解析几何七种常规题型及方法

解析几何七种常规题型及方法
解析几何七种常规题型及方法

解析几何七种常规题型及方法

常规题型及解题的技巧方法 A:常规题型方面

一、一般弦长计算问题:

例1、已知椭圆()2222:10x y C a b a b +=>>,直线1:1x y l a b -=被椭圆C 截得的弦长为22,且6

3

e =,

过椭圆C 的右焦点且斜率为3的直线2l 被椭圆C 截的弦长AB , ⑴求椭圆的方程;⑵弦AB 的长度.

思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由1l 被椭圆C 截得的弦长为22,得228a b +=,………①

又6

3

e =,即2223c a =,所以223a b =………………………….②

联立①②得2

2

6,2a b ==,所以所求的椭圆的方程为22

162

x y +

=. ⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:()32y x =-, 代入椭圆C 的方程,化简得,251860x x -+= 由韦达定理知,1212186

,55

x x x x +== 从而()

2

12121226

45

x x x x x x -=

+-=

, 由弦长公式,得()

2

2

122646

11355

AB k x x =+-=+

?

=

, 即弦AB 的长度为

46

5

点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数22,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式。

二、中点弦长问题:

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

典型例题 给定双曲线x y 2

2

2

1-=。

过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

分析:设P x y 111(,),P x y 222(,)代入方程得x y 1

2

1221-=,x y 22

22

2

1-=。

两式相减得

()()()()x x x x y y y y 121212121

2

0+--+-=。

又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y

y y x x -

--=·。 又k y y x x y x =

--=

--12121

2

, 代入得24022x y x y --+=。

当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是24022x y x y --+=

说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。

例2、过点()4,1P 作抛物线28y x =的弦AB ,恰被点P 平分,求AB 的所在直线方程及弦AB 的长度。 思路分析:因为所求弦通过定点P ,所以弦AB 所在直线方程关键是求出斜率k ,有P 是弦的中点,

所以可用作差或韦达定理求得,然后套用弦长公式可求解弦长. 解法1:设以P 为中点的弦AB 端点坐标为()()1122,,,A x y B x y ,

则有22

11228,8y x y x ==,两式相减,得()()()1212128y y y y x x -+=-

又12128,2x x y y +=+= 则21

21

4y y k x x -=

=-,所以所求直线AB 的方程为()144y x -=-,即4150x y --=. 解法2:设AB 所在的直线方程为()41y k x =-+

由()241

8y k x y x

?=-+??=??,整理得283280ky y k --+=.

设()()1122,,,A x y B x y ,由韦达定理得128

y y k

+=

又∵P 是AB 的中点,∴

1212y y +=,∴8

24k k

=?= 所以所求直线AB 的方程为4150x y --=.

由24150

8x y y x --=??=? 整理得,22300y y --=,则12122,30y y y y +==- 有弦长公式得,()

222

11121212527

1142

k k AB y y y y y y =+-=+?

+-=

. 点评:解决弦的中点有两种常用方法,一是利用韦达定理及中点坐标公式来构造条件;二是利用端点

在曲线上,坐标满足方程,作差构造中点坐标和斜率的关系求解,然后可套用弦长公式求解弦长. 三、焦点弦长问题: 例3、(同例1、⑵) 另解:⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为: ()32y x =-,

代入椭圆C 的方程()

223216

2y x x y ?=-?

?+=??,化简得,251860x x -+=

由韦达定理知,1212186,55

x x x x +=

= 由2l 过右焦点,有焦半径公式的弦长为()1246

25

AB a e x x =-+=

. 即弦AB 的长度为

465

点评:在解决直线与圆锥曲线的弦长问题时,通常应用韦达定理与弦长公式,若涉及到焦点弦长问题,

则可利用焦半径公式求解,可大大简化运算过程.

弦长问题在高考题及模拟题中经常出现,从理论上讲,利用弦长公式

a k x x k AB /1||1||2212?+=-+=就能解决问题。但实际中,除个别简单题(本文从略)外,直接利用弦长公式会使问题变得非常繁琐。本文试图对此进行系统的总结,给出不同类型题目的解决策略。

一、两线段相等

类型I 有相同端点的不共线线段 例1、(2204,北京西城区二模) 已知定点)4,2(--A ,过点A 做倾斜角为?45的直线L ,交抛物线)0(22>=p px y 于A 、B 两点,

且||||||AC BC AB 、、

成等比数列 (1)求抛物线方程;

(2)问(1)中抛物线上是否存在D ,使得||||DC DB =成立?若存在,求出D 的坐标。

策略分析:由于D 、B 、C 三点不共线,要使得||||DC DB =成立,只需取BC 中点P ,满足BC DP ⊥。 由于这种类型题目的常见性与基础性,我们再举一个例子作为练习: 例2、(2005,孝感二模)

已知)2()2(),,1(),0,(b a b a y b x a

-⊥+== (1)求点P(x,y)的轨迹方程C ;

(2)若直线L :b kx y +=(0≠k )与曲线C 交与AB 两点,D(0,-1),且有||||BD AD =,试求b 的取值范围。

类型II 共线线段

例3、直线L 与x 轴不垂直,与抛物线22+=x y 交于AB 两点,与椭圆2222=+y x 交于CD 两点,与x 轴交于点M )0,(0x ,且||||BD AC =,求0x 的取值范围。

策略分析:不妨设A ),(11y x 在B ),(22y x 下方,C ),(33y x 在D ),(44y x 下方,由于ABCD 共线,要使

||||BD AC =,只需4213x x x x -=-,即4321x x x x ==+,结合韦达定理可得结果。

二、三线段相等 类型I 正三角形 例 4、(2003,北京春招)

已知动圆过定点P(1,0)且与定直线L :x=-1相切,点C 在L 上 (1)求动圆圆心的轨迹M 的方程;

(2)设过点P 且斜率为3-的直线与曲线M 相交于AB 两点

①问三角形ABC 能否为正三角形?若能,求点C 坐标;若不能,说明理由;

②问三角形ABC 能否为钝角三角形?若能,求点C 纵坐标的取值范围;若不能,说明理由。

策略分析:对于本题涉及的正三角形问题,其突出特点是,落在直线上的两个顶点实际是已知的。所以,只需设C (-1,y ),根据||||AB BC =和||||AB AC =分别列方程求y 值,判断两个y 值是否相等。 例5、(2005,学海大联考六)

如图,在直角坐标系中,点A(-1,0)、B(1,0)、P(x,y))0(≠y ,设BP OP AP ,,,与x 轴正方向的夹角分别为αβγ,且πγβα=++ (1)求点P 的轨迹G 的方程;

(2)设过点C )1,0(-的直线L 与轨迹G 交于 不同的两点MN ,问在x 轴上是否存在一点 E )0,(0x 使MNE ?为正三角形?

策略分析:设直线L :y=kx-1,由韦达定理求出MN 中点F 的坐标,再根据1-=?MN EF k k ,求出

)0,34(

2

k k E --;利用弦长公式求出|MN |,再根据||||2

3

EF MN =解得3±=k 。注意代入?验证。 类型II 共线线段 例6、(2004,广东高考卷)

设直线λ与椭圆

116

252

2=+y x 相交于AB 两点,λ又与双曲线122=-y x 相交于CD 两点,CD 三等分线段AB ,求λ的方程。

策略分析:实质是||||||DB CD AC ==。当λ与x 轴垂直时,λ方程为241

25±

=x ;当λ与x 轴不垂直

时,先由||||DB AC =,利用例3的方法,求得0=k 或0=b ,然后分类讨论求出ABCD 的横坐标,利用CD AB 3=,得出1316±

=b 和25

16±=k 。 三、线段成比例

类型I 两个已知点一个未知点 例7、(2005,黄冈调研)

已知椭圆C 的方程为)0(12222>>=+b a b x a x ,双曲线122

22=-b

x a x 的两条渐近线为21,L L ,过椭圆的

右焦点F 做直线L ,使1L L ⊥,又L 与2L 交于点P 。设L 与椭圆的两个交点由上到下依次为AB , (1)当21L L 与夹角为?60,双曲线的焦距为4时,求椭圆C 的方程; (2)当AP FA λ=时,求λ的最大值。

策略分析:F 点和P 点的坐标皆可求,根据定比分点公式,求出A 点坐标,代入椭圆方程即可。

类型II 一个已知点两个未知点 例8、(2004,全国卷)

设双曲线C :1222

=-y a

x (a>0)与直线L :1=+y x 相交于两个不同的点AB

(1)求双曲线的离心率e 的取值范围;

(2)设直线L 与y 轴的交点为P ,且PB PA 12

5

=,求a 值。 策略分析:设A ),(11y x 、B ),(22y x 、)1,0(P ,由PB PA 125

=

知2112

5x x =,于是,22

112

17

x x x =

+,2

22112

5x x x =

,前式平方除以后式消掉2x ,结合韦达定理即可求出a 。 注:更一般的,若某直线与圆锥曲线交点AB ,且

PB PA λ=,其中,),(00y x P ,则

)()(0201x x x x -=-λ,可以算出)()(0201x x x x -+-和))((0201x x x x --,利用例8思想求解;或者,

使用以下技巧2

210212

2102122101020201)()(22)(1

x x x x x x x x x x x x x x x x x x x x x x ++-++--+=--+--=+λλ,结合韦达定理。

(2)焦点三角形问题

椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆x a y b

222

21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,

∠=PF F 21β。

(1)求证离心率β

αβαsin sin )

sin(++=

e ;

(2)求|||PF PF 1323+的最值。

分析:(1)设||PF r 11=,|PF r 22=,由正弦定理得

r r c

122sin sin sin()

αβαβ==

+。 得

r r c

122++=

+sin sin sin()

αβαβ, β

αβαs i n s i n )s i n (++==

a c e (2)2233362)()(x ae a ex a ex a +=-++。 当0=x 时,最小值是23a ; 当a x ±=时,最大值是26323a e a +。

(3)直线与圆锥曲线位置关系问题

直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法 【高考会这样考】

1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入和设而不求的思想.

2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向量等在解决问题中的综合运用.

基础梳理

1.直线与圆锥曲线的位置关系

判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程. 即???

Ax +By +C =0,F (x ,y )=0,

消去y 后得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交; Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 无公共点.

(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行.

??

?

???

???????繁琐)利用两点间距离公式(易)利用一般弦长公式(容弦长问题直线与圆锥曲线相交的系)直线与圆锥曲线位置关代数角度(适用于所有位置关系主要适用于直线与圆的

几何角度关系直线与圆锥曲线的位置

直线与圆锥曲线)(.1 2.直线与圆锥曲线的位置关系:

⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。 ⑵.从代数角度看:设直线L 的方程与圆锥曲线的方程联立得到02=++c bx ax 。 ①.若a =0,当圆锥曲线是双曲线时,直线L 与双曲线的渐进线平行或重合;

当圆锥曲线是抛物线时,直线L 与抛物线的对称轴平行或重合。 ②.若0≠a ,设ac b 42-=?。a .0>?时,直线和圆锥曲线相交于不同两点,相交。

b.0=?时,直线和圆锥曲线相切于一点,相切。

c.0

双基自测

1.(人教A 版教材习题改编)直线y =kx -k +1与椭圆x 29+y 2

4=1的位置关系为( ). A .相交 B .相切 C .相离 D .不确定

解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),而点(1,1)在椭圆内部,故直线与椭圆相交. 答案 A 2.(2012·泉州质检)“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件

D .既不充分也不必要条件

解析 与渐近线平行的直线也与双曲线有一个公共点. 答案 A

3.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( ).

A .3 2

B .2 6

C .27

D .4 2

解析 根据题意设椭圆方程为x 2b 2+4+y 2

b 2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2

+83b 2y -b 4+12b 2=0,∵椭圆与直线x +3y +4=0有且仅有一个交点,∴Δ=(83b 2)2-4×4(b 2

+1)·(-b 4+12b 2)=0,即(b 2+4)(b 2-3)=0,∴b 2

=3, 长轴长为2b 2+4=27. 答案 C

4.(2012·成都月考)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( ). A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 2

4=1

解析 设双曲线的标准方程为x 2a 2-y 2

b 2=1(a >0,b >0),由题意知

c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,

y 2),则有:?????

x 21a 2-y 21b 2=1,x 22a 2-y 22

b 2=1,

两式作差得:y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=-12b 2-15a 2=4b 25a 2,又AB 的斜率是-15-0

-12-3=

1,所以将4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2

=5,所以双曲线的标准方程是x 24-y 25=1. 答案 B 5.(2011·泉州模拟)y =kx +2与y 2=8x 有且仅有一个公共点,则k 的取值为________.

解析 由???

y =kx +2,

y 2=8x ,

得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,即64-64k =0,解

得k =1.故k =0或k =1. 答案 0或1

考向一 直线与圆锥曲线的位置关系

【例1】?(2011·合肥模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ). A.??????-12,12 B .[-2,2] C .[-1,1] D .[-4,4]

[审题视点] 设直线l 的方程,将其与抛物线方程联立,利用Δ≥0解得.

解析 由题意得Q (-2,0).设l 的方程为y =k (x +2),代入y 2=8x 得k 2x 2+4(k 2-2)x +4k 2=0,∴当k =0时,直线l 与抛物线恒有一个交点;当k ≠0时,Δ=16(k 2-2)2-16k 4≥0,即k 2≤1,∴-1≤k ≤1,且k ≠0,综上-1≤k ≤1. 答案 C

研究直线和圆锥曲线的位置关系,一般转化为研究其直线方程与圆锥曲线方程组成的方程

组解的个数,但对于选择题、填空题,常充分利用几何条件,利用数形结合的方法求解.

【训练1】 若直线mx +ny =4与⊙O :x 2+y 2

=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ).

A .至多为1

B .2

C .1

D .0

解析 由题意知:4m 2+n 2

>2,即m 2+n 2

<2, ∴点P (m ,n )在椭圆x 29+y 2

4=1的内部,故所求交点个数是2个. 答案 B

典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。y p x p x y t x 210=+>+=()()

(1)求证:直线与抛物线总有两个不同交点

(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (1)证明:抛物线的准线为114

:x p =--

由直线x+y=t 与x 轴的交点(t ,0)在准线右边,得 t p t p >--++>14

440,而 由消去得x y t y p x y +==+??

?2

1()

x t p x t p 2220-++-=()()

?=+--()()2422t p t p =++>p t p ()440 故直线与抛物线总有两个交点。

(2)解:设点A(x 1,y 1),点B(x 2,y 2) ∴+=+=-x x t p x x t p 121222, 1-=?∴⊥OB OA k k OB OA Q 则x x y y 12120+= 又y y t x t x 1212=--()() ∴+=-+=x x y y t t p 1212220()

∴==+p f t t t ()22

又,得函数的定义域是p t p f t >++>0440() ()()-?+∞200,,

(4)圆锥曲线的有关最值(范围)问题

圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。

解决最值的方法:一是代数法,建立目标函数,转化为函数的最值问题,注意到自变量的范围;二是几何法,考虑某些量的几何特征及意义,利用图形性质求解。

例3 求椭圆22

11612

x y +

=上的点P 到直线L :x -2y -12=0的最大距离和最小距离。 方法1:(求切点)设与L 平行的直线与椭圆相切于点P(x 0,y 0),由椭圆方程223448x y +=得此切线方程003448x x y y +=,∵12k =

,∴0031

42

x y -=,即00320x y +=(1),又22003448x y +=(2),解(1)(2)得切点的坐标为P 1(-2,3)P 2(2,-3)。设点P 到直线L 的距离为d ,由点到直线的距离公

式,得max 45d =,min 4

55

d =

。 方法2:(判别式法)设与L 平行的椭圆的切线方程为x -2y+m=0,代入椭圆方程,消去x 得

2216123480y my m -+-=,由△=22(12)416(348)0m m --??-= 得264m =,8m =±。

当m=8时,切线方程x -2y+8=0,此时123216

m

y =

=?,切点为P 1(-2,3); 当m=-8时,切线方程x -2y -8=0,此时123216

m

y =

=-?,切点为P 2(2,-3)设点P 到直线L 的距离为d ,由点到直线的距离公式,得max 45d =,min 4

55

d =。 方法3:(参数法)设椭圆上任意一点P(4cos θ,23sin θ),它到直线L 的距离为

|4cos 43sin 12|853

|sin()|5625

d θθπθ--=

=--,∴当sin()16πθ-=-时,max 45d =;

当s i n ()16

π

θ-=

时,min 4

55

d =

。 点评:方法1、方法2可以求出椭圆上的最远点和最近点的坐标,方法3利用椭圆的参数方程,建立目标函数,简洁明了,但求切点的坐标较复杂。

例4 已知定点A(0,3)点B 、C 分别在椭圆2216413x y +=的准线上运动,当∠BAC=90°时,求△ABC 面积的最大值。

解:椭圆2216

413

x y +=的两条准线方程分别为:y=1或y=-1。

点B 在直线y=1上且设B (a ,1),点C 在直线y=-1上且设

C (b ,-1),由于∠BAC=90°,A(0,3),所以2AB k a -=,4

AC k b

-= AB k 〃AC k =81ab

=-,ab=-8。1||||2ABC S AB AC =? =222222114161646422a b a b a b ++=+++=2211612816()82a a

++≥,当且仅当2216

a a =

,即2a =±,4b = 时△ABC 面积的值最大为8。

【例3】?(2011·湘潭模拟)已知椭圆x 22+y 2

=1的左焦点为F ,O 为坐标原点. (1)求过点O 、F ,并且与直线l :x =-2相切的圆的方程;

(2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.

[审题视点] (1)求出圆心和半径,得出圆的标准方程;

(2)设直线AB 的点斜式方程,由已知得出线段AB 的垂直平分线方程,利用求值域的方法求解.

B x y

A C

O 图1 ·

解 (1)∵a 2=2,b 2

=1,∴c =1,F (-1,0),

∵圆过点O ,F ,∴圆心M 在直线x =-1

2上.

设M ? ????-12,t ,则圆半径r =????

??? ????-12-(-2)=32,

由|OM |=r ,得

? ??

??-122+t 2=3

2,解得t =±2,

∴所求圆的方程为? ??

??x +122

+(y ±2)2=94.

(2)设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2

=1, 整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.

∵直线AB 过椭圆的左焦点F 且不垂直于x 轴, ∴方程有两个不等实根.

如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),

则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 2

2k 2+1

y 0=k (x 0+1)=k

2k 2+1

∴AB 的垂直平分线NG 的方程为y -y 0=-1

k

(x -x 0).

令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k

22k 2+1

=-k 22k 2+1=-12+1

4k 2+2

∵k ≠0,∴-1

2<x G <0,

∴点G 横坐标的取值范围为? ??

??

-12,0.

直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想

和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型. 【训练3】 (2012·金华模拟)已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两

点.当直线l 的斜率是12时,AC →=4AB →.

(1)求抛物线G 的方程;

(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.

解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =1

2

(x +4),即x =2y -4.

由???

x 2

=2py ,x =2y -4

得2y 2-(8+p )y +8=0,

∴?????

y 1y 2=4, ①y 1+y 2

=8+p

2, ②

又∵AC

→=4AB →,∴y 2

=4y 1

,③ 由①②③及p >0得:y 1=1,y 2=4,p =2, 得抛物线G 的方程为x 2=4y .

(2)设l :y =k (x +4),BC 的中点坐标为(x 0,y 0),

由???

x 2

=4y ,y =k (x +4)

得x 2-4kx -16k =0,④ ∴x 0=x C +x B

2

=2k ,y 0=k (x 0+4)=2k 2+4k .

∴线段BC 的中垂线方程为y -2k 2-4k =-1

k (x -2k ), ∴线段BC 的中垂线在y 轴上的截距为: b =2k 2+4k +2=2(k +1)2,

对于方程④,由Δ=16k 2+64k >0得k >0或k <-4. ∴b ∈(2,+∞).

二、定值问题

解决定值问题的方法:将问题涉及的几何式转化为代数式或三角式,证明该式的值与参数无关。

例1 A 、B 是抛物线22y px =(p >0)上的两点,且OA ⊥OB ,求证: (1)A 、B 两点的横坐标之积,纵坐标之积分别都是定值; (2)直线AB 经过一个定点。

证明:(1)设A (11,x y )、B (22,x y ),则2112y px =,2222y px =。

∵22121222y y px px ?=?=22121244p x x p y y =-,∴2124y y p =-为定值,212124x x y y p =-=也为定值。 (2)∵2221212112()()2()y y y y y y p x x -=+-=-,∵12x x ≠,∴

212112

2y y p

x x y y -=

-+ ∴直线AB 的方程为:21111212

2y p y y x y y y y y -=-+++2

121224p p x y y y y =-

++ 12

2(2)p

x p y y =

-+,∴直线AB 过定点(2p ,0)。

例2 已知抛物线方程为21

2

y x h =-+,点A 、B 及点P(2,4)都在抛物线上,直线PA 与PB 的倾

斜角互补。

(1)试证明直线AB 的斜率为定值;

(2)当直线AB 的纵截距为m (m >0)时,求△PAB 的面积的最大值。 分析:这类问题一般运算量大,要注意函数与方程、数形结合、分类讨论等思想方法的灵活运用。

解析:(1)证明:把P(2,4)代入21

2

y x h =-+,得h=6。所以抛物线方程为:y -4=k(x -2),由

2

4(2)162

y k x y x -=-??

?=-+??,消去y ,得22440x kx k +--=。 所以244222

244A A

k x k y k k --?

==--???=-++?,因为PA 和PB 的倾角互补,所以PB PA k k k =-=-,用-k 代k ,得2

22244

B B x k y k k =-??=-++?,所以B A

AB A B y y k x x -=- 2244

22(22)k k k k --+=

----=824k k

=。 (2)设AB 的方程为y=2x+m(m >0),由2

2162y x m y x =+??

?=-+??,消去y 得: 242120x x m ++-=,令△=16-4(2m -12) >0,解得0<m <8,

221212||5[()4]AB x x x x =+-25[44(212)]40(8)m m =--=-,点P 到AB 的距离

d=|224|55

m m ?-+=,所以,2222

211||40(8)2(8)445PAB m S AB d m m m =?=?-?

=- =43311888()()(8)8()2233m m m -≤?=,所以,643

9

PAB S ≤ ,

当且仅当182m m =-,即163m =时,等号成立,故△PAB 面积最大值为6439

【例4】?(2011·四川)椭圆有两顶点A (-1,0)、B (1,0),过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点,

并与x 轴交于点P .直线AC 与直线BD 交于点Q .

(1)当|CD |=3

22时,求直线l 的方程.

(2)当点P 异于A 、B 两点时,求证:O P →·O Q →为定值. [审题视点] (1)设出直线方程与椭圆方程联立.利用根与系数的关系和弦长公式可求出斜率从而求出直

线方程;(2)关键是求出Q 点坐标及其与P 点坐标的关系,从而证得OP →·OQ →为定值.证明过程中要充

分利用已知条件进行等价转化. (1)解 因椭圆焦点在y 轴上,

设椭圆的标准方程为y 2a 2+x 2

b 2=1(a >b >0), 由已知得b =1,

c =1,

所以a =2,椭圆方程为y

2

2+x 2=1. 直线l 垂直于x 轴时与题意不符.

设直线l 的方程为y =kx +1,将其代入椭圆方程化简得 (k 2+2)x 2+2kx -1=0. 设C (x 1,y 1),D (x 2,y 2),

则x 1+x 2=-2k k 2+2,x 1·x 2=-1

k 2+2

|CD |=k 2+1·(x 1+x 2)2

-4x 1x 2=22(k 2+1)k 2+2

.

由已知得22(k 2+1)k 2+2

=3

22,解得k =±2.

所以直线l 的方程为y =2x +1或y =-2x +1. (2)证明 直线l 与x 轴垂直时与题意不符. 设直线l 的方程为y =kx +1(k ≠0且k ≠±1),

所以P 点坐标为? ??

??

-1k ,0.

设C (x 1,y 1),D (x 2,y 2),由(1)知x 1+x 2=-2k k 2+2,x 1·x 2=-1

k 2+2

直线AC 的方程为y =y 1

x 1+1(x +1),

直线BD 的方程为y =y 2

x 2-1

(x -1),

将两直线方程联立,消去y 得x +1x -1=y 2(x 1+1)

y 1(x 2-1).

因为-1<x 1,x 2<1,所以x +1x -1与y 2

y 1

异号.

? ????x +1x -12=y 22(x 1+1)2

y 21(x 2-1)

2 =2-2x 222-2x 21·(x 1+1)2

(x 2-1)

2=(1+x 1)(1+x 2)(1-x 1)(1-x 2) =1+-2k k 2+2+-1k 2

+21--2k k 2+2+

-1k 2+2

=?

????k -1k +12

. 又y 1y 2=k 2x 1x 2+k (x 1+x 2)+1 =2(1-k )(1+k )k 2+2=-2(1+k )2k 2+2·k -1k +1,

∴k -1k +1与y 1y 2异号,x +1x -1与k -1k +1同号, ∴x +1x -1=k -1k +1

,解得x =-k . 因此Q 点坐标为(-k ,y 0).

O P →·O Q →=? ??

??-1k ,0·()-k ,y

0=1.

故O P →·O Q →为定值.

解决圆锥曲线中的定值问题的基本思路很明确:即定值问题必然是在变化中所表现出来的

不变的量,那么就可以用变化的量表示问题中的直线方程、数量积等,其不受变化的量所影响的一个值即为定值,化解这类问题的关键是引进参数表示直线方程、数量积等,根据等式的恒成立、数式变换等寻找不受参数影响的量,解题过程中要注意讨论直线斜率的存在情况,计算要准确. 【训练4】 (2011·山东)在平

面直角坐标系xOy 中,已知椭圆C :x

2

3+y 2=1.如图所示,斜率为k (k >0)且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线x =-3于点D (-3,m ). (1)求m 2+k 2的最小值; (2)若|OG |2=|OD |·|OE |,求证:直线l 过定点.

(1)解 设直线l 的方程为y =kx +t (k >0),由题意,t >0.

由方程组????

?

y =kx +t ,x 23

+y 2=1,得(3k 2+1)x 2+6ktx +3t 2-3=0.

由题意Δ>0,所以3k 2+1>t 2. 设A (x 1,y 1),B (x 2,y 2),

由根与系数的关系得x 1+x 2=-6kt

3k 2+1

所以y 1+y 2=2t

3k 2+1

.

由于E 为线段AB 的中点,因此x E =-3kt

3k 2+1

y E =t

3k 2+1

此时k OE =y E x E

=-13k .所以OE 所在直线方程为y =-13k x ,又由题设知D (-3,m ),令x =-3,得m =1

k ,

即mk =1,

所以m 2+k 2≥2mk =2,当且仅当m =k =1时上式等号成立,

此时由Δ>0得0<t <2,因此当m =k =1且0<t <2时,m 2+k 2取最小值2.

(2)证明 由(1)知OD 所在直线的方程为y =-1

3k x , 将其代入椭圆C 的方程,并由k >0,

解得G ? ????-3k 3k 2+1,13k 2

+1. 又E ? ??

??-3kt 3k 2+1,t 3k 2+1,D ? ????-3,1k , 由距离公式及t >0得

|OG |2

=?

????-3k 3k 2+12+? ????13k 2+12=9k 2+13k 2+1,

|OD |= (-3)2

+? ??

??1k 2

=9k 2+1k ,

|OE |= ? ?

???-3kt 3k 2+12+? ??

??t 3k 2+12=t 9k 2+13k 2+1,

由|OG |2=|OD |·|OE |得t =k ,

因此直线l 的方程为y =k (x +1), 所以直线l 恒过定点(-1,0).

三、定点问题

处理这类问题有两种方法:一是从特殊入手,求出定点,再证明这个点与变量无关;二是直接推理、计算,并在计算过程中消去变量,从而得到定点。

例5(2001年全国高考)设抛物线22y px =(p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴,证明:直线AC 经过原点。

方法1:设直线方程为()2

p

y k x =-,A 11(,)x y ,B 22(,)x y ,

C 2(,)2p y -,∴2()22p y k x y px

?

=-???=?

,2

220py y p k --=,∴212y y p =-,11OA y k x =

,2122

OC y p k p y ==-,又∵2112y px =,∴11OC OA y k k x ==,即

k 也是直线OA 的斜率,所以AC 经过原点O 。 当k 不存在时,AB ⊥x 轴,同理可证OC OA k k =。

方法2:如图2过A 作AD ⊥l ,D 为垂足,则:AD ∥EF ∥BC 连结AC 与EF 相交于点N ,则

||||||||||||EN CN BF AD AC AB ==,||||

||||

NF AF BC AB =,由抛物线的定义知:|AF|=|AD|,|BF|=|BC|,∴

||||||||

||||||||

AD BF AF BC EN NF AB AB ??=

==.

点评:该题的解答既可采用常规的坐标法,借助代数推理进行,又可采用圆锥曲线的几何性质,借助平面几何的方法进行推理。解题思路宽,而且几何方法

较之解析法比较快捷便当,从审题与思维深度上看,几何法的采用,源于思维的深刻性。

典型例题

已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤

C

x

y

O F

B

A

图2

x

y

F

B

A

C

D

O 图3

N E

2p

(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。 分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。

解:(1)直线L 的方程为:y=x-a,将y=x-a 代入抛物线方程y 2=2px,得:设直线L 与抛物线两交点的坐标

分别为A (x 1,y 1),B(x 2,y 2),则???

??=+=+>-+221212)(204)(4a

x x p a x x a p a ,又y 1=x 1-a,y 2=x 2-a,

,2)2(80,0)2(8,2||0)2(8]4)[(2)()(||21221221221p a p p a p p p AB a p p x x x x y y x x AB ≤+<∴>+≤<+=-+=-+-=∴

解得:.4

2p a p -≤<-

(2)设AB 的垂直平分线交AB 与点Q ,令其坐标为(x 3,y 3),则由中点坐标公式得:

p a x x x +=+=

2

2

13, .2

)

()(221213p a x a x y y y =-+-=+=

所以|QM|2=(a+p-a)2+(p-0)2=2p 2.又△MNQ 为等腰直角三角形,所以|QM|=|QN|=P 2,所以 S △NAB =

2222

2

||22||||21p p p AB p QN AB =?≤?=?,即△NAB 面积的最大值为P 22。

(5)求曲线的方程问题

1.曲线的形状已知--------这类问题一般可用待定系数法解决。

例:已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。 分析:曲线的形状已知,可以用待定系数法。 设出它们的方程,L :y=kx(k ≠0),C:y 2=2px(p>0)

设A 、B 关于L 的对称点分别为A /、B /,则利用对称性可求得它们的坐标分别为:

A /

(12,11222+-+-k k k k ),B (1

)

1(8,116222+-+k k k k )。因为A 、B 均在抛物线上,代入,消去p ,得:k 2-k-1=0.解得:k=

251+,p=5

5

2. 所以直线L 的方程为:y=

251+x,抛物线C 的方程为y 2=5

5

4x. 2.曲线的形状未知-----求轨迹方程

典型例题

已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2

=1, 动点M 到圆C 的切线长与|MQ|的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明它是什么曲线。 分析:如图,设MN 切圆C 于点N ,则动点M 组成的集合是:

P={M||MN|=λ|MQ|},由平面几何知识可知:

|MN|2=|MO|2-|ON|2=|MO|2-1,将M 点坐标代入,可得:(λ2-1)(x 2+y 2)-4λ2x+(1+4λ2)=0.

当λ=1时它表示一条直线;当λ≠1时,它表示圆。这种方法叫做直接法。

(6) 存在两点关于直线对称问题

在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)

典型例题 已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆

C 上有不同两点关于直线对称。

分析:椭圆上两点(,)x y 11,(,)x y 22,代入方程,相减得31212()()x x x x +-+

412()y y +()y y 120-=。

又x x x =

+122,y y y =+122,k y y x x =--=-12121

4

,代入得y x =3。 又由y x

y x m

==+???34解得交点(,)--m m 3。

交点在椭圆内,则有()()-+-

21313213

13m 。

(7)两线段垂直问题

圆锥曲线两焦半径互相垂直问题,常用k k y y x x 1212

12

1···=

=-来处理或用向量的坐标运算来处理。

典型例题 已知直线l 的斜率为k ,且过点P (,)-20,抛物线C y x :()241=+,直线l 与抛物线C 有两个不同的交点(如图)。 (1)求k 的取值范围;

(2)直线l 的倾斜角θ为何值时,A 、B 与抛物线C 的焦点连线互相垂直。

分析:(1)直线y k x =+()2代入抛物线方程得

y

B A P

(-2,0) O x

M N Q O

k x k x k 222244440+-+-=(), 由?>0,得-<<≠110k k ()。

(2)由上面方程得x x k k 1222

44

=-, y y k x x 12212224=++=()(),焦点为O (,)00。 由k k y y x x k k OA OB ·==-=-12122211,得k =±

22,22arctan =θ或2

2

arctan -=πθ

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

1解析几何基本题型

解析几何基本题型 一.直线的斜率和倾斜角: 1.设直线1l :220x y -+= 的倾斜角为1α,直线2l :40mx y -+= 的倾斜角为2α,且 2190αα=+ ,则m 的值为 . 2.设直线0=++c by ax 的倾斜为α,且0cos sin =+αα,则a 、b 满足 。 3.已知直线l 经过)1,2(A 、),1(2m B )(R m ∈两点,那么直线l 倾斜角的取值范围是 。 4.直线01cos =++y a x 的倾斜角的取值范围是 。 5.已知点A (2,3),B (-3,-2),若直线l 过点P (1,1),且与线段AB 相交,则直线l 的斜率 k 的取值范围为 。 6.实数,x y 满足3250x y --= (31≤≤x ),则 x y 的取值范围为 . 7.已知直线210ax y a -++=.(1)若(1,1)x ∈-时,y >0恒成立,求a 的取值范围; (2)若1 [,1]6 a ∈时,恒有y >0,求x 的取值范围. 二.直线的方程: 1.下列四个命题中真命题的序号是 。 ①经过点),(00y x P 的直线都可以用方程)(00x x k y y -=-表示;②经过任意两个不同点),(111y x P 、),(222y x P 的直线都可以用方程))(())((121121y y x x x x y y --=--表示; ③不经过原点的直线都可以用方程1=+ b y a x 表示;④经过定点),0(b A 的直线都可以用方 程b kx y +=表示。 2.无论m 、n 取何实数值,直线0)2()3(=-++-n y n m x n m 都过一定点P ,则P 点坐标是 。 3.经过点)1,2(-P ,且在两坐标轴上截距的绝对值相等的直线有 条 4.直线过点)1,2(--,且在两坐标轴上的截距相等,则直线方程为 。

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A B C .23 D .5 9 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .3 B .3 C .3 D .13 3.【2016高考浙江理数】已知椭圆C 1:+y 2=1(m >1)与双曲线C 2:–y 2=1(n >0)的焦点重合,e 1, e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m b >0),四点P 1(1,1),P 2(0,1),P 3(–1, 2),P 4(1,2 )中恰有三点在椭圆C 上. (1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2 212 x y +=上,过M 作x 轴的垂线, 垂足为N ,点P 满足NP =u u u r u u u r 。

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

高中数学解析几何题型

解析几何题型 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22 162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =, 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-? =+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出2 211 14(2)32AB =+-?-=. 例3.如图,把椭圆22 12516 x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆22 12516 x y +=的方程知225, 5.a a =∴= ∴1234567 7277535.2 a PF P F P F P F P F P F P F a ?++++++==?=?= 考点3. 曲线的离心率

高考数学平面解析几何的复习方法总结

2019年高考数学平面解析几何的复习方法 总结 在高中数学知识体系中,平面解析几何是其中很大的一块,涉及到直线及其方程、线性规划、圆及其方程、椭圆及其方程、抛物线及其方程、双曲线及其方程以及曲线与方程的关系及其图像等具体的知识点。在高考的考查中,又可以将上述的7个知识点进行综合考查,更是增加了考查的难度。要想学好这部分知识,在高考总不丢分,以下几点是很关键的。 突破第一点,夯实基础知识。 对于基础知识,不仅一个知识点都要熟稔于心,还要有能力将这些零散的知识点串联起来。只有这样,才能形成属于自己的知识框架,才能更从容的应对考试。 (一)对于直线及其方程部分,首先我们要从总体上把握住两突破点:①明确基本的概念。在直线部分,最主要的概念就是直线的斜率、倾斜角以及斜率和倾斜角之间的关系。倾斜角α的取值范围是突破[0,π),当倾斜角不等于90°的时候,斜率k=tanα;当倾斜角=90°的时候,斜率不存在。②直线的方程有不同的形式,同学们应该从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。直线方程的不同形式突破需要满足的条件以及局限性是不同的,我们也要加以总结。

(二)对于线性规划部分,首先我们要看得懂线性规划方程组所表示的区域。在这里我们可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。 (三)对于圆及其方程,我们要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,我们要拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。只有这样,才能更加完整的掌握与圆有关的所有的知识。 (四)对于椭圆、抛物线、双曲线,我们要分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。 突破第二点,学习基本解题思想。 对于平面几何部分的学习,最基本的解题思想就是数形结合,还包括函数思想、方程思想、转化思想等。要想掌握数形结合这种思想方法,首先同学们心中要有坐标轴,要掌握好学过的各种平面几何的概念。其次,要掌握解决不同问题的方法。对于不同的题型,同学们要掌握不同的解题方法,并将这种解题方法及其例题记录在笔记本上。对于向量方法,最长用的地方就解决与斜率有关的问题;对于“设而不求”的方法,最常用到的地方就是两种不同的平面几何图形相交的情况下求弦长的问题;设点法,最长用到的地方就是两种曲线相切以及求最值得问题等。同学们要分门别类的进行总结,才能达到事半功倍的效

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

解析几何问题的题型与方法

解析几何问题的题型与方法 一、知识整合 高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。 其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法...............,这一点值得强化。 1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了. 2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题. 3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法. 4.掌握圆的标准方程:2 2 2 )()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θ θ =?? =?(θ为参数),明确各字母的意义,掌握直线与圆的位置关 系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法. 二、近几年高考试题知识点分析 2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及. 1.选择、填空题 1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主 (1)对直线、圆的基本概念及性质的考查 例 1 (04江苏)以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是_________. (2)对圆锥曲线的定义、性质的考查

高考数学:平面解析几何知识点

高考数学:平面解析几何知识点 1.数量积表示两个向量的夹角 【知识点的知识】 我们知道向量是有方向的,也知道向量是可以平行的或者共线的,那么,当两条向量与不平行时,那么它们就会有一个夹角θ,并且还有这样的公式:cosθ=.通过这公式,我们就可以求出两向量之间的夹角了. 【典型例题分析】 例:复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 解:=====cos60°+i sin60°. ∴复数z=+i与它的共轭复数对应的两个向量的夹角为60°. 故答案为:60°. 点评:这是个向量与复数相结合的题,本题其实可以换成是用向量(,1)与向量(,﹣1)的夹角. 【考点点评】 这是向量里面非常重要的一个公式,也是一个常考点,出题方式一般喜欢与其他的考点结合起来,比方说复数、三角函数等,希望大家认真掌握. 2.直线的一般式方程与直线的性质 【直线的一般式方程】 直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0. 【知识点的知识】 1、两条直线平行与垂直的判定 对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有: (1)l1∥l2?k1=k2;(2)l1⊥l2?k1?k2=﹣1. 2、直线的一般式方程: (1)一般式:Ax+By+C=0,注意A、B不同时为0.直线一般式方程Ax+By+C=0(B≠0)

化为斜截式方程y=﹣x﹣,表示斜率为﹣,y轴上截距为﹣的直线. (2)与直线l:Ax+By+C=0平行的直线,可设所求方程为Ax+By+C1=0;与直线Ax+By+C =0垂直的直线,可设所求方程为Bx﹣Ay+C1=0. (3)已知直线l1,l2的方程分别是:l1:A1x+B1y+C1=0(A1,B1不同时为0),l2:A2x+B2y+C2=0(A2,B2不同时为0),则两条直线的位置关系可以如下判别: ①l1⊥l2?A1A2+B1B2=0; ②l1∥l2?A1B2﹣A2B1=0,A1C2﹣A2B1≠0; ③l1与l2重合?A1B2﹣A2B1=0,A1C2﹣A2B1=0; ④l1与l2相交?A1B2﹣A2B1≠0. 如果A2B2C2≠0时,则l1∥l2?;l1与l2重合?;l1与l2相交?. 3.圆的标准方程 【知识点的认识】 1.圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆.定点叫做圆心,定长就是半径. 2.圆的标准方程: (x﹣a)2+(y﹣b)2=r2(r>0), 其中圆心C(a,b),半径为r. 特别地,当圆心为坐标原点时,半径为r的圆的方程为: x2+y2=r2. 其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件. 【解题思路点拨】 已知圆心坐标和半径,可以直接带入方程写出,在所给条件不是特别直接的情况下,关键是求出a,b,r的值再代入.一般求圆的标准方程主要使用待定系数法.步骤如下: (1)根据题意设出圆的标准方程为(x﹣a)2+(y﹣b)2=r2; (2)根据已知条件,列出关于a,b,r的方程组; (3)求出a,b,r的值,代入所设方程中即可.

解析几何(经典题型)

高中数学解析几何公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 2、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 3、 直线与圆锥曲线相交的弦长公式:? ??=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 4、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 5、 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面]2 0[π ∈ββα,,的夹角; (4)l 1与l 2的夹角为θ,∈θ]2 0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 6、 直线的倾斜角α与斜率k 的关系

解析几何经典例题

解析几何经典例题 圆锥曲线的定义就是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1、如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2、如图2,为双曲线的两焦点,P为其上一动点,从 的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3、如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地,求 抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4、①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) A、圆 B、椭圆 C、双曲线 D、抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹就是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5、如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

(完整版)解析几何七种常规题型及方法

解析几何七种常规题型及方法 常规题型及解题的技巧方法 A:常规题型方面 一、一般弦长计算问题: 例1、已知椭圆2222x y a b 1x y a b 2263, 过椭圆C 的右焦点且斜率为3的直线2l 被椭圆C 截的弦长AB , ⑴求椭圆的方程;⑵弦AB 的长度. 思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由1l 被椭圆C 截得的弦长为22,得228a b +=,………① 又63e =,即222 3 c a =,所以223a b =………………………….② 联立①②得2 2 6,2a b ==,所以所求的椭圆的方程为22 162 x y + =. ⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:()32y x =-, 代入椭圆C 的方程,化简得,251860x x -+= 由韦达定理知,1212186 ,55x x x x +== 从而() 2 12121226 45 x x x x x x -= +-= , 由弦长公式,得() 2 2 122646 11355 AB k x x =+-=+ ? =, 即弦AB 的长度为 46 5 点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数22,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式。 二、中点弦长问题: 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

典型例题 给定双曲线x y 2 2 2 1-=。 过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+--+-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --= --12121 2 , 代入得24022x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是24022x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 例2、过点()4,1P 作抛物线28y x =的弦AB ,恰被点P 平分,求AB 的所在直线方程及弦AB 的长度。 思路分析:因为所求弦通过定点P ,所以弦AB 所在直线方程关键是求出斜率k ,有P 是弦的中点, 所以可用作差或韦达定理求得,然后套用弦长公式可求解弦长. 解法1:设以P 为中点的弦AB 端点坐标为()()1122,,,A x y B x y , 则有22 112 28,8y x y x ==,两式相减,得()()()1212128y y y y x x -+=- 又12128,2x x y y +=+= 则21 21 4y y k x x -= =-,所以所求直线AB 的方程为()144y x -=-,即4150x y --=. () 由()241 8y k x y x ?=-+??=??,整理得283280ky y k --+=. 设()()1122,,,A x y B x y ,由韦达定理得128 y y k += ,

高中数学平面解析几何知识点

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

相关文档
最新文档