基本不等式应用-解题技巧归纳

基本不等式应用-解题技巧归纳
基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳

应用一:求最值

例1:求下列函数的值域

(1)y =3x 2+12x 2 (2)y =x +1x

技巧一:凑项

例1:已知54x <,求函数14245

y x x =-+-的最大值。

技巧二:凑系数

例1. 当时,求(82)y x x =-的最大值。

技巧三: 分离

例3. 求2710(1)1

x x y x x ++=>-+的值域。

技巧四:换元

技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2

y =

练习.求下列函数的最小值,并求取得最小值时,x 的值.

(1)231,(0)x x y x x

++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y =

的最大值.;3.203x <<,求函数y =.

条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 .

变式:若44log log 2x y +=,求11x y

+的最小值.并求x ,y 的值

技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且

191x y +=,求x y +的最小值。

变式: (1)若+∈R y x ,且12=+

y x ,求y x 11+的最小值

(2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

技巧七、已知x ,y 为正实数,且x 2

+y 22 =1,求x 1+y 2 的最大值.

技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值.

变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。

技巧九、取平方

5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.

变式: 求函数15

()22

y x =<<的最大值。

应用二:利用基本不等式证明不等式

1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222

1) 正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc

2) 例6:已知a 、b 、c R +∈,且1a b c ++=。求证:1111118a b c ??????---≥

???????????

应用三:基本不等式与恒成立问题

例:已知0,0x y >>且191x y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

应用四:均值定理在比较大小中的应用: 例:若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=?=

>>,则R Q P ,,的大小关系是 .

高中数学不等式解题技巧

不等式解题漫谈 一、活用倒数法则 巧作不等变换——不等式的性质和应用 不等式的性质和运算法则有许多,如对称性,传递性,可加性等.但灵活运用倒数法则对解题,尤其是不等变换有很大的优越性. 倒数法则:若ab>0,则a>b 与1a <1 b 等价。 此法则在证明或解不等式中有着十分重要的作用。如:(1998年高考题改编)解不等式log a (1-1 x )>1. 分析:当a>1时,原不等式等价于:1-1x >a,即 1x <1-a ,∵a>1,∴1-a<0, 1x <0,从而1-a, 1 x 同 号,由倒数法则,得x>11-a ; 当00, 1x >0, 从而1-a, 1x 同号,由倒数法则,得11时,x ∈(11-a ,+∞);当0log b a B 、| log a b+log b a|>2 C 、(log b a)2 <1 D 、|log a b|+|log b a|>|log a b+log b a| 分析:由已知,得0

(全)基本不等式应用_利用基本不等式求最值的技巧_题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高考数学 解题方法攻略 不等式放缩 理

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一 利用重要不等式放缩 1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证.2 )1(2)1(2 +<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k Λ=+= 2121)1(+ =++<+++=+<∑=n n n k S n k n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里 n a a n a a a a a a n n n n n n 2211111 1++≤ ++≤ ≤++ΛΛΛΛ 其中,3,2=n 等的各式及其变式公式均可供选用。 例2 已知函数bx a x f 211)(?+= ,若5 4)1(= f ,且)(x f 在[0,1]上的最小值为21,求证:.21 2 1)()2()1(1-+>++++n n n f f f Λ(02年全国联赛山东预赛题) 简析 )221 1()()1()0(22114111414)(?->++?≠?->+-=+=n f f x x f x x x x Λ .21 2 1)21211(41)2211()2211(1 12-+=+++-=?-++?-++-n n n n n ΛΛ 例3 已知b a ,为正数,且 11 1=+b a ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .(88年全国联赛题) 简析 由111=+b a 得b a ab +=,又42)11)((≥++=++a b b a b a b a ,故 4≥+=b a ab ,而n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)(, 令n n n b a b a n f --+=)()(,则)(n f =11 11----++++n n n r r n r n n n ab C b a C b a C ΛΛ,因为i n n i n C C -=,倒序相加得)(2n f =)()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ΛΛ, 而12 1 1 1 1 2422+------=?≥≥+==+==+n n n n n n r n r r r n n n b a b a ab b a b a ab b a ΛΛ,则 )(2n f =) )(22())((1 1r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ΛΛ?-≥)22(n 12+n ,所以)(n f ?-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a . 例4 求证),1(2 2 1321N n n n C C C C n n n n n n ∈>?>++++-Λ.

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇 不等式 The pony was revised in January 2021

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++(倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立. (说明:本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值 1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+(1-1) 事实上, 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 即1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++. 例1(美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3 ()a b c a b c a b c abc ++≥. 思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有: 以上两式相加,两边再分别加上lg lg lg a a b b c c ++

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

高考数学不等式解题方法技巧

4 4 1 x 时,1+ log x 3 v 2log x 2 ;当 x 时,1+ log x 3 = 2log x 2) 3 3 3.利用重要不等式求函数最值 时,你是否注意到:“一正二定三相等,和定积最大,积定和最小 ”这17字方 针。 1 x 2 3 【例】(1)下列命题中正确的是 A 、y x 的最小值是 2 B 、y 的最小值是 2 C 、 X Vx 2 2 y 2 3x 4(x 0)的最大值是 2 4'、3 D 、y 2 3x 4 (x 0)的最小值是 2 4-3 (答:C ); x x (2)若x 2y 1,则2x 4y 的最小值是 ______________ (答: 2^2 ); (3)正数x, y 满足x 1 2y 1,则 1 x -的最小值为 (答: y 3 2 .2 ); a 2 b 2 a b 4.吊用不等式有:(1) ;2 2 v ab 1 1 (恨据曰标不寺式左右的运算结构选用 ); a b (2) a 、b 、c R , a 2 .2 2 b c ab bc ca (当且仅当a b c 时,取等号); (3) 若 a b 0,m 0,则- b m (糖水的浓度问题)。 a a m 【例】 如果正数a 、b 满足ab a b 3 ,则ab 的取值范围是 (答:9, ) 不等式应试技巧总结 1不等式的性质: (1)同向不等式可以相加;异向不等式可以相减 :若a b,c d ,贝U a c b d (若a b,c d ,则 a c b d ),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘 ,但不能相除; 异向不等式可以相除 ,但不能相乘:若 a b 0,c d 0,则 ac bd (若 a b 0,0 c d ,则 a -); c d (3)左右同正不等式:两边可以同时乘方或开方 :若 a b 0 ,则 a n b n 或 n a 1 1 1 1 则 ;若ab 0 , a b ,贝U a b a b 【例】 (1)对于实数a,b,c 中, 给出下列命题: ①若a b,则 ac 2 bc 2 ; ③若a 2 2 b 0,则 a ab b ④ 若a b 0,则- 1 ⑤ a b ⑥若a b 0,则: a lb ;⑦若c a b 0,则丄 ;⑧若a b,1 1 c a c b a b 命题是 (答: ②③⑥⑦⑧); (2)已知1 x y 1 , 1 x y 3,则3x y 的取值范围是 ______________________ (答:1 n b ; (4)若 ab 0 , a b , ②若 ac 2 bc 2 ,则a b ; b a 右a b 0,则 a b 则a 0,b 0。其中正确的 3x y 7 ); (3)已知a b c ,且a b c 0,则—的取值范围是 a (答: 2,- 2 2.不等式大小比较的常用方法 : (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商 式) ; ( 3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性; (8)图象法。其中比较法(作差、 (常用于分数指数幕的代数 (7)寻找中间量或放缩法 【例】 时取等号) ;当0 a 1时, (2) 作商)是最基本的方法。 1 t 1 1,t 0 ,比较—log a t 和log a 的大小(答:当a 1 t 1 -lOg a t log a 」(t 1 时取等号)); 2 2 1 a 2 4a 2 ,q 2 a 2 ,试比较p,q 的大小(答:p (3) 比较 1+ log x 3 与 2log x 2( x 0且x 1)的大小(答:当0x1或x 1 t 1 1 时,-lOg a t ( t q ); 4 时,1+ log x 3 > 2log x 2 ; 3

不等式解题技巧

不等式解题技巧 【基本知识】 1、若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取 “=”) 2、(1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈, 则ab b a 2≥+(当且仅当b a =时取“=”) 3、0x >若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 4、, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a =b =c 时,“=”号成立; )(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号 成立. 5、若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可 以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)熟悉一个重要的不等式链: b a 2 +2 a b +≤≤2 2 2b a + 【技巧讲解】 技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件。通常要通过乘以或除以常数、拆因式、平方等方式进行构造) 1、 已知5 4x < ,求函数14245 y x x =-+-的最大值。 2、当04x <<时,求(82)y x x =-的最大值。

基本不等式应用技巧之高级篇

基本不等式应用技巧之高级篇 基本不等式在不等式的证明、求最大值、最小值的有些问题上给我们带来了很大的方便,但有时很想用基本不等式,却感到力不从心。这需要一点技巧,就是要能适当的配凑,即把相关的系数做适当的配凑。比如下面的例题1。 例题1. 已知5 4 x <,求函数14245y x x =-+-的最大值。 解:因54 x <,所以450 x -<。这可以先调整式子的符号,但 1 (42) 45 x x --不是常数,所以必须对 42x -进行拆分。 11 42(54)3231 4554y x x x x =-+=--++≤-+=-- 当且仅当1 5454x x -=-,即1x =时取等号。故当1x =时,max 1y = 但是有些题目的配凑并不是这么显然。我们应该如何去配凑,又有何规律可循呢?请看下面的例题2. 例题2. 设,,,x y z w 是不全为零的实数,求 2222 2xy yz zw x y z w +++++的最大值。 显然我们只需考虑0,0,0,0x y z w ≥≥≥≥的情形,但直接使用基本不等式是不行的,我们假设可以找到相应的正参数,αβ满足: 2222222222 ()(1)1x y z w x y y z z w ααββ+++=++-++-+≥++()故依据取等号的条件得, t = ==,参数t 就是我们要求的最大值。 消去,αβ我们得到一个方程24410t t --= 此方程的最大根为我们所求的最大值得到t = 从这个例子我们可以看出,这种配凑是有规律的,关键是我们建立了一个等式 = = ,这个等式建立的依据是等号成立的条件,目的就是为了取得最值。 我们再看一些类似的问题,请大家细心体会。 例题3. 设,,,x y z w 引入参数,αβ ,γ 使其满足: 2(1)(2)(1)x y z x x y x y z x αβαγβγαβ++=--++++-+≥--+

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

基本不等式的各种求解方法和技巧

基本不等式 一、知识梳理 二、极值定理 (1)两个正数的和为常数时,它们的积有 ; 若0,0,a b a b M >>+=,M 为常数,则ab ≤ ;当且仅当 ,等号成立.简述为,当0,0,a b a b M >>+= ,M 为常数,max ()ab = . (2)两个正数的积为常数时,它们的和有 ; 若0,0,a b ab P >>=,P 为常数,则a b +≥ ;当且仅当 ,等号成立.简述为,当0,0,a b ab P >>= ,M 为常数,min ()a b += . (,)2 a b a b R ++≤ ∈,求最值时应注意以下三个条件:

应用基本不等式的经典方法 方法一、直接利用基本不等式解题 例1、(1)若0,0,4a b a b >>+=,则下列不等式恒成立的是( ) A .1 1 2ab > B .1 1 1a b +≤ C 2≥ D. 2211+8a b ≤ (2)不等式2162a b x x b a +<+对任意(),0,a b ∈+∞ 恒成立,则实数x 的取值范围是( ) A .(2,0)? B .(,2)(0,)?∞?+∞ C .(4,2)? D .(,4)(2,)?∞?+∞ (3)设,,1,1x y R a b ∈>>,若3,x y a b a b +,则11 x y +的最大值为 ( ) A .2 B .32 C .1 D .12

方法二:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件,通过乘或除常数、拆因式、平方等方式进行构造) 例2、(1)已知54x <,求函数1 445y x x =+?的最大值; (2)已知,则的取值范围是( ) A . B . C . D . 方法三:“1”的巧妙代换 命题点1、“1”的整体代换 例3、(1)若正数,x y 满足35x y xy +=,则34x y +的最小值是( ) A .245 B .285 C .5 D .6 (2)已知0,0,x y >>且21x y +=,求1 1 x y +的最小值. 0,2b a ab >>=2 2 a b a b +?(],4?∞?(),4?∞?(],2?∞?(),2?∞?

七年级数学不等式教学方法

七年级数学不等式教学方法 1七年级数学不等式该如何教学 注重基础知识的教学 初中的数学内容较小学教学内容更系统和深入,涉及面更广。因此,教师在教学中应 该注重基础知识的教学,帮助学生打下厚实的基础,以利于学生以后的数学学习。首先应 该摆正师生关系,在中国的教育当中一直强调着“师道尊严”。教师在课堂上一般都是居 高而上,普遍都是教师在讲台上讲,学生在下面埋头“消化”教师讲的知识点。教师掌握 着上课的节奏,这样学生显得很被动。在初中不等式教学当中涉及很多的知识点,学生仅 仅知道一些公式而不会运用是教学的一种失败。基础知识在教学当中就显得尤为重要。 不等式的解题方式多样,内容丰富,技巧性较强并且要依据题设、题的结构特点、内 在联系、选择适当的解题方法,就要熟悉解题中的推理思维,需要掌握相应的步骤、技巧 和语言特点。而这一切都是建立在学生有夯实的基础之上的。学生的基础知识不扎实的话,在解不等式题时就步履维艰。 夯实的基础来源于学生对不等式概念知识的掌握和运用,而概念的形成有一个从具 体到表象再到抽象的过程。对不等式抽象概念的教学,更要关注概念的实际背景和学生对 概念的掌握程度。数学的概念也是数学命题、数学推理的基础,学生学习不等式知识点也 是从概念的学习开始的。所以在不等式教学探究中教师应注重学生的基础。 注重学生对知识的归纳和整理 提高初中数学不等式教学效果,首先要培养学生主动探索数学知识的精神,通过寻求 不同思维达到解题效果来激发学生对数学学习的兴趣。引导学生主动去对数学不等式知识 进行探究,通过结合所学的数学知识来形成一个完整的知识网络,以帮助学生完成更深入 地数学知识探究。 同时初中数学不等式知识点的学习对学生归纳能力提出了较高的要求。灵活使用概念 能够帮助学生熟练地运用数学知识,对不等式这一章节知识点的掌握归纳和整理进行综合 的运用从而能够成功地解题。例如,在含有绝对值的不等式当中:解关于x的不等式2+a0时,解集是;2当-2≤a<0时,解集为空集;3当a<-2时,解集为。当学生对知识点进行归 纳和整理后,学生也就不会马失前“题”。 2提高数学课堂教学质量 创设自主学习与合作学习的情境 要把数学学习设置到复杂的、有意义的问题情境中,通过让学生合作解决真正的问题,掌握解决问题的技能,并形成自主学习的能力。创设促进自主学习的问题情境,首先教师 要精心设计问题,鼓励学生质疑,培养学生善于观察、认真分析、发现问题的能力。其次,要积极开展合作探讨,交流得出很多结论。当学生所得的结论不够全面时,可以给学生留

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2(2)y =x +1 x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。技巧二:凑系数 例1.当时,求(82)y x x =-的最大值。 技巧三:分离 例3.求2710(1)1 x x y x x ++=>-+的值域。技巧四:换元技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y =的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值.(1)231,(0)x x y x ++=>(2)12,33y x x x =+>-(3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y 的最大值.;3.203 x <<,求函数y .条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。2:已知0,0x y >>,且191x y +=,求x y +的最小值。变式:(1)若+∈R y x ,且12=+y x ,求y x 11+的最小值(2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2的最大值.技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值.变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

相关文档
最新文档