(完整版)J-O理论计算过程总结

(完整版)J-O理论计算过程总结
(完整版)J-O理论计算过程总结

J-O 理论计算过程总结

单位采用g 、cm 、s By.周大华

电子电荷 e=4.8*10-10 esu (electrostatic unit )

电子电荷 m=9.11*10-28 g 光速 c=3*1010 cm/s

1.计算稀土掺杂离子数浓度

0A

N N M ρ?=??摩尔浓度格位数,1s 0=C (1)m k m C k g -=-摩尔浓度,

ρ---晶体密度,A N ---阿伏伽德罗常数236.0210?,M ---基质分子量 格位数---被掺杂离子在单个分子中被取代离子数目,

0C ---配料摩尔浓度,

g ---晶体结晶率=已结晶质量原始配料质量 ,因为原料未完全结晶 m k ---分凝系数 简单近似时可由晶体头部的掺杂离子含量ICP 分析数据计算出,也就是把晶体头部生长时溶液中溶质含量近似为初始配料浓度,例如(Nd 0.01Y 0.99)3A15O 12晶体头部ICP 分析结果是Nd 、Y 的质量百分含量分别A 和B ,则1%

Nd

Nd Y m A M A M B M k += 注:(1)如果不乘以格位数算出来的只是分子或者单胞浓度,而非掺杂离子的个数浓度;

(2)离子浓度单位为 个/cm 3

2. 比尔-朗伯定律 Beer –Lambert law

当强度0I 单色光入射厚度为L 的介质(气体,液体,固体,离子,原子等),介质吸光点浓度0N ,在无限小的薄层dl ,横截面积S ,强度减弱dI ,则dI 与该薄层光强I 和吸光点数目相关:

00dI k I N Sdl -=??? (1)

000L I L I dI k N Sdl I -=???? (2) 000ln L

I k N SL I =?? (3) 关系式(3)称为光吸收定律或者比尔-朗伯定律。

定义吸光度Absorbance (也称光密度Optical Density)

0000lg ()0.43L A I I k N L K N L ===?? (4)

定义透光度(透射比) Transmittance

0010k N L L T I I -??== (5)

注:(1)当介质厚度L 以cm 为单位,吸光物质浓度0N 以g L 为单位时,K 用α表示,称为吸收系数,其单位为L g cm ? 。这时比尔-朗伯定律表示为0A N L α=??

(2)当介质厚度L 以cm 为单位,吸光物质浓度0N 以mol L 为单位时,K 用k 表示,称为摩尔吸收系数,其单位为L mol cm ?,定律表示为0A k N L =??

(3)在激光领域,常常取自然对数时的吸收系数: 0 2.303*()ln

L OD I L I L λα== 3.吸收光谱能级标定、平均波长(各种离子能级标定参见附录)

()()OD d OD d λλλλλλ

=?? (6) ()OD λ为光密度,吸收光谱直接测出

4.实验振子强度

2

2exp 2222001()()0.43e e m c m c f d OD d L e N e N αλλλλπλπλ==

??? 202820209.11109101()3.14 4.8 4.8100.43OD d N L λλλ

--???=?????? 12

202.6410()OD d N L λλλ?=?, (7)

注:()OD d λλ?为各吸收能级的积分面积(积分强度),再乘以10-7代入公式(7)。

5.稀土离子4N f 电子组态的SLJ 能级到S L J '''跃迁的谱线强度(各离子跃迁矩阵元参见附录)

理论 2()2,4,6()4[,]4[,]n t n cal t t S J J f S L J U f S L J =''''→=

Ω∑

实验 exp 322203(21)91()()8(2)0.43hc J n S J J OD d e n N l

λλπλ+'→=?+? 271032202203 6.63103109(21)()0.438 3.14 4.810(2)n J OD d n N L

λλλ--??????+=?????+???? 3220(21)0.2210()(2)n J OD d n N L

λλλ?+=??+???? 以上式子,J --角动量量子数,n --折射率,c --真空光速,e --电子电量。

注:(1)如果用吸收系数求实验谱线强度的话则采用下面的公式

exp 32223(21)9()()8(2)hc J n S J J d e n αλλπλ

+'→=?+? 由于计算过吸收系数,这时()αλ的量级一般为10-20。

(2)实验测得谱线跃迁强度为电偶极跃迁和磁偶极跃迁之和,而在理论计算中只涉及电偶极跃迁,所以如果存在磁偶极跃迁的话要减掉这一部分强度

exp ed md S S S =+

222

1(,)2(,)4md S S L J L S S L J m c '''=+ 2323.3510(,)2(,)S L J L S S L J '''=??+

由公式可知,存在磁偶极跃迁的话,磁偶极跃迁强度与稀土离子基质性质

无关,所以常见的磁偶极跃迁强度可由文献查询。如Er 3+磁偶极能级跃迁见附录。

(3)在计算实验谱线强度时不需要特别考虑波长单位,因为分子分母同时含有波长的单位可以约掉。

6.误差计算

理论强度与试验测定强度方均差RMS deviation between measured and

calculated line strengths

RMS S ?= 计算过程的相对误差

Relative error

RMS error = 总结:第一步:依次标定吸收谱能级,求出平均波长;

第二步:求出实验谱线强度,实验谱线强度包括电偶极跃迁和磁偶极跃迁之和, 注意公式的选择与用光密度还是吸收系数来积分有关;

第三步:如果含有磁偶极跃迁,需减去磁偶极跃迁强度方为实验电偶极跃迁强度;

第四步:利用exp 224466S U U U =Ω?+Ω?+Ω?,解线性方程组,求出2,4,6Ω; 第五步:利用224466cal S U U U =Ω?+Ω?+Ω?,算出理论跃迁谱线强度ed S ;

第六步:误差计算。

7.计算自发辐射跃迁几率、荧光分支比、辐射寿命

第一步:标定自发辐射能级,各离子能级参见附录

第二步:根据吸收谱计算出各能级间自发辐射波长,例如

第三步:自发辐射谱线强度,自发辐射几率

224466ed S U U U =Ω?+Ω?+Ω?,这里2,4,6Ω由前面计算出,而跃迁矩阵元根据能级确定;

md S 与基质无关,根据磁偶极跃迁的选择定则,强度可以直接文献查得,见附录。

4222

364(2)()3(21)9

ed ed e n n A J J S h J πλ+'→=+ 423

364()3(21)md md e n A J J S h J πλ

'→=+ 42223364(2)[(,);(,)][]3(21)9

ed md ed md e n n A S L J S L J A A S n S h J πλ+'''=+=++ 22

10

331(2)=7.2110[](21)9ed md n n S n S J λ+??++ 注:在A 的计算中,由于一般论文中ed S 和md S 采用-20210cm ?单位,这里要注意分母有波长(710cm -)的三次方,所以波长用nm ,ed S 和md S 用-20210cm ?的话结果要再乘以10。

第四步:荧光分支比

()()()

J A J J J J A J J β''→'→=

'→∑ 上能级寿命 1(,)rad J A J J τ'

='∑ 8.吸收截面、发射截面

吸收截面 02.303()()a OD N L

σλλ=? 通过荧光分支比计算发射截面计算

52()()8()e I cn I d β

λλσλπτλλλ='''?,β为荧光分支比,注意单位。 参考文献B. Aull and H. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982).

通过吸收系数计算受激发射截面 0()()(/)exp[()/]se abs eff eff g e Z Z E h kT συσυυ=-

参考文献S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, IEEE J. Quantum Electron. 28 (1992) 2619

受激发射截面 52()()8()e rad I cn I d λλσλπτλλλ=?(待确认)

计算机理论导引实验报告3-图灵机(Turing)的模拟

HUNAN UNIVERSITY 计算理论导引实验报告 题目:图灵机(Turing)的模拟学生姓名: 学生学号: 专业班级:计算机科学与技术2班上课老师: 实验日期:2014-1-6

一、实验目的 (2) 二、实验内容.......................................................................................... 错误!未定义书签。 三、实验代码.......................................................................................... 错误!未定义书签。 四、测试数据以及运行结果 (8) 五、实验感想 (9)

一、实验目的 1、掌握Turing机的概念。 2、掌握Turing机的运行过程,了解每一个格局的转化。 二、实验内容 对于任意给定的一台Turing机和任意给定的字符串w ( w不含空格),编程模拟此Turing 机的运行过程,要求输出从开始运行起的每一格局。 三、实验代码 /***************************************************************** 图灵机的模拟过程 计科二班20110801212张琦佳 *****************************************************************/ # include # include # include ofstream outfile("homework.txt"); //打开文件 # define N 1000 //纸带长度 # define S 10 //纸带前的空余 # define M 10 //数字长度 int state; //记录当前状态 int currentpos; //记录当前位置 int halt; //退出 int i; //临时辅助变量 int s; //临时存储状态 char tape[N]; //纸带长度 char number[M]; //存储x char c1; //临时存储字符 char c2; //临时存储字符

(完整版)J-O理论计算过程总结

J-O 理论计算过程总结 单位采用g 、cm 、s By.周大华 电子电荷 e=4.8*10-10 esu (electrostatic unit ) 电子电荷 m=9.11*10-28 g 光速 c=3*1010 cm/s 1.计算稀土掺杂离子数浓度 0A N N M ρ?=??摩尔浓度格位数,1s 0=C (1)m k m C k g -=-摩尔浓度, ρ---晶体密度,A N ---阿伏伽德罗常数236.0210?,M ---基质分子量 格位数---被掺杂离子在单个分子中被取代离子数目, 0C ---配料摩尔浓度, g ---晶体结晶率=已结晶质量原始配料质量 ,因为原料未完全结晶 m k ---分凝系数 简单近似时可由晶体头部的掺杂离子含量ICP 分析数据计算出,也就是把晶体头部生长时溶液中溶质含量近似为初始配料浓度,例如(Nd 0.01Y 0.99)3A15O 12晶体头部ICP 分析结果是Nd 、Y 的质量百分含量分别A 和B ,则1% Nd Nd Y m A M A M B M k += 注:(1)如果不乘以格位数算出来的只是分子或者单胞浓度,而非掺杂离子的个数浓度; (2)离子浓度单位为 个/cm 3 2. 比尔-朗伯定律 Beer –Lambert law 当强度0I 单色光入射厚度为L 的介质(气体,液体,固体,离子,原子等),介质吸光点浓度0N ,在无限小的薄层dl ,横截面积S ,强度减弱dI ,则dI 与该薄层光强I 和吸光点数目相关:

00dI k I N Sdl -=??? (1) 000L I L I dI k N Sdl I -=???? (2) 000ln L I k N SL I =?? (3) 关系式(3)称为光吸收定律或者比尔-朗伯定律。 定义吸光度Absorbance (也称光密度Optical Density) 0000lg ()0.43L A I I k N L K N L ===?? (4) 定义透光度(透射比) Transmittance 0010k N L L T I I -??== (5) 注:(1)当介质厚度L 以cm 为单位,吸光物质浓度0N 以g L 为单位时,K 用α表示,称为吸收系数,其单位为L g cm ? 。这时比尔-朗伯定律表示为0A N L α=?? (2)当介质厚度L 以cm 为单位,吸光物质浓度0N 以mol L 为单位时,K 用k 表示,称为摩尔吸收系数,其单位为L mol cm ?,定律表示为0A k N L =?? (3)在激光领域,常常取自然对数时的吸收系数: 0 2.303*()ln L OD I L I L λα== 3.吸收光谱能级标定、平均波长(各种离子能级标定参见附录) ()()OD d OD d λλλλλλ =?? (6) ()OD λ为光密度,吸收光谱直接测出 4.实验振子强度

求极限方法总结全

极限求解总结 1、极限运算法则 设lim n →∞ a a =a ,lim n →∞ a a =a ,则 (1) lim n →∞ (a a ±a a )=lim n →∞ a a ±lim n →∞ a a =a ±a ; (2) lim n →∞ a a a a =lim n →∞ a a lim n →∞ a a =aa ; (3) lim n →∞a a a a = lim n →∞a a lim n →∞ a a = a a (a ≠0). 2、函数极限与数列极限的关系 如果极限lim x →a 0 a (a )存在,{a a }为函数a (a )的定义域内任一收敛于a 0的数列,且满 足:a a ≠a 0(a ∈a +),那么相应的函数值数列{a (a )}必收敛,且lim a →∞ a (a a )= lim a →a 0 a (a ) 3、定理 (1) 有限个无穷小的和也是无穷小; (2) 有界函数与无穷小的乘积是无穷小; 4、推论 (1) 常数与无穷小的乘积是无穷小; (2) 有限个无穷小的乘积也是无穷小;

(3)如果lim a(a)存在,而c为常数,则lim[aa(a)]=a lim a(a) (4)如果lim a(a)存在,而n是正整数,则lim[a(a)]a=[lim a(a)]a 5、复合函数的极限运算法则 设函数y=a[a(a)]是由函数u=a(a)与函数y=a(a)复合而成的,y=a[a(a)] 在点a0的某去心领域内有定义,若lim a→a0a(a)=a0,lim a→a0 a(a)=a,且存在a0> 0,当x∈U(a0,a0)时,有a(a)≠a0,则lim a→a0a[a(a)]=lim a→a0 a(a)=a 6、夹逼准则 如果 (1)当x∈U(a0,a)(或|a|>M)时,g(x)≤a(a)≤h(x) (2)lim a→a0(a→∞)a(a)=a,lim a→a0(a→∞) a(a)=a 那么lim a→a0(a→∞) a(a)存在,且等于A 7、两个重要极限 (1)lim a→0sin a a =1 (2)lim x→∞(1+1 x )x=a 8、求解极限的方法(1)提取因式法

壳的计算(总结)

壳的计算 计算要点:壳体的内力和变形计算比较复杂。为了简化,薄壳通常采用下述假设:材料是弹性的、均匀的,按弹性理论计算;壳体各点的位移比壳体厚度小得多,按照小挠度理论计算;壳体中面的法线在变形后仍为直线且垂直于中面;壳体垂直于中面方向的应力极小,可以忽略不计。这样就可以把三维的弹性理论问题简化成二维问题进行计算。在考虑丧失稳定的问题时,需要采用大挠度理论并求解非线性方程。厚壳结构的计算则不能忽略垂直于中面方向的应力变化,并按三维问题进行分析. 一般指封闭或敞开的被两个几何曲面所限的物体,在静力或动力荷载作用下,或在温差、基础沉陷等影响下所引起的应力、变形及稳定性等的计算。薄壳结构广泛应用于各工程技术领域,如建筑工程中的各种薄壳屋盖及薄壳基础。 壳体可按壁厚h与壳体中面最小主曲率半径R min之比分为薄膜、薄壳及厚壳(包括中厚壳)三类。h/R min≤1/20者称为薄壳;h/R min>1/20者称为中厚壳或厚壳;h/R min极小,抗弯刚度接近于零者称为薄膜。 薄壳的计算理论有基尔霍夫理论与非基尔霍夫理论。壳的基尔霍夫假设与板的基尔霍夫假设相同,非基尔霍夫壳体理论考虑横剪切问题较为严密。目前,在壳体的工程结构计设中普遍采用基尔霍夫理论进行计算。 薄壳的计算理论与薄壳的中面形状、构造形式及材料性质有关。薄壳可按中面形状分为旋转壳、球壳、圆柱壳、圆锥壳、双曲面壳、抛物面壳、椭球壳、环壳、双曲抛物面壳、扁壳及各类组合壳体等。若按构造形式分,则有光面壳、加肋壳、夹心壳及多层壳等。按材料性质分,则有各向同性壳、各向异性壳、线性弹性壳、非线性弹性壳及粘弹性壳等。对于线性弹性材料的光面壳,其一般计算理论已经可以总结为薄膜理论及弯曲理论二类。尽管弯曲理论迄今尚无公认的统一形式,但总的说来,各种形式的差别不大。对于各种形状、各种构造的壳体,其计算方法不尽相同。许多加肋壳可折算为各向异性光面壳进行处理;夹心壳及多层壳的理论虽然有一定变化,但仍属于一般理论的范畴,扁壳理论由于有一些简化假设,其理论不很复杂,进展较快,已发展到复合材料非线性理论等。 由于各种薄壳形状各异,故分析薄壳问题时常采用位于薄壳中曲面上的正交曲线坐标系,其方向分别为曲面的最大、最小曲率方向,及曲面的法线方向,一般以0-αβγ表示。 薄壳内力在荷载或其他外因作用下,薄壳内所产生的内力可按基尔霍夫假设表示如图所示的10个内力。其中4个为薄膜内力:Nα、Nβ分别是α及β方向的拉(压)力,Nαβ、Nβα 分别是α及β为常数截面上的α及β方向的切向剪力。另外6个为弯曲内力:Mα、Mβ分别是α及β为常数的截面上的弯矩,Mαβ、Mβα、Qα、Qβ分别为上述截面上的扭矩及横剪力。全部内力

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

CASTEP计算理论总结+实例分析

CASTEP 计算理论总结 XBAPRS CASTEP 特点是适合于计算周期性结构,对于非周期性结构一般要将特定的部分作为周期性结构,建立单位晶胞后方可进行计算。CASTEP 计算步骤可以概括为三步:首先建立周期性的目标物质的晶体;其次对建立的结构进行优化,这包括体系电子能量的最小化和几何结构稳定化。最后是计算要求的性质,如电子密度分布(Electron density distribution),能带结构(Band structure)、状态密度分布(Density of states)、声子能谱(Phonon spectrum)、声子状态密度分布(DOS of phonon),轨道群分布(Orbital populations)以及光学性质(Optical properties)等。本文主要将就各个步骤中的计算原理进行阐述,并结合作者对计算实践经验,在文章最后给出了几个计算事例,以备参考。 CASTEP 计算总体上是基于DFT ,但实现运算具体理论有: 离子实与价电子之间相互作用采用赝势来表示; 超晶胞的周期性边界条件; 平面波基组描述体系电子波函数; 广泛采用快速fast Fourier transform (FFT) 对体系哈密顿量进行数值化计算; 体系电子自恰能量最小化采用迭带计算的方式; 采用最普遍使用的交换-相关泛函实现DFT 的计算,泛函含概了精确形式和屏蔽形式。 一, CASTEP 中周期性结构计算优点 与MS 中其他计算包不同,非周期性结构在CASTEP 中不能进行计算。将晶面或非周期性结构置于一个有限长度空间方盒中,按照周期性结构来处理,周期性空间方盒形状没有限制。之所以采用周期性结构原因在于:依据Bloch 定理,周期性结构中每个电子波函数可以表示为一个波函数与晶体周期部分乘积的形式。他们可以用以晶体倒易点阵矢量为波矢一系列分离平面波函数来展开。这样每个电子波函数就是平面波和,但最主要的是可以极大简化Kohn-Sham 方程。这样动能是对角化的,与各种势函数可以表示为相应Fourier 形式。 ```2[()()()]``,,k G V G G V G G V G G C C ion H xc i i k G GG i k G δε∑++-+-+-=++ 采用周期性结构的另一个优点是可以方便计算出原子位移引起的整体能量的变化,在CASTEP 中引入外力或压强进行计算是很方便的,可以有效实施几何结构优化和分子动力学的模拟。平面波基组可以直接达到有效的收敛。 计算采用超晶胞结构的一个缺点是对于某些有单点限缺陷结构建立模型时,体系中的单个缺陷将以无限缺陷阵列形式出现,因此在建立人为缺陷时,它们之间的相互距离应该足够的远,避免缺陷之间相互作用影响计算结果。在计算表面结构时,切片模型应当足够的薄,减小切片间的人为相互作用。 CASTEP 中采用的交换-相关泛函有局域密度近似(LDA )(LDA )、广义梯度近似(GGA )和非定域交换-相关泛函。CASTEP 中提供的唯一定域泛函是CA-PZ ,Perdew and Zunger 将Ceperley and Alder 数值化结果进行了参数拟和。交换-相关泛函的定域表示形式是目前较为准确的一种描述。 Name Description Reference PW91 Perdew-Wang generalized-gradient approximation, PW91 Perdew and Wang PBE Perdew-Burke-Ernzerhof functional, PBE Perdew et al. RPBE Revised Perdew-Burke-Ernzerhof functional, RPBE Hammer et al.

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

计算理论导引--研究生考试试卷格式

东华大学 2010~ 2011学年第二学期研究生期末考试试题参考答案 和评分标准 考试学院:计算机 考试专业:计算机科学与技术 考试课程名称:计算理论导引与算法复杂性 一、单项选择题(每空2分,本题共20分) 1. DFA和NFA的区别在于(B )。 A、NFA能够识别的语言DFA不一定能够识别 B、对同一个输入串两者的计算过程不同 C、DFA能够识别的语言NFA不一定能够识别 D、NFA比DFA多拥有一个栈 2. 若一个语言A是非正则的,对于个给定的一个泵长p,若存在一个串s=xyz,|s|≥p,则 ( A )。 A、|y|可能大于等于0 B、xz∈A C、xyyz∈A D、|xy|不可能小于等于p 3. 下推自动机与图灵机的不同之处是( B )。 A、下推自动机比图灵机识别的语言多 B、下推自动机比图灵机识别的语言少 C、下推自动机识别的语言是不可判定 D、拥有一个无限的存储带 4. 如果一个语言是图灵可判定的,则(A)。 A、对于一个不属于它串s,图灵机计算s时,一定能够到达拒绝状态 B、对于一个不属于它串s,不一定有一个判定器判定s C、对于一个不属于它串s,图灵机计算s时,有可能进入无限循环状态 D、对于一个不属于它串s,图灵机计算s时,一定不会停机 5. 一个集合在条件( C )下是不可数的。 A、该集合为无限集合 B、组成该集合的元素是实数 C、该集合的规模大于自然数集合的规模 D、该集合是一个有限的集合 6. 对于一个语言,( C )的说法是正确的。 A、如果它属于Turing-recognizable,那么,一定属于EXPTIME B、如果它是NP-hard,那么,一定属于NP C、如果它是NP-complete,那么,一定属于NP D、它一定能被图灵机识别 7. 如果A≤m B且B是可判定的,则(A)。

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

考研数学极限计算方法:利用单侧极限

https://www.360docs.net/doc/046165257.html, 版权所有翻印必究 考研数学极限计算方法:利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan ),0121x e x x f x x x x x ?-+-?? 在0=x 处的极限。分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0 =→x f x 。有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时

版权所有翻印必究 https://www.360docs.net/doc/046165257.html, 2会出现负号,同时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+=+= ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++???? ,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

微型计算机原理与应用知识点总结

第一章计算机基础知识 一、微机系统的基本组成 1. 微型计算机系统由硬件和软件两个部分组成。 (1) 硬件: ①冯●诺依曼计算机体系结构的五个组成部分:运算器,控制器,存储器,输入设备,输入 设备。其特点是以运算器为中心。 ②现代主流的微机是由冯●诺依曼型改进的,以存储器为中心。 ③冯●诺依曼计算机基本特点: 核心思想:存储程序; 基本部件:五大部件; 信息存储方式:二进制; 命令方式:操作码(功能)+地址码(地址),统称机器指令; 工作方式:按地址顺序自动执行指令。 (2) 软件: 系统软件:操作系统、数据库、编译软件 应用软件:文字处理、信息管理(MIS)、控制软件 二、微型计算机的系统结构 大部分微机系统总线可分为 3 类:数据总线DB(Data Bus) ,地址总线AB(Address Bus),控制总线CB(Control Bus) 。 总线特点:连接或扩展非常灵活,有更大的灵活性和更好的可扩展性。 三、工作过程 微机的工作过程就是程序的执行过程, 即不断地从存储器中取出指令, 然后执行指令的过程。★例:让计算机实现以下任务:计算计算7+10=? 程序:mov al,7 Add al,10 hlt

指令的机器码: 10110000 (OP ) 00000111 00000100 (OP) 00001010 11110100 (OP ) 基本概念: 2. 微处理器、微型计算机、微型计算机系统 3. 常用的名词术语和二进制编码 (1)位、字节、字及字长

(2)数字编码 (3)字符编码 (4)汉字编码 4. 指令、程序和指令系统 习题: 1.1 ,1.2 ,1.3 ,1.4 ,1.5 第二章8086/8088 微处理器 一、8086/8088 微处理器 8086 微处理器的内部结构:从功能上讲,由两个独立逻辑单元组成,即执行单元EU和总线 接口单元BIU。 执行单元EU包括:4 个通用寄存器(AX,BX,CX,DX,每个都是16 位,又可拆位,拆成 2 个8 位)、4 个16 位指针与变址寄存器(BP,SP,SI ,DI)、16 位标志寄存器FLAG(6 个状 态标志和 3 个控制标志)、16 位算术逻辑单元(ALU) 、数据暂存寄存器; EU功能:从BIU 取指令并执行指令;计算偏移量。 总线接口单元BIU 包括:4 个16 位段寄存器(CS(代码段寄存器) 、DS(数据段寄存器) 、SS(堆 栈段寄存器) 和ES(附加段寄存器) )、16 位指令指针寄存器IP (程序计数器)、20 位地址加 法器和总线控制电路、 6 字节(8088 位4 字节)的指令缓冲队列; BIU 功能:形成20 位物理地址;从存储器中取指令和数据并暂存到指令队列寄存器中。 3、执行部件EU和总线接口部件BIU 的总体功能:提高了CPU的执行速度;降低对存储器的 存取速度的要求。 4、地址加法器和段寄存器 由IP 提供或由EU按寻址方式计算出寻址单元的16 位偏移地址( 又称为逻辑地址或简称为偏 移量) ,将它与左移 4 位后的段寄存器的内容同时送到地址加法器进行相加,最后形成一个 20 位的实际地址( 又称为物理地址) ,以对应存储单元寻址。 要形成某指令码的物理地址(即实际地址),就将IP 的值与代码段寄存器CS(Code Segment)左移 4 位后的内容相加。 【例假设CS=4000H,IP =0300H,则指令的物理地址PA=4000H× 1 0H+0300H=40300H。

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

矩阵运算理论小结

班级:09金融3 学号:2009241164 姓名:陈妮 矩阵运算理论小结 运算是数学的基础概念和基础内容,矩阵是线性代数的基础概念和基础内容。因此,矩阵运算理论是线性代数的重要理论之一。矩阵是贯穿线性代数各部分内容的一条线索。线性代数中的很多计算及应用与矩阵及其运算都有密切的关系。掌握并能灵活运用矩阵运算及其性质是学好线性代数的一个必备条件。 矩阵运算的基本途径就是设法把一个较复杂的矩阵计算问题转化为一个简单的、易于求解的矩阵计算问题。 在《经济数学—线性代数》这一本书中,对矩阵的定义是:由m ×n 个aij(i=1,2,…,m;j=1,2,…,n)排成的m 行n 列的数表 1112131212223231323331 2 3 ................. n n n n n n nn a a a a a a a a a a a a a a a a 称为m 行n 列的矩阵,简称m ×n 矩阵。 一.线性方程组的矩阵表示 设有线性方程组 若记 则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式: (2) 其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果 是方程组(1)的解, 记列矩阵 则 , 这时也称 是矩阵方程(2)的解; 反之, 如果列矩阵 是矩阵方程(2)的解, 即有矩阵等式 成立, 则 即 也是线性方程组(1)的解. 这样, 对线性方程组 (1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为

将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利. 二.矩阵的初等变换 把线性方程组的三种初等变换移植到矩阵上,就得到矩阵的三种初等行变化: 1.对调矩阵的两行(换行变换) 2.以非零常数K乘矩阵某一行的各元(倍法行变换) 3.把某一行所有的元素的K倍加到另一行对应的元上去(倍加行变换)。 把定义中的“行”变成“列”,即得矩阵的初等列变换定义,矩阵的初等行变换与初等列变换,统称为初等变换。矩阵的初等变换是矩阵运算的基础。 三.矩阵的线性运算 1.矩阵加法 前提条件:同型矩阵 操作数:两个m*n矩阵A=[a ij ],B=[b ij ] 基本动作:元素对应相加 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 2.矩阵减法 前提条件:同型矩阵 操作数:两个m*n矩阵A=[a ij],B=[b ij] 基本动作:元素对应相减 3.矩阵取负 前提条件:无 操作数:任意一个m*n矩阵A=[a ij ]

计算机理论知识总结

1、数据是指存储在某一种媒体上能够识别的物理符号。 2、数据处理是将数据转换成信息的过程。 3、数据处理的中心问题是数据管理。计算机对数据的管理是指对数据的组织、分类、编码、存储、检索和维护提供操作手段。 4、计算机经历了人工管理、文件系统、数据库系统、分布式数据库系统和面向对象数据库系统几个阶段。 5、人工管理阶段的特点:数据与程序不具独立性;数据不长期保存;存在大量重复数据。 6、文件系统阶段的特点:程序与数据有了一定的独立性;数据文件可以长期保存;仍然存在大量冗余。 7、数据库系统阶段的特点:解决了独立和冗余的问题;能够长期保存。 8、数据库系统(DBS)包括:数据库(DB)和数据库管理管理系统(DBMS)。 9、数据库是在计算机存储设备上,结构化的相关数据集合。 10、数据库管理系统是数据库系统的核心。 11、数据库系统的特点:实现数据共享,减少数据冗余;采用特定的数据模型;具有较高的数据独立性;有统一的数据控制能力。 12、实体:客观存在并且可以相互区别的事物成为实体。 13、实体的属性:描述实体的特性称为属性。 14、两个实体间的联系可以分为三类:一对一联系;一对多联系;多对多联系。 15、数据模型是数据库管理系统用来表示实体及实体间联系的方法。 16、数据模型分为三种:层次数据模型、网状模型、关系数据模型。 17、用树形结构表示实体及其之间联系的模型称为层次模型。 18、用网状结构表示实体及其之间联系的模型称为网状模型。 19、用二维表来结构表示实体及其之间联系的模型称为关系模型。 20、每一个关系都是一个二维表,一张二维表就是一个关系。文件扩展名为.dbf,称为“表”。 21、元组:在一个二维表(一个具体关系)中,水平方向的行称为元组。 22、属性:二维表中垂直方向的列称为属性。 23、域:属性的取值范围。 24、关键字:属性或属性的组合,其值能够惟一地标识一个元组。惟一标识一个元组;不能出现重复值。不做主关键字就做候选关键字。 25、外部关键字:如果表中的一个字段不是本表的主关键字或候选关键字,而是另外一个表的主关键字或候选关键字,这个字段(属性)就称为外部关键字。 26、关系的特点:关系必须规范化(表中不含表);在同一关系中不能出现相同的属性名;关系中不允许有完全相同的元组,即冗余;在一个关系中元组的次序无关紧要;在一个关系中列的次序无关紧要。 27、关系运算有两类:传统的集合运算(并、差、交)和专门的关系运算(选择、投影、联接、自然联接)。 28、自然联接是去掉重复属性的等值联接。 1、常量用以表示一个具体的、不变的值。 2、数值型常量(N):由数字0~9,小数点和正负号构成,也可以使用科学记数法形式书写。 3、货币型常量(Y):其书写格式与数值型常量类似,但要加上一个前置的符号($)。货币型常量没有科学记数法。 4、字符型常量(C):单引号、双引号和方括号称为定界符,只要加上定界符都是字符型常量。定界符必须成对存在。在电脑中,输入法半角、实心状态。不包含任何字符的字符串(“”)

相关文档
最新文档