《平面直角坐标系》典型例题

《平面直角坐标系》典型例题
《平面直角坐标系》典型例题

平面直角坐标系 小测试

一、选择题

1、在平面直角坐标系中,点P (-2,2

x +1)所在的象限是( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限 2、若点P (a ,a -2)在第四象限,则a 的取值范围是( ).

A .-2<a <0

B .0<a <2

C .a >2

D .a <0 3、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( )

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限 4、对任意实数x ,点2(2)P x x x -,一定不在..

( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

5、点P (m+3,m+1)在x 轴上,则P 点坐标为( )

A .(0,-2)

B .(2,0)

C .(4,0)

D .(0,-4)

6、如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将矩形OABC 绕点O 旋转180°,旋转后的图形为矩形OA 1B 1C 1,那么点B 1 的坐标为( ).

A. (2,1)

B.(-2,l)

C.(-2,-l)

D.(2,-1)

7、若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(2,-2)或(-2,2) 8、已知点P (x ,y )在第四象限,且│x │=3,│y │=5,则点P 的坐标是( ) A .(-3,5) B .(5,-3) C .(3,-5) D .(-5,3) 二、填空题

9、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 10、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。 11、若点A (2,a )关于x 轴的对称点是B (b ,-3)则ab 的值是 .

12、 在平面直角坐标系中,点A (1,2)关于y 轴对称的点为点B (a ,2),则a = . 13、点A (1-a ,5),B (3,b )关于y 轴对称,则a+b=______.

14、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a = ,点的坐标为 。 15、当b=______时,点B(-3,|b-1|)在第二、四象限角平分线上.16、已知点P (m ,n )到x 轴的距离为3,到y 轴的距离等于5,则点P 的坐标是 。 17、已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 .

平面直角坐标系

拓展1:考平移后点的坐标 知识解析:

1、将点(x ,y )向右(或左)平移a 个单位长度,可以得到对应点(x +a ,y )(或(x -a ,y ));

2、将点(x ,y )向上(或下)平移b 个单位长度,可以得到对应点(x ,y +b )(或(x ,y -b )).

1、在平面直角坐标系中,点P (-1,2)向右平移3个单位长度后的坐标是( )

A.(2,2)

B.(-4,2)

C.(-1,5)

D.(-1,-1)

2、已知正方形ABCD 的三个顶点坐标为A (2,1),B (5,1),D(2,4),现将该正方形向下平移3个单位长度,再向左平移4个单位长度,得到正方形A'B'C'D',则C ’点的坐标为( )

A. (5,4)

B. (5,1)

C. (1,1)

D. (-1,-1)

3、在平面直角坐标系中,已知线段AB 的两个端点分别是A ( 4 ,-1). B (1, 1) 将线段AB 平移后得到线段A 'B ',若点

A '的坐标为 (-2 , 2 ) ,则点

B '的坐标为( )

A . ( -5 , 4 )

B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1)

4、如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b 的值为( )

A .2

B .3

C .4

D .5

5、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( ) A (3,3) B (5,3) C (3,5) D (5,5)

6、在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D 的坐标为( ) A .(7,2) B. (5,4) C.(1,2) D. (2,1)

7、如图所示,在平面直角坐标系中, ABCD 的顶点A ,B ,D 的坐标分别是(0,0)

,(5,0),(2,3),则顶点C 的坐标是( )

A .(3,7)

B .(5,3)

C .(7,3)

D .(8,2)

8、 在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.

9、将点P (-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P /

,则点P /

的坐标为 。 10.将点A (-3,-2)先沿y 轴向上平移5个单位,再沿x 轴向左平移4个单位得到点A ,则点A ' 的坐标是 . 11、在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .

拓展2:平行于X 轴、Y 轴的直线的特点

)

b

x

平行于x 轴的直线上点的纵坐标相同;平行于y 轴的直线上点的横坐标相同

1

、已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________. 2、已知点A(1,2),AC ∥y 轴, AC=5,则点C 的坐标是 _____________. 3、如果点A (),3a -,点B ()2,b 且AB//x 轴,则_______ 4、如果点A ()2,m ,点B (),6n -且AB//y 轴,则_______

5、已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 .

6、已知长方形ABCD 中,AB=5,BC=8,并且AB ∥x 轴,若点A 的坐标为(-2,4),则点C 的坐标为_______________.

拓展3:考特定条件下点的坐标

1、如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标不变,纵坐标分别变为原来的1

2

,则点A 的对应点的坐标是( ).

A.(﹣4,3)

B.(4,3)

C.(﹣2,6)

D.(﹣2,3)

2、如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( ). A.(-1,1) B.(-2,-1) C.(-3,1) D.(1,-2)

3、若点P (x ,y )的坐标满足x +y =xy ,则称点P 为“和谐点”。请写出一个“和谐点”的坐标,答: .

4、如图,所在的位置坐标为(-1,-2)(2,-2)所在位置坐标为 .

5、如图是一台雷达探测相关目标得到的结果,若记图中目标A 的位置为(?2,90°),则其余各目标的位置分别是多少?

拓展4:面积的求法(割补法)

1、已知:A(3,1),B(5,0),E(3,4),则△ABE 的面积为________.

2、如图,在四边形ABCD 中,A 、B 、C 、D 的四个点的坐标分别为(0,2)(1,(6,2)(2,4),求四边形ABCD 的面积。

3、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A

别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形

(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S =ABDC S 四边形, 若存在这样一点,求出点P 的坐标,若不存在,试说明理由.

4、如图为风筝的图案.

(1)若原点用字母O 表示,写出图中点A ,B ,C 的坐标. (2)试求(1)中风筝所覆盖的平面的面积.

拓展5:根据坐标或面积的特点求未知点的坐标

1、在平面直角坐标系中,O 是坐标原点,已知A 点的坐标为(1,1),?请你在坐标轴上找出点B ,使△AOB 为等腰三角形,则符合条件的点B 共有( )

A .6个

B .7个

C .8个

D .9个

2、一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为( ) A .(2,2) B .(3,2) C .(3,3) D .(2,3)

3、在直角坐标系中,已知A (1,0)、B (-1,-2)、C (2,-2)三点坐标,若以 A 、B 、C 、D 为顶点的四边形是平行四边形,那么点D 的坐标可以是 . ①(-2,0) ②(0,-4) ③(4,0) ④(1,-4)

4、在平面直角坐标系中,点A 的坐标为(11)

,,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.

5、在直角坐标系中,已知点A (-5,0),点B (3,0),△ABC 的面积为12,试确定点C 的坐标特点.

拓展6:考有规律的点的坐标

1、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其

x

O B B 1B 2

B 3x

y

A A 1A 2

A 3

行走路线如下图所示.

(1)填写下列各点的坐标:A 4( , ),A 8( , ),A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); (3)指出蚂蚁从点A 100到点A 101的移动方向.

2、一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ). A .(4,O)

B.(5,0)

C .(0,5)

D .(5,5)

3、如图,已知A l (1,0)、

A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、A 5(2,-1)、….则点A 2007的坐标为________.

4、将杨辉三角中的每一个数都换成分数 ,得到一个如图4所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数

12

1

.那么(9,2)表示的分数是 . 5、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2015次,点P 依次落在点123P P P P ,,,,……,P 2015的位置,则点P 2015的横坐标为 .

6、如图,在平面直角坐标系中,按一定的规律将△OAB 逐次变换成△OA 1B 1,△OA 2B 2,△OA 3B 3等。

已知A(1,3)→ A 1(2,3)→A 2(4,3)→A 3(8,3),

B(2,0)→ B 1(4,0)→B 2(8,0)→B 3(16,0).

⑴请写出按此规律得到的△OA 5B 5中,点A 5与B 5的坐标,并求出△OA 5B 5的面积S 5。 ⑵试用含n 的代数式来表示按这些规律得到的△OA n B n 中,点A n 、B n 的坐标及其面积S n 。

O

1 A 1

A 2

A 3 A 4 A 5

A 6

A 7 A 8 A 9

A 10

A 11 A 12

x

y

平行线的判定和性质练习题

- 平行线的判定定理和性质定理 [一]、平行线的判定 一、填空 1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ . 2.若a⊥c,b⊥c,则a b . 3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。 6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由: (1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( ) 8.如图6,尽可能多地写出直线l 1∥l 2的条件: . 9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空: (1)∵∠A =∠ (已知), ∴AC∥ED( ); (2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题 11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF. A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 A F C D B E 图8 E B A F D C A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

平行线的判定练习题

创作编号:BG7531400019813488897SX 创作者:别如克* 平行线的判定习题精选 一、填空题: 1.如图③∵∠1=∠2,∴_______∥________()∵∠2=∠3,∴_______∥________()2.如图④∵∠1=∠2,∴_______∥________()∵∠3=∠4,∴_______∥________() 二、选择题: 1.如图⑦,∠D=∠EFC,那么() A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF 2.如图⑧,判定AB∥CE的理由是() A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3.如图⑨,下列推理正确的是() A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥b C.∵∠1=∠2,∴c∥d D.∵∠1=∠3,∴c∥d 4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6, ③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是() A.①③B.②④C.①③④D.①②③④ 三、完成推理,填写推理依据: 1.如图⑩∵∠B=∠_______,∴AB∥CD() ∵∠BGC=∠_______,∴CD∥EF() ∵AB∥CD ,CD∥EF,∴AB∥____() 2.如图⑾填空: (1)∵∠2=∠B(已知) ∴AB__________() (2)∵∠1=∠A(已知) ∴__________() (3)∵∠1=∠D(已知) ∴__________()(4)∵_______=∠F(已知) 第1页

第2页 1 3 2 A E C B F 图10 ∴ AC ∥DF ( ) 3.已知,如图∠1+∠2=180°,填空。 ∵∠1+∠2=180°( )又∠2=∠3( ) ∴∠1+∠3=180°∴_________( ) 四、证明题 1.如图:∠1=?53,∠2=?127,∠3=?53, 试说明直线AB 与CD ,BC 与DE 的位置关系。 2.如图:已知∠A=∠D ,∠B=∠FCB ,能否确定ED 与CF 的位置关系, 请说明理由。 3.已知:如图, , ,且 . 求证:EC ∥DF. 4.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°, 写出图中平行的直线,并说明理由. 5.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ. 6.已知:如图:∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。 求证:GH ∥MN 。 F 2 A B C D Q E 1 P M N 图11

高三高考平面向量题型总结,经典

平面向量 一、平面向量的基本概念: 1.向量:既有大小又有方向的量叫做________.我们这里的向量是自由向量,即不改变大小和方向可以平行移动。 向量可以用_________来表示.向量的符号表示____________________. 2.向量的长度:向量的大小也是向量的长度(或_____),记作_________. 3.零向量:长度为0的向量叫做零向量,记作________. 4.单位向量:__________________________. 5.平行向量和共线向量:如果向量的基线平行或重合,则向量平行或共线;两个非零向量方向相同或相反.记作________规定:___________________. 注意:理解好共线(平行)向量。 6.相等向量:_______________________. 例:下列说法正确的是_____ ①有向线段就是向量,向量就是有向线段; ②,,a == 则c a = ;③,//,//a a // ④若CD AB =,则A ,B ,C ,D 四点是平行四边形的四个顶点; ⑤所有的单位向量都相等; 二、向量的线性运算: (一)向量的加法: 1.向量的加法的运算法则:____________、_________和___________. (1)向量求和的三角形法则:适用于任何两个向量的加法,不共线向量或共线向量;模长之间的不等式关系_______________________;“首是首,尾是尾,首尾相连” 例1.已知AB=8,AC=5,则BC 的取值范围__________ 例2.化简下列向量 (1)+++ (2))()()(+++++ (2)平行四边形法则:适用不共线的两个向量,当两个向量是同一始点时,用平行四边形法则; a + 是以a ,b 为邻边的平行四边形的一条对角线,如图: 例1.(09 )设P 是三角形ABC 所在平面内一点,BP BA BC 2=+,则 A.0=+PB PA B.0=+PC PA C.0=+PB PC D.0=++PC PB PA 例2.(13四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AO AD AB λ=+ ,则.______=λ (3)多边形法则 2.向量的加法运算律:交换律与结合律 (二)向量的减法: 减法是加法的逆运算,A.PB PA OB OA BA -=-= (终点向量减始点向量)

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

平面向量典型例题67629

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k , 3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =( 3,1)+(0,2)=( 3,3), ∵a +2b 与c 垂直,∴(a +2b )·c = 3k +3 3=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .- 611 B .-116 C.611 D.11 6 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611 . 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

七年级数学平行线及其判定典型例题

本文由:361学习网https://www.360docs.net/doc/4a1488762.html, 搜集整理;小学数学教案https://www.360docs.net/doc/4a1488762.html, 七年级数学平行线及其判定典型例题 例1.已知直线 l 1和l 2均过点P,且l 1∥l 3,l 2∥l 3,则l 1与l 2的关系是什么?说明理由. 分析:这一例题是平行公理的直接应用,但题干部分的几何语句与平行线的传递性的几何语句又相一致,所以学生容易犯不认真读懂题,丢掉“过点P ”的前提要求,只看后面部分就做出平行的错误判断,解决办法就是提醒学生逐字读懂题,并画图,先形成直观感知(即与先前的平行判断形成对立矛盾的感知)再联系所学的知识“经过直线外一点,有且只有一条直线与这条直线平行”加以解释,所以正确结论是l 1与l 2重合. 技巧:经过直线外一点,有且只有一条直线与这条直线平行. 例2.如图,直线AB 和CD 与直线MN 分别相交于点E 、F ,∠1=∠2,能否判定直线AB 与CD 平行?若能,请说明理由;若不能,请增加适当的条件使得AB ∥CD. 分析:本题是对平行线的判定定理的应用,具体地说,应是对三线八角概念教学的考察.学生极易将∠1和∠2理解为同位角,从而直接应用判定定理说“AB ∥CD ”,而实际上,∠1和∠2是四条线形成的角,不属于三线八角,不可以作为判定平行的依据.应引导学生观察“直线AB 和CD 被哪一条直线所截,形成同位角?”此时,自然产生可以补充条件“∠FEG=∠NFH ”,由于∠1=∠2,所以∠FEG+∠1=∠NFH+∠2,即∠FEB=∠NFD,从而利用“同位角相等,两直线平行”证明出AB ∥CD. 规律:认清图形中的角是否为三线八角中的角. A B C D E F G H 1 2 M N 例图

平面向量经典练习题(含答案)

高中平面向量经典练习题 【编著】黄勇权 一、填空题 1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。 2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。 3、已知点A(1,2),B(2,1),若→ AP=(3,4),则 → BP= 。 4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。 5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。 6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。 7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。 8、在△ABC中,D为AB边上一点,→ AD = 1 2 → DB, → CD = 2 3 → CA + m → CB,则 m= 。 9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。 10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD 上,且→ AP= 2 → PD,则点C的坐标是()。 二、选择题 1、设向量→ OA=(6,2),→ OB=(-2,4),向量→ OC垂直于向量→ OB,向量 → BC平行于 →OA,若→ OD + → OA= → OC,则 → OD坐标=()。 A、(11,6) B、(22,12) C、(28,14) D、(14,7) 2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标() A、(4 , 2) B、(3,1) C、(2,1) D、(1,0) 3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。 A、90° B、60° C、30° D、0° 4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()

高中数学典型例题分析

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

平行线的判定与性质培优经典题(1)

(第1题) O A B C D E (第2题) C D (第3题) D E D 平行线的判定与性质培优经典题(1) 知识要点: ① 对顶角、邻补角的概念、性质; ② “三线八角”的相关概念,垂线、平行线的相关概念;相关几何语言的运用; ③ 平行线的判定方法 、平行线的性质; ④ 构造平行线,构造截线与平行线相交. 基础训练: 1. 如图,AB 、CD 相交于点O ,且∠AOD +∠BOC =220°, OE 平分∠BOD . 求∠COE . 2. 如图,AB 、CD 相交于点O . 求∠BOD . 3. 如图,直线AB 、CD 、EF 相交于点O , 则∠1+∠2+∠3 =______ . 4. 如图,直线AB 、CD 交于点O . (1)若∠1+∠2 =70°,则∠4 =______ ;

(第5题) E D (第7题)O A B C D F E (第6题) O A B C D E F B D A (2)若∠3 -∠2 =70°,则∠1 =______ ; (3)若∠4 :∠2 =7:3,则∠1 =______ . 5. 如图,直线AB 、CD 、EF 交于点O ,∠1比∠2的3倍 大10°,∠AOD =110°. 求∠AOE . 6. 如图,直线AB 、CD 交于点O ,OE ⊥AB , OF ⊥CD .若∠EOD =3∠BOD . 求∠EOF . 7. 如图,已知直线AB 、CD 交于点O , OE ⊥AB , 垂足为O ,OF 平分∠AOC ,∠AOF :∠AOD =2:5. 求∠EOC .

C B 8. 如图,已知AD ⊥BD ,BC ⊥CD ,AB =3cm ,BC =1cm . 则BD 的取值范围是 . 经典题型: 1. (1) O 为平面上一点,过O 在这个平面上引2005条不同的直线l 1,l 2,l 3,…,l 2005,则可形成______对以 O 为顶点的对顶角. (山东省聊城市竞赛题) (2) 若平面上4条直线两两相交,且无三线共点,则一共有______对同旁内角. (第17届江苏省竞赛题) 2. 如图,已知AD ∥EG ∥BC ,AC ∥EF ,则图中 与∠1相等的角有( )对. A .4 B. 5 C. 6 D. 7 (西 宁市中 考题) 3. 如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED , CE 是∠ACB 的平分线. 求证:∠EDF =∠BDF . (天津市竞赛题)

平面向量经典习题_提高篇

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,- 2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与 c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116

C.6 11D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ =6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、 b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B.

(理)向量a ,b 满足|a |=1,|a -b |=3 2,a 与b 的夹角为60°, 则|b |=( ) A.12 B.1 3 C.1 4 D.15 [答案] A [解析] ∵|a -b |=32,∴|a |2+|b |2 -2a ·b =34, ∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2 -x =34,∵x >0,∴x =1 2 . 4. 若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示 c 为( ) A .-a +3b B .a -3b

高一数学必修三知识点总结及典型例题解析

新课标必修3概率部分知识点总结及典型例题解析 ◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不 可能事件( impossible event ) ? 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值 ? 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P ② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件 ()()()B P A P B A P B A +=+:,则有互斥和 ? 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n 1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()n m A P = ? 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点, 记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为 ()的侧度 的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 ) 几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多 颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。 互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件

平行线的判定练习题(有答案)

平行线的判定练习题(有答案) 平行线的判定专项练习60题(有答案) 1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE. 2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE. 3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE. 4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF. 5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由. 6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC. 平行线的判定--- 第 1 页共 1 页 7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,

求证:DE∥BC. 8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD. 9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD. 10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD. 11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF. 12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定--- 第 2 页共 2 页 13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?

14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由. 15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF. 16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF. 17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC. 18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么? 平行线的判定--- 第 3 页共 3 页 19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由. 20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.

高中数学典型题型与解析

高中数学典型题型与解析 一、选择题 1.设,21,a b R a b +∈+=、则2224ab a b --有( ) A .最大值 1 4 B .最小值14 C .最大值 212 - D .最小值54- 2. 某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四 位同学分别给出下列四个结果:①2 6C ;②6 65 64 63 62C C C C +++;③726 -;④2 6A .其中 正确的结论是( ) A .仅有① B .仅有② C .②和③ D .仅有③ 3. 将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:① a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0, 6);④a →的坐标可以有无数种情况,其中真命题的个数是( ) A .1 B .2 C .3 D .4 4. 不等式组? ??>->-a x a x 2412,有解,则实数a 的取值范围是( ) A .(-1,3) B .(-3,1) C .(-∞,1) (3,+∞) D .(-∞,-3) (1,+∞) 5. 设a >0,c bx ax x f ++=2 )(,曲线y =f (x )在点P (0x ,f (0x ))处切线的倾斜角 的取值范围为[0,4π ],则P 到曲线y =f (x )对称轴距离的取值范围为( ) A .[0,]1a B .0[,]21a C .0[,|]2|a b D .0[,|]21 |a b - 6. 已知)(x f 奇函数且对任意正实数1x ,2x (1x ≠2x )恒有 0) ()(2 121>--x x x f x f 则一定正确的是( ) A .)5()3(->f f B .)5()3(-<-f f C .)3()5(f f >- D .)5()3(->-f f 7. 将半径为R 的球加热,若球的半径增加R ?,则球的体积增加≈?V ( ) A . R R ?3 π3 4 B .R R ?2π4 C .2π4R D .R R ?π4 8. 等边△ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起,使平面APQ ⊥平面BPQC ,若折叠后AB 的长为d ,则d 的最小值为( ) A . a 43 B .a 45 C .4 3a D . a 410 9. 锐角α、β满足β α βα2424sin cos cos sin +=1,则下列结论中正确的是( ) A .2π≠ +βα B .2π<+βα C .2π>+βα D .2 π=+βα

最新平行线的判定证明练习题精选

精品文档 平行线的判定证明练习题精选 一.判断题: 1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。( ) 2.如图①,如果直线1l ⊥OB ,直线2l ⊥OA ,那么1l 与 2l 一定相交。( ) 3.如图②,∵∠GMB=∠HND (已知)∴AB ∥CD (同位角相等,两直线平行)( ) 二.填空题: 1.如图③ ∵∠1=∠2,∴_______∥________( )。 ∵∠2=∠3,∴_______∥________( )。 2.如图④ ∵∠1=∠2,∴_______∥________( )。 ∵∠3=∠4,∴_______∥________( )。 3.如图⑤ ∠B=∠D=∠E ,那么图形中的平行线有________________________________。 4.如图⑥ ∵ AB ⊥BD ,CD ⊥BD (已知) ∴ AB ∥CD ( ) 又∵ ∠1+∠2 = 180(已知) ∴ AB ∥EF ( ) ∴ CD ∥EF ( ) 三.选择题: 1.如图⑦,∠D=∠EFC ,那么( ) A .AD ∥BC B .AB ∥CD C .EF ∥BC D .AD ∥EF 2.如图⑧,判定AB ∥CE 的理由是( ) A .∠B=∠ACE B .∠A=∠ECD C .∠B=∠ACB D .∠A=∠AC E 3.如图⑨,下列推理错误的是( ) A .∵∠1=∠3,∴a ∥b B .∵∠1=∠2,∴a ∥b C .∵∠1=∠2,∴c ∥d D .∵∠1=∠2,∴c ∥d 4.如图,直线a 、b 被直线c 所截,给出下列条件,①∠1=∠2,②∠3=∠6, ③∠4+∠7=180°,④∠5+∠8=180°其中能判断a ∥b 的是( ) A .①③ B .②④ C .①③④ D .①②③④ 四.完成推理,填写推理依据: 1.如图⑩ ∵∠B=∠_______,∴ AB ∥CD ( ) ∵∠BGC=∠_______,∴ CD ∥EF ( ) ∵AB ∥CD ,CD ∥EF , ∴ AB ∥_______( ) 2.如图⑾ 填空: (1)∵∠2=∠B (已知) ∴ AB__________( ) (2)∵∠1=∠A (已知) ∴ __________( ) (3)∵∠1=∠D (已知)

高中数学经典例题、错题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M 到N的映射是() M N A M N B M N C M N D 1 2 3 e g h 1 2 3 e g h 1 2 3 e g h 1 2 3 e g h 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合 A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A 到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应)映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射 方向性 上题答案应选C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 高中数学经典例题、错题详解

(完整版)平行线的判定和性质经典题

平行线的判定和性质经典题 一.选择题(共18小题) 1.如图所示,同位角共有() 第1题第2题 A.6对B.8对C.10对D.12对 2.如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定 3.下列说法中正确的个数为() ①不相交的两条直线叫做平行线 ②平面内,过一点有且只有一条直线与已知直线垂直 ③平行于同一条直线的两条直线互相平行 ④在同一平面内,两条直线不是平行就是相交 A.1个B.2个C.3个D.4个 4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是() A.平行B.垂直C.平行或垂直D.无法确定 5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()A.150°和110°B.140°和100°C.110°和70°D.70°和30° 6.如图所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠BDE等于() 第6题第7题 A.40°B.50°C.60°D.不能确定 7.如图,AB∥CD,且∠BAP=60°﹣α,∠APC=45°+α,∠PCD=30°﹣α,则α=()A.10°B.15°C.20°D.30°

8.下列所示的四个图形中,∠1和∠2是同位角的是() A.②③B.①②③C.①②④D.①④ 9.已知∠AOB=40°,∠CDE的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于()A.50°B.130°C.50°或130°D.100° 10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有() 第10题第11题 A.5个B.4个C.3个D.2个 11.如图所示,BE∥DF,DE∥BC,图中相等的角共有() A.5对B.6对C.7对D.8对 12.已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=() A.50°B.130°C.100°D.50°或130° 13.如图所示,DE∥BC,DC∥FG,则图中相等的同位角共有() 第13题第14题 A.6对B.5对C.4对D.3对 14.如图所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有() A.2个B.3个C.4个D.5个 15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是() A.42°、138°B.都是10°

相关文档
最新文档