式; (2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义 W E q = 计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】 (1)如图所示,在一小段时间?t 内,金属棒MN 的位移 x v t ?=? 这个过程中线框的面积的变化量S L x Lv t ?=?=? 穿过闭合电路的磁通量的变化量 B S BLv t ?Φ=?=?

高考物理法拉第电磁感应定律-经典压轴题及答案解析

高考物理法拉第电磁感应定律-经典压轴题及答案解析 一、法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==? 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==?=? (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -?===? 2.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。一质量为m 的金属棒从ab 位置由静止开始下落,到达cd 位置前已经开始做匀速运动,棒通过cdfe 区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为R ,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g ,求:

高考物理法拉第电磁感应定律-经典压轴题含答案解析

高考物理法拉第电磁感应定律-经典压轴题含答案解析 一、法拉第电磁感应定律 1.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷. (1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ; (2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E . (3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明. 【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】 (1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量?Φ ,再由法拉第电磁感应定律求得E 的表达式; (2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义 W E q = 计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】

高考物理法拉第电磁感应定律-经典压轴题附详细答案

高考物理法拉第电磁感应定律-经典压轴题附详细答案 一、法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv =g E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt = 解得:234B l v Q R = (3) cd 间的电压为: 2 3 cd U I R =g 解得:43 cd Blv U = 3.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α =?,两 侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道

高考物理与法拉第电磁感应定律有关的压轴题附详细答案

高考物理与法拉第电磁感应定律有关的压轴题附详细答案 一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

BLt 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求: (1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离; (3)ab 棒开始下滑至EF 的过程中回路中产生的热量。 【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】 (1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动, a = sin mg m θ =gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:

高考物理与电磁感应现象的两类情况有关的压轴题附详细答案

高考物理与电磁感应现象的两类情况有关的压轴题附详细答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt - 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

高考物理电磁感应现象的两类情况-经典压轴题含答案

高考物理电磁感应现象的两类情况-经典压轴题含答案 一、电磁感应现象的两类情况 1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰) (1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离; (3)在两根杆相互作用的过程中,求回路中产生的电能. 【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v 设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有 2h x v g =2h x s v g +=根据动量守恒 012mv mv mv =+ 求得: 210m/s v = (2)ab 杆运动距离为d ,对ab 杆应用动量定理 1BIL t BLq mv ==V 设cd 杆运动距离为d x +?

22BL x q r r ?Φ?= = 解得 1 22 2rmv x B L ?= cd 杆运动距离为 1 22 27m rmv d x d B L +?=+ = (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能 222 012111100J 222 Q mv mv mv =--= 2.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求: (1)每个线圈通过磁场区域产生的热量Q . (2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比. (3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗) 【答案】(1)232B L v Q R = (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R 【解析】 【分析】 【详解】 (1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量 为223()22BLv L B L v Q Pt R v R === (2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2

高考物理与法拉第电磁感应定律有关的压轴题含答案

一、法拉第电磁感应定律 1.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求: (1)磁通量变化率,回路的感应电动势。 (2)a 、b 两点间电压U ab 。 【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】 (1)由B =(2+0.2t )T 得磁场的变化率为 0.2T/s B t ?=? 则磁通量的变化率为: 0.04Wb/s B S t t ?Φ?==?? 根据E n t ?Φ =?可知回路中的感应电动势为: 4V B E n nS t t ?Φ?===?? (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知: 112 2.4V ab E R R R U =+= 答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。 (2)a 、b 两点间电压U ab 为2.4V 。 2.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α =?,两 侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高 (2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求

高考物理电磁感应现象压轴题试卷附答案解析

高考物理电磁感应现象压轴题试卷附答案解析 一、高中物理解题方法:电磁感应现象的两类情况 1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别 垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。重力加速度为g 。求: (1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。 【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 7 2L t g = 【解析】 【详解】 (1)线框开始时沿斜面做匀加速运动,根据机械能守恒有 2 1sin 302 mgL mv ︒= , 则线框进入磁场时的速度 2sin30v g L gL =︒线框ab 边进入磁场时产生的电动势E =BLv 线框中电流 E I R = ab 边受到的安培力 22B L v F BIL R == 线框匀速进入磁场,则有 22sin 30B L v mg R ︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv

线框所受的安培力变为 22422B L v F BI L mg R ==''= 方向沿斜面向上 (2)设线框再次做匀速运动时速度为v ',则 224sin 30B L v mg R ︒= ' 解得 4v v = '=根据能量守恒定律有 2211 sin 30222 mg L mv mv Q ︒'⨯+=+ 解得4732 mgL Q = 线框ab 边在上侧磁扬中运动的过程所用的时间1L t v = 设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知: 22sin302mg t BLIt mv mv ︒-='- 其中 ()022BL L x I t R -= 联立以上两式解得 ()02432L x v t v g -= - 线框ab 在下侧磁场匀速运动的过程中,有 00 34x x t v v ='= 所以线框穿过上侧磁场所用的总时间为 123t t t t =++= 2.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。电源电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。已知导体棒的质量为m ,磁感应强度为B ,导轨间距为L ,导体棒及导轨电阻均不计,电阻R 已知。闭合电键,导体棒在安培力的作用下开始运动,则: (1)导体棒的最终速度?

高中物理电磁感应现象压轴题知识归纳总结含答案解析

高中物理电磁感应现象压轴题知识归纳总结含答案解析 一、高中物理解题方法:电磁感应现象的两类情况 1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求: (1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。 【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】 (1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。 由平衡条件 sin mg BId θ=① 导体棒切割磁感线产生的电动势为 E =Bdv ② 由闭合电路欧姆定律得 E I R r = +③ 联立①②③得 v =20m/s ④ 由欧姆定律得 U =IR ⑤ 联立①⑤得 U =7V ⑥ (2)由电流定义式得 Q It =⑦ 由法拉第电磁感应定律得 E t ∆Φ = ∆⑧

B ld ∆Φ=⋅⑨ 由欧姆定律得 E I R r = +⑩ 由⑦⑧⑨⑩得 Q =0.02C ⑪ 2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求: (1)当线圈的对角线ac 刚到达gf 时的速度大小; (2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少? 【答案】(1)1224mgR v B L = (2)322 44 2512m g R Q mgL B L =- 【解析】 【详解】 (1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为: 112E B Lv =⨯ 感应电流:11E I R = 由力的平衡得:12BI L mg ⨯= 解以上各式得:122 4mgR v B L = (2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势

电磁感应现象压轴题知识归纳总结附答案

电磁感应现象压轴题知识归纳总结附答案 一、高中物理解题方法:电磁感应现象的两类情况 1.如图1所示,一个圆形线圈的匝数1000n =匝,线圈面积20.02S m =,线圈的电阻 1r =Ω,线圈外接一个阻值4R =Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图2所示.求 ()1在04s ~内穿过线圈的磁通量变化量; ()2前4s 内产生的感应电动势; () 36s 内通过电阻R 的电荷量q . 【答案】(1)4×10﹣2Wb (2)1V (3)0.8C 【解析】 试题分析:(1)依据图象,结合磁通量定义式BS Φ=,即可求解;(2)根据法拉第电磁感应定律,结合磁感应强度的变化率求出前4s 内感应电动势的大小.(3)根据感应电动势,结合闭合电路欧姆定律、电流的定义式求出通过R 的电荷量. (1)根据磁通量定义式BS Φ=,那么在0~4s 内穿过线圈的磁通量变化量为: ()()3210.40.20.02410B B S Wb Wb -∆Φ=-=-⨯=⨯ (2)由图象可知前4 s 内磁感应强度B 的变化率为:0.40.2 /0.05?/4 B T s T s t ∆-==∆ 4 s 内的平均感应电动势为:10000.020.05?1B E nS V V t ∆==⨯⨯=∆ (3)电路中的平均感应电流为:E I R = 总,又q It =,且E n t ∆Φ=∆ 所以()0.020.40.210000.841 q n C C R 总⨯-∆Φ ==⨯=+ 【点睛】本题考查了法拉第电磁感应定律的应用,由法拉第电磁感应定律求出感应电动势,由欧姆定律求出感应电流,最后由电流定义式的变形公式求出感应电荷量. 2.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm 2.螺线管导线电阻r=1.0Ω,R 1=3.0Ω,R 2=4.0Ω,C=30μF .在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.求:

高考物理压轴题专题电磁感应现象的两类情况的经典推断题综合题含答案解析

高考物理压轴题专题电磁感应现象的两类情况的经典推断题综合题含答案解析 一、电磁感应现象的两类情况 1.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求: (1)当线圈的对角线ac 刚到达gf 时的速度大小; (2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少? 【答案】(1)1224mgR v B L = (2)322 44 2512m g R Q mgL B L =- 【解析】 【详解】 (1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为: 112E B Lv =⨯ 感应电流:11E I R = 由力的平衡得:12BI L mg ⨯= 解以上各式得:122 4mgR v B L = (2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势 2222E B Lv =⨯ 感应电流:2 2E I R = 由力的平衡得:222BI L mg ⨯=

解以上各式得:222 16mgR v B L = 设感应电流在线圈中产生的热量为Q ,由能量守恒定律得: 22122 mg L Q mv ⨯-= 解以上各式得:322 44 2512m g R Q mgL B L =- 2.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。电源电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。已知导体棒的质量为m ,磁感应强度为B ,导轨间距为L ,导体棒及导轨电阻均不计,电阻R 已知。闭合电键,导体棒在安培力的作用下开始运动,则: (1)导体棒的最终速度? (2)在整个过程中电源释放了多少电能? (3)在导体棒运动过程中,电路中的电流是否等于 E R ,试判断并分析说明原因。 【答案】(1)E v BL =;(2) 2 22 2mE B L ;(3)见解析 【解析】 【分析】 【详解】 (1) 闭合电键,导体棒在安培力的作用下开始运动做加速运动,导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,安培力减小,加速度减小,当加速度为0时,速度达到最大值,之后做匀速运动,此时感应电动势与电源电动势相等。设导体棒的最终速度v ,则有 E BLv = 解得 E v BL = (2)在整个过程中电源释放的电能转化为导体棒的动能,导体棒获得的动能为 2 222 122k mE E mv B L ∆== 所以在整个过程中电源释放的电能为2 22 2mE B L

高考物理电磁感应现象压轴题专项复习及答案解析

高考物理电磁感应现象压轴题专项复习及答案解析 一、高中物理解题方法:电磁感应现象的两类情况 1.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。 (2)线圈中的电流大小。 (3)AB 边产生的焦耳热。 【答案】(1)22FR v B L =;(2)F I BL =;(3)4FL Q = 【解析】 【分析】 【详解】 (1)线圈向右匀速进入匀强磁场,则有 F F BIL ==安 又电路中的电动势为 E BLv = 所以线圈中电流大小为 = =E BLv I R R 联立解得 22 FR v B L = (2)根据有F F BIL ==安得线圈中的电流大小 F I BL = (3)AB 边产生的焦耳热 22( )4AB F R L Q I R t BL v ==⨯⨯ 将22 FR v B L = 代入得 4 FL Q =

2.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h

高考物理压轴题专项练习:电磁感应现象 含答案

高考物理压轴题专项练习:电磁感应现象 一、解答题(共15小题) 1. 【2018海淀零模24】麦克斯韦电磁理论认为:变化的磁场会在空间激发一种电场,这种电场与 静电场不同,称为感生电场或涡旋电场。 在如图甲所示的半径为r的圆形导体环内,存在以圆环为边界竖直向上的匀强磁场,磁感应强度大小随时间的变化关系为B=kt(k>0且为常量)。该变化的磁场会在空间产生圆形的涡旋电场,如图乙所示,涡旋电场的电场线与导体环具有相同圆心的同心圆,同一电场线上各点场强大小相同,方向沿切线。导体环中的自由电荷就会在感生电场的作用下做定向运动,产生感应电流,或者说导体中产生了感应电动势,涡旋电场力充当非静电力,其大小与涡旋电场的场强E关系满足F=Eq。 (1)根据法拉第电磁感应定律,推导导体环中产生的感应电动势ɛ; (2)在乙图中以圆心O为坐标原点,向右建立一维x坐标轴,推导在x轴上各处电场强度的大小E与x之间的函数表达式,在图中定性画出E−x图象; (3)图丙为乙的俯视图,去掉导体环,在磁场圆形边界上有M、N两点,MN之间所夹的小圆弧恰为整个圆周的1 ;将一个带电量为+q的带电小球沿着圆弧分别顺时针、逆时针从M移 6 动到N,求涡旋电场力分别所做的功。在此基础上,对比涡旋电场和静电场,说明涡旋电场 中为什么不存在电势的概念。

2. 质量为m、带电荷量为+q的绝缘小球,穿在半径为r的光滑圆形轨道上,轨道平面水平。空间分布有随时间变化的磁场,磁场方向竖直向上,俯视如图甲所示。磁感应强度B随时间的变化规律如图乙所示。其中B0、T0是已知量。设小球在运动过程中电荷量保持不变,对原磁场的影响可忽略。 (1)若圆环由金属材料制成,求在t=T0到t=2T0这段时间内圆环上感应电动势的大小; (2)若圆环由绝缘材料制成,在t=0到t=T0这段时间内,小球不受圆形轨道的作用力,求小球的速度的大小v0; (3)已知在竖直向上的磁感应强度增大或减少的过程中,将产生漩涡电场,其电场线是在水平面内一系列的沿顺时针或逆时针方向的同心圆,同一条电场线上各点的场强大小相等。其大。若t=0时刻小球静止,求t=0到t=3.5T0小球运动的路程和t=3.5T0时小为E=e 2πr 小球对轨道的作用力F的大小。(不计小球的重力) 3. 如图甲所示,斜面的倾角α=30∘,在斜面上放置一矩形线框abcd,ab边的边长L1=1m,bc 边的边长L2=0.6m,线框的质量m=1kg,线框的电阻R=0.1Ω,线框受到沿斜面向上的恒 。线框的边ab//ef//gℎ,斜面力F的作用,已知F=15N,线框与斜面间的动摩擦因数μ=√3 3 的ef ℎg区域有垂直斜面向上的匀强磁场,磁感应强度B随时间t的变化情况如图乙的B−t 图象所示,时间t是从线框由静止开始运动起计时的。如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gℎ线的距离x=5.1m,取g=10m/s2。求: (1)线框进入磁场前的加速度a;

电磁感应现象压轴题试卷及答案

电磁感应现象压轴题试卷及答案 一、高中物理解题方法:电磁感应现象的两类情况 1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求: (1)金属棒pq到达圆弧的底端时,对圆弧底端的压力; (2)金属棒pq运动到时,金属棒gh的速度大小; (3)金属棒gh产生的最大热量。 【答案】(1) (2) (3) 【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量; 解:(1)金属棒pq下滑过程中,根据机械能守恒有: 在圆弧底端有 根据牛顿第三定律,对圆弧底端的压力有 联立解得 (2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有 对于金属棒pq有 对于金属棒gh有

高中物理电磁感应现象压轴题试卷含答案

高中物理电磁感应现象压轴题试卷含答案 一、高中物理解题方法:电磁感应现象的两类情况 1.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间 接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数 0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整 个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =. ()1求0t =时棒所受到的安培力0F ; ()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系 式; ()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去 外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q . 【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知: 0.2 0.1T /s 2 B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V B E Ld t t Φ= == 感应电流为:0.25A E I R = = 可得0t =时棒所受到的安培力: 000.025N F B IL ==,方向水平向右; ()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>= 故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=-

高考物理电磁感应现象压轴难题综合题含答案解析

高考物理电磁感应现象压轴难题综合题含答案解析 一、高中物理解题方法:电磁感应现象的两类情况 1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰) (1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离; (3)在两根杆相互作用的过程中,求回路中产生的电能. 【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v 设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有 2h x v g =2h x s v g +=根据动量守恒 012mv mv mv =+ 求得: 210m/s v = (2)ab 杆运动距离为d ,对ab 杆应用动量定理 1BIL t BLq mv == 设cd 杆运动距离为d x +∆

22BL x q r r ∆Φ∆= = 解得 1 22 2rmv x B L ∆= cd 杆运动距离为 1 22 27m rmv d x d B L +∆=+ = (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能 222 012111100J 222 Q mv mv mv = --= 2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求: (1)当线圈的对角线ac 刚到达gf 时的速度大小; (2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少? 【答案】(1)1224mgR v B L = (2)322 44 2512m g R Q mgL B L =- 【解析】 【详解】 (1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为: 112E B Lv =⨯

相关文档
最新文档