伽利略望远镜的原理及光路图

伽利略望远镜的原理及光路图

物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。

你可以用很低的费用制作一架伽利略式望远镜。从文化用品商店买一块直径、焦距大一些的眼镜片作为物镜和一块焦距、直径较小的透镜作为目镜。用胶水和小槽把两块镜片装在硬纸筒内,再做一个简单的台座,于是一架能够看到月亮上的群山、银河中的繁星和木星的卫星的望远镜便制成了。想想看,伽利略就是用这人发现的。但是切记,不要通过望远镜直接观察太阳,以免高温灼伤眼睛!伽利略的折射望远镜有一个令人讨厌的缺点,就是在明亮物体周围产生“假色”。“假色”产生的症结在于通常所谓的“白光”根本不是白

颜色的光,而是由组成彩虹的从红到紫的所有色光混合而成的。当光束进入物镜并被折射时,各种色光的折射程度不同,因此成像的焦点也不同,模糊就产生了。

1611年,另一位天文学家开普勒用两片双凸透镜分别作为物

镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式。但是“假色”问题仍然未能解决。

利珀希不是天文学家,从未想过把自己的新装置对准天空。但是没过多久,关于他的发现的消息传开了。幸运地是,意大利的帕多瓦大学教授伽利略得知了此事。伽利略很快就制造了一台折射望远镜。他以平凸透镜作为物镜,凹透镜作为目镜。从待研究的物体发出的光照射到望远镜物镜的一个玻璃透镜上,物镜使光线折射并把它集中于称为焦点的一点上,在那里便形成了发光体的像。这个像被目镜的透镜放大,进入人眼。

望远镜的基本原理

望远镜的基本原理 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。一般分为三种。 一、折射望远镜 折射望远镜是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。两种望远镜的成像原理如图1所示。 图1 伽利略望远镜是物镜是凸透镜而目镜是凹透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍

数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。其优点是结构简单,能直接成正像。 开普勒望远镜由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高。 因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱,如图2所示。 图2

伽利略望远镜设计原理

光电技术学院 ——望远镜系统结构设计专业:电子科学与技术 班级:光电子082班 姓名:张毅 学号:2008031161 指导老师:张翔

2010年5月28日 目录 第一章引言......................................................................................... . (3) 第二章概述 (3) 2.1 课程设计的目的及意义 (3) 2.2 课程设计的内容 (3) 2.3 望远镜的介绍 (3) 2.4 望远镜的分类 (4) 第三章伽利略望镜工作原理及发展简史 (5) 3.1 望远镜的工作原理 (5) 3.2 望远镜发展简史 (5) 第四章望远镜的主要特性分析 (6) 4.1 望远镜的主要特性分析 (6) 4.2 开普勒望远镜的参数计算 (8) 第五章物镜和目镜的选择 (9) 5.1 物镜的选择 (9) 5.2 物镜实例 (10) 5.3 目镜的选择 (12) 5.4 目镜实例 (13) 第六章测微准直望远镜 (15) 6.1 测微准直望远镜概述 (15) 6.2 测微准直望远镜计量特性 (15) 第七章棱镜转向系统 (16) 7.1 Porro棱镜结构及其点 (16) 7.2 Roof棱镜结构及其特点 (16) 7.3 折转形式望远镜系统分 (17) 7.4 类似棱镜结构晶体分析 (17) 第八章光学系统初始结构参数计算方法 (17) 第九章光栅 (19) 第十章心得体会 (19)

第十一章参考文献 (20) 第一章引言 本课程的任务是在学习工程光学基础、光学测试技术等技术基础课程的基础上,进行光学仪器的设计,目的是让学生了解光学设计中主要的环节,掌握光学仪器设计、开发的基本方法,以便今后能从事光学仪器的设计、研发工作。本课程主要研究光学仪器设计中的基本部分,如:光源、目镜、物镜、分化板等,以及光学仪器设计中考虑的基本问题,如:物象位置关系、系统放大倍数、系统分辨率、相差等。课程涉光学基础、光学测试技术、误差理论及数据处理、精密仪器设计等多方面。光学设计过程分为四个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及像质评价。了解光学系统的光学特性、光学系统的设计过程。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析。 关键词:光学系统成像质量像差像距望远镜 第二章概述 2.1 课程设计的目的及意义 运用应用光学的知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸,物镜组,目镜组及转向系统的简易设计原理。了解光学系统中pw法的基本原理。 2.2 课程设计的内容 初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。 目镜设计的特点、常用目镜的型式和像差分析。 2.3 望远镜的介绍 1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。 2.望远镜的一般特性 望远镜的光学系统简称望远系统,是由物镜和目镜组成。当用在观测无限远物体

伽利略望远镜设计

伽利略望远镜设计报告 1. 总体设计要求及方法 课题要求设计一个伽利略望远系统,要求:放大倍率为5X,筒长为250mm,物镜最大直径不大于25mm,接受器为人眼。 伽利略望远镜是由正光焦度的物镜和负光焦度的目镜组成,其放大倍率大于1。光路图如下: 图1 伽利略望远镜光路图 为对光学系统进行迭代设计和优化,采用光学设计软件Zemax对望远镜的物镜、目镜分别进行建模和优化,以取代繁琐复杂的光路计算。之后再将二者组合建模,并对最后的成像质量进行详细的评价。 2. 光学系统设计 2.1 初步参数设计 根据系统设计要求,镜筒长度250mm,而物镜到目镜的间距为:

视觉放大率要求为5x ,故有: l 应当略小于筒长,因此将l 设计为240mm ,计算得出物镜焦距f o ’为300mm ,目镜焦距f e 为60mm 。伽利略望远镜一般以人眼作为视场光阑,物镜框为视场光阑,同时为望远系统的入射窗。由于视场光阑不与物面重合,因此伽利略望远镜一般存在渐晕现象。出瞳应位于人眼观察处,为方便观察,设定出瞳距离目镜15mm 处,物镜的直径为25mm ,因此出瞳据物镜距离为: 当视场为50%渐晕时,望远镜的视场角为: 计算得出望远镜的视场角ω为2.8°,可见伽利略望远镜的视场非常小。 2.1 物镜设计 2.1.1 结构选择 一般有三种结构形式:折射式、反射式和折返式。而一般军用光学仪器和计量仪器中使用的望远镜物镜为折射式物镜。单透镜的色差和球差都相当严重,现代望远镜一般都采用两块或多块透镜组成的镜组。其中又可分为双胶合物镜、双分离物镜、三分离物镜、摄远物镜,如下图所示。

图2 常见的物镜结构 双胶合物镜是最简单和常用的望远物镜,由一个正透镜和一个负透镜胶合而成。双胶合物镜的优点为结构简单,制造和装配方便。通过选择材料以及弯曲镜面可以矫正透镜组的球差、彗差和轴向色差。 2.1.2 优化设计 根据前面的计算,物镜焦距f o’设计为300mm,最大口径为25mm。目视光学系统,波段选取为可见光波段0.4μm-0.75μm,并将人眼敏感的绿光0.55μm设为主要计算波段,如下图所示:

光学课程设计望远镜系统结构参数设计说明

——望远镜系统结构参数设计 设计背景:在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部 分的大口径光电系统的应用越来越广泛。 如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等…… 二设计目的及意义 〔1、熟悉光学系统的设计原理及方法; 〔2、综合应用所学的光学知识,对基本外形尺寸计算,主要考虑像质或者相差; 〔3、了解和熟悉开普勒望远镜和伽利略望远镜的基本结构及原理,根据所学的光学知识〔高 斯公式、牛顿公式等对望远镜的外型尺寸进行基本计算; 〔4、通过本次光学课程设计,认识和学习各种光学仪器〔显微镜、潜望镜等的基本测试步骤;三设计任务 在运用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及 转像系统的简易或者原理设计。并介绍光学设计中的PW 法基本原理。同时对光学系统中存 在的像差进行分析。 四望远镜的介绍 1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透 镜的光线折射或者光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称"千里镜"。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜采集到的比瞳孔直径〔最大 8 毫米粗得多的光束,送入人眼,使观 测者能看到原来看不到的暗弱物体。 2.望远镜的普通特性 望远镜的光学系统简称望远系统,是由物镜和目镜组成。当用在观测无限远物体时, 物镜的像方焦点和目镜的物方焦点重合,光学间隔 d=o。当月在观测有限距离的物体时, 两系统的光学问隔是一个不为零的小数量。作为普通的研究,可以认为望远镜是由光学问 隔为零的物镜和目镜组成的无焦系统。这样平行光射入望远系统后,仍以平行光射出。图 9—9 表示了一种常见的望远系统的光路图。为了方便,图中的物镜和目镜均用单透镜表 示。这种望远系统没有专门设置孔径光阑,物镜框就是孔径光阑,也是入射光瞳,出射光 瞳位于目镜像方焦点之外,观察者就在此处观察物体的成伤情况。系统的视场光阑设在物 镜的像平面处,入射窗和出射窗分别位于系统的物方和像方的无限远处 ,各与物平面和像平 面合。 三望远镜的分类 广义上的望远镜不仅仅包括工作在可见光波段的光学望远镜,还包括射电,红外,紫外,X 射线,甚至γ 射线望远镜。我们探讨的只限于光学望远镜。 1609 年,伽利略创造出第一架望远镜,至今已有近四百年的历史,此间经历了重大的飞跃, 根据物镜的种类可以分为三种: 1,折射望远镜 折射望远镜的物镜由透镜或者透镜组组成。早期物镜为单片结构,色差和球差严重,使得观看 到的天体带有彩色的光斑。为了减少色差,人们拼命增大物镜的焦距,1673 年,J.Hevelius 创造了一架长达46米的望远镜,整个镜筒被吊装在一根30米高的桅杆上,需要多人用绳子 拉着转

光学课程设计望远镜系统结构设计.docx

光学课程设计 望远镜系统结构设计 姓名: 学号: 班级: 指导老师:

、设计题目:光学课程设计 设计目的: 运用应用光学知识,了解望远镜工作原理的基础上, 完成望远镜的外形尺寸、物镜组、 目镜组及转像系统的简易或原理设计。了解光学设计中的PV法基本原理。 二、设计原理: 光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。为了观察远处的 物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统•望远镜是一种用于 观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具 有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和 地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统•其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零•在观察有限远的物体时,其光学间距是一个不为零的小数量,- 般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统 常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。常见 的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像 是倒立的,所以在中间还有正像系统。 上图为开普勒式望远镜,折射式望远镜的一种。物镜组也为凸透镜形式,但目镜组是凸

透镜形式。为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在 光路中增加了转像稜镜系统。此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。 伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要 大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透 镜时,人就能看到一个正立缩小的虚象。伽利略望远镜的优点是结构紧凑,筒长较短,较为 轻便,光能损失少,并且使物体呈正立的像,这是作为普通观察仪器所必需的。其原理图如 下: 物镜组目镜组 伽利略望远镜示意图 为了更好的了解望远镜,下面介绍放大镜的各种放大率: 望远镜垂轴放大率:代表共轭面像高和物高之比。计算公式如下 望远镜角放大率:望远镜共轭面的轴上点发出的光线通过系统后, 与光轴夹角的正切之比。计算公式如下:

各种光学望远镜示意图

望远镜基本原理 一、折射望远镜用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱。在满足一定设计条件时,还可消去球差和彗差。由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜。为了增大相对口径和视场,可采用多透镜物镜组。折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多。 伽利略望远镜光路图 开普勒望远镜光路图 二、反射望远镜用凹面反射镜作物镜的望远镜。可分为牛顿望远镜、卡塞格林望远镜、格雷果里望远镜、折轴望远镜几种类型。反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。但为了减小其它像差的影响,可用视场较小。对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。磨好的反射镜一般在表面镀一层铝膜,铝膜在2000-9000埃波段范围的反射率都大于80%,因而除光学波段外,反射望远镜还适于对近红外和近紫外波段进行研究。反射望远镜的相对口径可以做得较大,主焦点式反射望远镜的相对口径约为1/5-1/2.5,甚至更大,而且除牛顿望远镜外,镜筒的长度比系统的焦距要短得多,加上主镜只有一个表面需要加工,这就大大降低了造价和制造的困难,因此目前口径大于1.

望远镜原理

望远镜原理 望远镜原理 望远镜是一种用来放大远距离物体的光学仪器,广泛应用于天文学以及航海、地质勘测等领域。它起源于17世纪,最初被用来观测天体,为人类揭开了宇宙的神秘面纱。本文将介绍望远镜的原理及其发展历程,带您了解这一影响深远的科学工具。 望远镜的原理可以简单概括为利用透镜或反射镜对光线进行聚焦,从而使远处物体在观察者的眼睛中变得更大。根据镜筒的构造形式,望远镜可以分为折射望远镜和反射望远镜两类。 折射望远镜使用透镜作为主要光学元件,它的工作原理基于光线经过透镜时会发生折射的现象。此类望远镜由凸透镜和凹透镜组成,光线经过凸透镜凸面的折射后,会使得聚焦点到达透镜背面的焦点位置。通过调整两个透镜间的距离,可以改变望远镜的聚焦能力,从而实现对远处物体的放大观察。 反射望远镜则采用反射镜的原理进行工作。它将光线通过一面平行镜反射到一面曲面镜上,然后再从曲面镜的焦点位置反射出来。由于是利用反射的方式传输光线,相比于折射望远镜,反射望远镜可以避免透镜产生的色差问题,更加适用于天文学观测。 望远镜的发展历程可以追溯到17世纪初期,当时伽利略·伽利雷以及约翰内斯·开普勒等科学家对光学现象进行了深入研究。伽利略于1609年使用两个透镜构建了第一台折射式望远镜,他通过观测月球的表面和木星的卫星等天体,验证了地心宇宙模型的错误,进而支持了日心宇宙模型的正确性。 在伽利略望远镜的基础上,开普勒提出了使用两个凸凹透镜的组合来构建望远镜的方案。这种使用凸透镜作为物镜和目镜的折射望远镜被称为开普勒望远镜,其优点是可以提供正立的图像。 随着科学技术的进步,望远镜的观测性能得到了不断提升。17世纪末,艾萨克·牛顿提出了一种利用反射镜的望远镜设计,即利用凹

望远镜的原理

望远镜(a telescope/binoculars) 17世纪初的一天,荷兰小镇的一家眼镜店的主人利伯希(Hans Lippershey),为检查磨制出来的透镜质量,把一块凸面镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好象变大拉近了,于是在无心中发现了望远镜的秘密。1608年他为自引己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。听说小镇好几十个眼镜匠都宣称发明了望远镜。 概念 望远镜的大体原理 望远镜是一种用于观察远距离物体的目视,能把远物很小的张角按必然倍率放大,使之在像 空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清楚可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过和使入射的平行光束仍维持平行射出的光学系统。按照望远镜原理一般分为三种。 BOSMA博冠望远镜

一种通过搜集电磁波来观察遥远的仪器。在日常生活中,望远镜主要指。可是在现代中,天文望远镜包括了射电望远镜,,X射线和伽吗射线望远镜。最近几年来天文望远镜的概念又进一步地延伸到了引力波,和的领域。 或再通过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 简介 常常利用的还为减小体积和翻转倒像的目的,需要增加,棱镜系统按形式不同可分为别汉棱镜系统(RoofPrism)(也就是斯密特.别汉屋脊棱镜系统)和保罗棱镜系统(PorroPrism)(也称普罗棱镜系统),两种系统的原理及应用是相似的。 个人利用的小型手持式望远镜不宜利用过大放大倍率,一般以3~12倍为宜,倍数过大时,就会变差,同时抖动严重,超过12倍的望远镜一般利用等方式加以固定。 历史

伽利略望远镜的原理及光路图

伽利略望远镜的原理及光路图 物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。 你可以用很低的费用制作一架伽利略式望远镜。从文化用品商店买一块直径、焦距大一些的眼镜片作为物镜和一块焦距、直径较小的透镜作为目镜。用胶水和小槽把两块镜片装在硬纸筒内,再做一个简单的台座,于是一架能够看到月亮上的群山、银河中的繁星和木星的卫星的望远镜便制成了。想想看,伽利略就是用这人发现的。但是切记,不要通过望远镜直接观察太阳,以免高温灼伤眼睛!伽利略的折射望远镜有一个令人讨厌的缺点,就是在明亮物体周围产生“假色”。“假色”产生的症结在于通常所谓的“白光”根本不是白 颜色的光,而是由组成彩虹的从红到紫的所有色光混合而成的。当光束进入物镜并被折射时,各种色光的折射程度不同,因此成像的焦点也不同,模糊就产生了。 1611年,另一位天文学家开普勒用两片双凸透镜分别作为物

镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式。但是“假色”问题仍然未能解决。 利珀希不是天文学家,从未想过把自己的新装置对准天空。但是没过多久,关于他的发现的消息传开了。幸运地是,意大利的帕多瓦大学教授伽利略得知了此事。伽利略很快就制造了一台折射望远镜。他以平凸透镜作为物镜,凹透镜作为目镜。从待研究的物体发出的光照射到望远镜物镜的一个玻璃透镜上,物镜使光线折射并把它集中于称为焦点的一点上,在那里便形成了发光体的像。这个像被目镜的透镜放大,进入人眼。

伽利略望远镜的工作原理

伽利略望远镜的工作原理 伽利略望远镜是一种光学仪器,它的工作原理基于光的折射和反射。伽利略望远镜的主要组成部分包括物镜、目镜和焦平面。物镜是望远镜的主要光学元件,它用于收集和聚焦远处的光线;目镜则用于观察物体的放大影像;焦平面是位于物镜和目镜之间的一个平面,用于接收和显示光线的焦点。 伽利略望远镜的工作原理可以分为两个步骤:折射和放大。 当光线经过物镜时,它会发生折射。物镜的形状和材料决定了光线的折射程度和方向。物镜的凸透镜形状使得光线在通过时会被聚焦到物镜的焦点上。这样,物镜就能够收集到更多的光线,并将其聚焦到一个点上,形成一个实际的倒立的实物像。这个实物像是位于焦平面上的。 接下来,目镜将焦平面上的实物像放大,使得观察者能够清晰地看到。目镜通常由凸透镜组成,它的形状和位置被设计成能够放大物体的像。当观察者通过目镜观察时,光线再次发生折射,经过目镜后,光线会被聚焦到观察者的眼睛上形成一个放大的正立的像,使得观察者能够看到物体的细节。 总结一下,伽利略望远镜的工作原理是通过物镜的折射将光线聚焦到焦平面上形成实物像,然后通过目镜的放大将实物像放大到观察者能够清晰看到的程度。整个过程中,光线的折射和放大起到了关

键的作用。 除了基本的工作原理外,伽利略望远镜还可以通过调整物镜和目镜的位置来改变观察的焦距和放大倍数。当物镜和目镜的距离增加时,焦距会增加,观察的焦点会变得更远;当距离减小时,焦距会减小,观察的焦点会变得更近。而放大倍数则取决于物镜和目镜的焦距比。通过调整这些参数,观察者可以根据需要来调整望远镜的观察效果。伽利略望远镜的工作原理是基于光的折射和反射的,它利用物镜将光线聚焦到焦平面上形成实物像,再通过目镜的放大将实物像放大到观察者能够看到的程度。这种工作原理使得伽利略望远镜成为一种非常重要的观测工具,被广泛应用于天文学、地理学等领域。它的发明和应用对于人类的科学研究和认识世界的进步起到了重要的推动作用。

伽利略望远镜

伽利略望远镜制作(两课时) (一)、伽利略望远镜 物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较 小。把两个放大倍数不高 的伽利略望远镜并列一 起、中间用一个螺栓钮可 以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。它由一个凹透镜(目镜)和一个凸透镜(物镜)构成。其优点是结构简单,能直接成正像。 (二)、开普勒望远镜 开普勒式望远镜,折射式望远镜的一种。物镜组也为凸透镜形式,但目镜组是凸透镜形式。这种望远镜成像是上下左右颠倒的,但视场可以设计的较大。几乎所有的折射式天文望远镜的光学系统为开普勒式。 开普勒式原理由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板(安装在目镜焦平面处),并且性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种

结构。但这种结构成像是倒立的,所以要在中间增加正像系统。 正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远 镜既采用了双直角棱镜正像 系统。这种系统的优点是在 正像的同时将光轴两次折 叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜既采用设计精良的透镜正像系统。 开普勒式望远镜看到的是虚像, 物镜相当于一个投影仪,目镜相当于一个放大镜 (三)、双筒望远镜 开普勒望远镜增加了倒像系统 (四)、自制伽利略望远镜 做个单筒伽利略望远镜:你可 以找一片凹透镜(近视镜片),一 片凸透镜(老花镜片)。度数越高 越好。先对着窗外某一处。一手拿近视镜片靠近眼睛。另一手拿老花

相关文档
最新文档